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15.115.115.115.115.1 OVERVIEWOVERVIEWOVERVIEWOVERVIEWOVERVIEW
This chapter describes a real-time digital beamforming system for passive
sonar. The design of this system is based on several ADSP-2100s that
independently perform the beamforming calculations under the
supervision of an ADSP-2100 master processor. The modular architecture
allows you to tailor the size of the system to your performance needs.
Code listings for the master and slave processors are included.

A sonar system can use two different methods to analyze and evaluate
possible targets in the water. The first is called active sonar. This method
involves the transmission of a well defined acoustic signal which can
reflect from objects in water. This provides the sonar receiver with a basis
for detecting and locating the targets of interest. The limitations of this
method are mainly due to the loss of the signal strength during
propagation through the water and reverberation caused by the signal
reflections. Simplistically, active sonar can be thought of as the
underwater equivalent of radar.

The second method is called passive sonar. This one bases its detection and
localization on sounds which are emitted from the target itself (machine
noise, flow noise, transmissions of its active sonar). Its limitations are due
to the imprecise knowledge of the characteristics of the target sources and
to the dispersion of the target signals by the water and objects in the
water. A generic passive sonar system is shown in Figure 15.1, which can
be found on the next page.

Sonar systems have a wide variety of military and commercial uses. Some
of the military applications include detection, localization, classification,
tracking, parameter estimation, weapons guidance, countermeasures and
communications. Some of the commercial applications include fish
location, bottom mapping, navigation aids, seismic prospecting and
acoustic oceanography. More detailed information about sonar technology
can be found in Winder, 1975 and Baggeroer, 1978.
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15.215.215.215.215.2 SONAR BEAMFORMINGSONAR BEAMFORMINGSONAR BEAMFORMINGSONAR BEAMFORMINGSONAR BEAMFORMING
In its simplest form, sonar beamforming can be defined as “the process of
combining the outputs from a number of omnidirectional transducer
elements, arranged in an array of arbitrary geometry, so as to enhance
signals from some defined spatial location while suppressing those from
other sources” (Curtis and Ward, 1980). Thus, a beamformer may be
considered to be a spatial filter. It is generally assumed that the waves
arriving at the transducers all propagate with the same speed c, so that the
signals of interest lie on the surface of the cone defined by ω = c|k| in (k,
ω) space. Ideally the passband of the beamformer lies on the intersection
of this cone with the plane containing the desired direction vector.

The beamforming operation is accomplished through a series of
operations that involve the weighting, delay and summation of the signals
received by the spatial elements. The summed output that contains
information about a particular direction is called a beam. This output is
then sent to a signal processor and/or a display for frequency and
temporal discrimination. A beamforming system can employ analog or
digital components and techniques; this chapter focuses on a digital
beamforming technique.
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Beamformers are used both in passive and active sonar systems. In
passive sonar, the beamformer acts on the received waveforms. Active
sonar also utilizes a conventional beamformer which acts on the
waveforms that are reflected from the targets (most active sonars use the
same array for receiving and transmitting). There are several well known
techniques that can be utilized in forming beams from receiver arrays. The
discussion in this chapter focuses on weighted delay-and-sum
beamforming technique (also referred as time-delay beamforming) which
is very commonly used. Discussion on other techniques, such as FFT
beamforming or phase-shift beamforming, may be found in Baggeroer,
1978 and Knight, et al., 1981.

15.2.115.2.115.2.115.2.115.2.1 Time-Delay BeamformingTime-Delay BeamformingTime-Delay BeamformingTime-Delay BeamformingTime-Delay Beamforming
In time-delay beamforming, beams are formed by averaging weighted
and delayed versions of the receiver signals. Each receiver has a known
location and samples the incoming signals spatially. To steer the beams
(i.e. to choose beamforming directions), each receiver’s output has to be
delayed appropriately relative to the other receivers. The time delays
compensate for the differential travel time between sensors for a signal
from the desired beam direction.

In order to describe this operation mathematically, let us assume that the
array of receivers is composed of a three dimensional distribution of
equally weighted omnidirectional sensors. Their spatial locations are
specified in the Cartesian coordinate system of Figure 15.2. The

Figure 15.2  Cartesian Coordinate SystemFigure 15.2  Cartesian Coordinate SystemFigure 15.2  Cartesian Coordinate SystemFigure 15.2  Cartesian Coordinate SystemFigure 15.2  Cartesian Coordinate System
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beamforming task consists of generating the waveform bm(t) (or its
corresponding sample sequence) for each desired steered beam direction
Bm. Each bm(t) consists of the sum of suitably time delayed replicas of the
individual sensor outputs en(t).

Let the output of an element located at the origin of coordinates be s(t).
Under the assumption of plane wave propagation, a source from direction
Sl (the lth source direction unit vector) produces the following sensor
outputs

(1) en(t) = s(t + ((En • Sl)/v))

where En is the nth element position vector and v is the speed of
propagation for acoustic waves in the ocean (v ≈ 1500 m/s). Delaying each
individual sensor output by an appropriate amount to point a beam in the
direction Bm yields the beamformer output

N

(2) bm(t) = ∑ en(t – ((En • Bm)/v))
n=1

The operation defined in equation (2) is known as beamforming. The
beamforming operation is computationally demanding because this
summation must be calculated in real time for a large number of sensors
and a large number of beams.

For simplicity, the rest of this discussion is limited to one-dimensional
(line) arrays with regularly spaced hydrophones (underwater
omnidirectional acoustic sensors). This discussion can be generalized to
multi-dimensional arrays and line arrays with variable spacing.

15.2.215.2.215.2.215.2.215.2.2 Digital BeamformingDigital BeamformingDigital BeamformingDigital BeamformingDigital Beamforming
Assume that the presence of a plane wave signal s(t – (E • B)/v) needs to
be detected. It is propagating with a known direction B, and is measured
at E in a background of spatially white noise (B and E are vectors). The
line array of Figure 15.3 is used. The signal has the same value at each
wavefront and the noise is uncorrelated from sensor to sensor. Thus, in
order to enhance the signal from the noise, the sensor outputs are delayed
and summed. The delays account for the propagation delay of the
wavefront to each sensor. This yields
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N–1

(3) b(n∆) = 1/N ∑ Xi(n∆ + ((Ei • B)/v))
i=0

where Xi(n∆) is the sampled output of the ith sensor. Note that for the ith
sensor the following relationship holds:

(4) (Ei • B)/v = –i (d/v) sin θ
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Figure 15.3  Line Array of Equally Spaced HydrophonesFigure 15.3  Line Array of Equally Spaced HydrophonesFigure 15.3  Line Array of Equally Spaced HydrophonesFigure 15.3  Line Array of Equally Spaced HydrophonesFigure 15.3  Line Array of Equally Spaced Hydrophones

The input to the beamformer is a set of time series. The input is usually
one set of time series for each sensor, while the output of the beamformer
is another set of time series, generically referred to as beams.

The beamformer is spatially discriminating because for a plane wave with
a propagation direction θ, different than θ0 assumed by the beamformer,
the sensor outputs are not coherently combined. This leads to partial
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cancellation of the incoming signals with θ ≠ θ0. Thus, for a plane wave
signal

(5) Xi(n∆) = e j(ωn∆ + (ωid/vsinθ))

and

N–1

(6) b(n∆) = 1/N ∑ e jωid(sinθ – sinθ0)/v  e jωn∆

i=0

where d is the spacing between the sensors. Thus the amplitude of the
plane wave arriving from a direction θ at the output of a beamformer
steered to θ0 has an attenuation given by

(7) |B(ω, θ)| = sin[N(ω/2)  d(sinθ – sinθ0)/v]
Nsin[(ω/2)  d(sinθ – sinθ0)/v]

This function is known as the beam pattern of the array. An example beam
pattern for a line array is shown in Figure 15.4. For a given wave
frequency and steering direction θ0, all plane waves with θ ≠ θ0 are
attenuated, leading to the interpretation of a beamformer as a spatial filter.
In most applications, it is desirable to have a beam pattern with a very
narrow main lobe and very low level sidelobes for maximum noise
rejection.

Increasing ω (the operating frequency) and/or N results in narrower main
lobes even though the side lobe level does not change. Increasing the
sensor spacing also results in narrower main lobes. But this is limited by
the fact that spatial aliasing will occur for ∆x > λmin/2, where λmin is the
signal wavelength for the highest frequency of interest (Knight, et al.,
1981). Spatial aliasing exhibits itself in terms of extra main lobes near the
endfire region. In order to reduce the sidelobe levels, the sensor outputs
must be weighted. This procedure is known as shading. Thus, in equation
(6), we replace the 1/N factor by wk . The corresponding beam pattern is

N–1

(8) |B(ω, θ)| = ∑ wi  e jωid(sinθ – sinθ0)/v

i=0
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Beam pattern at 0 degrees (perpendicular to line of array) with a sampling rate of 500Hz,
for a line of 32 sensors spaced 1m apart

Figure 15.4  Example Beam PatternFigure 15.4  Example Beam PatternFigure 15.4  Example Beam PatternFigure 15.4  Example Beam PatternFigure 15.4  Example Beam Pattern

PASTE IN
FIGURE 15.4 HERE

The usual windowing techniques of Fourier transform theory can be used
to reduce the sidelobes (Knight, et al., 1981). By employing a Hamming
window, for example, the sidelobes may be reduced to –40db at the
expense of widening the main lobe.

Another problem that has to be dealt with in a line array with fixed
shading is the quantization errors that are introduced from the insertion of
the delays. In a digital beamformer, for ideal operation, the beamforming
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directions are limited such that the delays t are multiples of the sampling
interval. Any other choice of directions (and thus delays) introduces errors
onto the beam pattern (Gray, 1985). One method that is used to reduce
such errors involves the interpolation of the incoming samples. Further
discussion on this topic can be found in Pridham and Mucci, 1978.

An overall block diagram for a conventional time delay digital
beamformer is shown in Figure 15.5.
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Figure 15.5  Conventional Time-Delay BeamformerFigure 15.5  Conventional Time-Delay BeamformerFigure 15.5  Conventional Time-Delay BeamformerFigure 15.5  Conventional Time-Delay BeamformerFigure 15.5  Conventional Time-Delay Beamformer

15.315.315.315.315.3 DIGITAL BEAMFORMER IMPLEMENTATIONDIGITAL BEAMFORMER IMPLEMENTATIONDIGITAL BEAMFORMER IMPLEMENTATIONDIGITAL BEAMFORMER IMPLEMENTATIONDIGITAL BEAMFORMER IMPLEMENTATION
The beamforming task can be performed using analog or digital systems.
Implementing analog tapped delay lines and forming multiple beams in
real time using analog hardware results in big, inflexible and cumbersome
systems. A digital beamformer results in a smaller, more accurate, and
much more flexible hardware/software unit than an analog technique. In
this section, some of the important issues in digital time-delay
beamforming systems are discussed.
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15.3.115.3.115.3.115.3.115.3.1 Computational PowerComputational PowerComputational PowerComputational PowerComputational Power
The computational capacity required by a real-time beamformer can be
computed from equation (3) as roughly Nfs multiplications and additions
per second per beam, where N is the number of sensors and fs is the input
sampling frequency. This requirement does not seem by itself very
demanding. However, multiple simultaneous beams are usually needed
in order to span the space around the sensors and consequently a more
realistic requirement is NbNfs multiplications and additions per second,
where Nb is the number of beams formed. A passive sonar system
utilizing ≈30 sensors and requiring ≈30 or more beams at sampling rates of
10kHz or higher needs to perform at least 12 million multiplications and
additions per second. Computation demands in the near future will
increase rapidly because new generations of quieter sources (e.g.,
submarines) will require passive sonar to use more sensors (for higher
resolution) and more beams.

15.3.215.3.215.3.215.3.215.3.2 Memory UsageMemory UsageMemory UsageMemory UsageMemory Usage
Another concern in designing real-time beamformers is the amount of
storage that is needed in order to implement the digital delays. For
example, in the case of a line array with sensor spacings d, the storage
necessary to form all the synchronous beams is on the order of N2fsd/v.
The synchronous beams are all the beams that can be formed using delays
which are multiples of the input sampling period. In the typical
beamforming system that we considered earlier, the size of storage
required is on the order of 10000 memory locations. The memory word
width chosen in a particular application could be 16 bits or more, which
would require at least 20 Kbytes of RAM per beam (unless RAM is
shared). The demand for fast accessible storage will be rising in the
coming years along with the demand for computation power.

15.3.315.3.315.3.315.3.315.3.3 Other IssuesOther IssuesOther IssuesOther IssuesOther Issues
Further discussion on beamforming system issues can be found in Knight,
et al., 1981, Janssen, 1987, and Hodgkiss and Anderson, 1981.

15.415.415.415.415.4 EXAMPLE BEAMFORMEREXAMPLE BEAMFORMEREXAMPLE BEAMFORMEREXAMPLE BEAMFORMEREXAMPLE BEAMFORMER
The example beamformer is able to take inputs from an arbitrary array of
up to 32 sensors, form multiple beams in real time, and is user-
configurable from an IBM PC personal computer (or compatible). The
acoustic frequencies of interest in this example range from 0Hz to 2000Hz.
The input sampling rate is 10kHz, which is higher than the Nyquist rate
because of the need for a higher resolution in the beamforming directions.
The acoustic data is collected by hydrophones and the analog data is
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digitized to 12 bits. The gain applied to the analog inputs is manually
selectable (1, 10, 100 or 1000). The output beams are sent to another system
over a specific parallel interface for further processing. The output beams
are also available at analog output points, one at a time, for testing,
monitoring and some other signal processing tasks.

15.4.115.4.115.4.115.4.115.4.1 System ArchitectureSystem ArchitectureSystem ArchitectureSystem ArchitectureSystem Architecture
Several important issues were considered in selecting an architecture for
this beamforming system. One consideration is the need for modularity. A
modular system gives a user the ability to start small with the option of
expanding the system’s capabilities later.

Another consideration is the demand for speed. As discussed earlier, in
order to form multiple simultaneous beams, a large number of
summations have to be computed in real time. This requirement, along
with modularity, led to a distributed processing architecture.

One more consideration is flexibility. A user is able to specify any array
configuration and form any beam.  Ease of use requires a friendly and
interactive user interface, through which the users can specify many
different system parameters.

15.4.215.4.215.4.215.4.215.4.2 Building BlocksBuilding BlocksBuilding BlocksBuilding BlocksBuilding Blocks
The beamformer consists of the building blocks that are shown in Figure
15.6. There are several parallel buses in the system for data transfers and
communication. A wide common bus is used for the subsystems to
communicate and exchange data with each other. Another bus facilitates
the communications with the IBM PC. This bus is used to download the
user system configuration data from the PC into the beamformer. Finally,
a bus is used to send the output beams to a sonar signal processing system
which performs further processing on the data.

There are three main types of subsystems in this beamformer; each of
these subsystems is implemented as a separate board in the example
system:

• The master module, which is responsible for controlling the data
exchange among all internal modules and the data flow over the I/O
buses.

• The slave module, which is responsible for the actual beamforming
task. Each slave can beamform in multiple directions and more slaves
may be added in order to form a larger number of beams.
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• The analog-to-digital conversion (A/D) module. This module takes the
hydrophone outputs as inputs, is responsible for sampling the
incoming analog signals and converting them into a digital format.
Each A/D module can handle a limited number of hydrophones, but
more modules may be attached to the common bus in order to handle
a larger number of inputs.

Figure 15.6  Example Beamformer Block DiagramFigure 15.6  Example Beamformer Block DiagramFigure 15.6  Example Beamformer Block DiagramFigure 15.6  Example Beamformer Block DiagramFigure 15.6  Example Beamformer Block Diagram
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15.4.315.4.315.4.315.4.315.4.3 System OperationSystem OperationSystem OperationSystem OperationSystem Operation
The internal operation of the system is controlled by the master. The
handling of the incoming samples and the I/O exchanges are also under
the master’s control. The operation of the system is synchronized to the
input sampling clock which has a period of 100 µs (10kHz). This implies
that the calculated beam samples have to be sent out every 100µs. Let’s
call this duration a system cycle.

Initially, the master has to accomplish a one-time task of handling of the
system configuration data sent from the PC. Thereafter, the master has to
go through its duties within one system cycle and be ready to handle the
next set of incoming samples. The system events that make up the system
configuration (illustrated in Figure 15.7) are as follows:

1. The operator enters system configuration variables (number of sensors,
beam directions, shading factors, etc.) through an interactive program
on the PC. The same program does some calculations and downloads
the data to the master ADSP-2100. Communications between the
master and PC are accomplished using a simple protocol over a
parallel interface card located in the PC.

2. The master keeps the configuration variables in several of its internal
registers. It sends this information to all the slaves so that each of them
can identify the beams that they are responsible for.

3. The master waits for a signal from each one of the slaves confirming
that they are ready to beamform.

The sampling clock is running during the configuration, but the interrupts
initiated by A/D conversions are not recognized until all the slaves are
ready. Once each of the slaves has sent the signal that it is ready to
beamform, the master starts the cyclic operation of the beamformer.

1. The master responds to the A/D conversion interrupt by reading the
results of the A/D conversions, which correspond to a simultaneous
snapshot of the incoming waveforms at the hydrophone locations. It
reads all the results in sequence and writes them into the memories of
all the slaves. Thus, all slaves receive identical copies of the incoming
waveform samples.

2. The master initiates an interrupt which orders all the slaves to start
beamforming.



1515151515Sonar BeamformingSonar BeamformingSonar BeamformingSonar BeamformingSonar Beamforming

513513513513513

MASTERMASTERMASTERMASTERMASTER SLAVESLAVESLAVESLAVESLAVE

Power up (or RESET) Power up (or RESET)

Wait for the user to input the system setup parameters

PC communications Idle

Download setup data Accept setup data
to slaves

Idle Self-prepare using the
setup data

Sample all the A/Ds 255 Receive the first 255
times and send samples to sets of conversion results
slaves (fill the sample buffer)

Idle Beamform

Sample A/Ds, send samples Receive samples

Read FIFOs, output beams Beamform

Sample A/Ds, send samples Receive samples

Read FIFOs, output beams Beamform

etc. etc.

Figure 15.7  Sequence of EventsFigure 15.7  Sequence of EventsFigure 15.7  Sequence of EventsFigure 15.7  Sequence of EventsFigure 15.7  Sequence of Events

3. Once a slave finalizes a summation (i.e. forms a beam sample), it shifts
the result into a FIFO memory for collection by the master. Each slave
computes and stores its own beam samples independent of other
slaves. Once a slave has completed its assigned set of beams, it waits
for the next interrupt (initiated by the master) that orders all the slaves
to beamform again.

4. While the slaves are busy forming and storing the current set of beam
samples, the master reads the sets of beam samples that were formed
during the previous system cycle. After finishing this output duty, the
master waits for the next A/D interrupt.
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Each slave keeps its input samples in a circular buffer (255 slots) which is
located in the slave’s data memory space. New incoming samples are put
into consecutive locations in this buffer. Once the end of the buffer is
reached, the oldest snapshot of samples gets overwritten by the newest
samples and this cyclic process goes on.

Each slave performs the beamforming task by reading the appropriate
locations in its sample buffer, by multiplying those values with a shading
factor and by keeping a running sum of these weighted samples until the
summation is finished.

Each slave writes out beam samples to its own dedicated a first-in-first-out
memory (FIFO). Only the master can shift the beam samples out of the
FIFOs. The master reads and sends each beam sample, one at a time, over
its output bus.

The user must realize that the first 255 sets of beam samples produced are
invalid. This is due to the fact that the sample buffer is not full until the
end of the 255th system cycle. Therefore, during that period, the locations
read by the slaves contain meaningless data. Valid system outputs are
produced ≈25.5ms after the system starts beamforming.

15.4.415.4.415.4.415.4.415.4.4 Timing IssuesTiming IssuesTiming IssuesTiming IssuesTiming Issues
There are a number of important operational timing issues due to the
length of the system cycles. The number of different beam samples that
can be formed by each slave is limited by the system cycle length. This
constraint exists because the slaves have to release the control of their
individual memory buses in order to allow write operations by the
master. Another constraint is that the master needs to read all the
incoming samples and also send all the beam samples out within a system
cycle. The maximum number of beams that can be formed in this system
are directly limited by these timing constraints. The beam allocations per
slave must be calculated carefully by the PC during the system
configuration phase. Otherwise, incomplete beams and invalid outputs
may result because of the master not having enough time to send out all
the beam samples or other complications.

15.4.515.4.515.4.515.4.515.4.5 Digital OutputDigital OutputDigital OutputDigital OutputDigital Output
The example system provides the ability to send out all the computed
beams through a 16-bit parallel output port. This parallel port is located
on the master module. It can be used to communicate the beam data to an
external signal processor for further processing. The parallel port is
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comprised of octal latches, D-flops and address decoding circuitry which
allow the master to communicate with the outside world using a simple
protocol.

15.4.615.4.615.4.615.4.615.4.6 Analog OutputAnalog OutputAnalog OutputAnalog OutputAnalog Output
The example system provides the ability to observe some beams through
analog outputs. A digital-to-analog (D/A) converter is included on each
slave board and the desired analog beam output can be selected using a
thumbwheel switch. Each slave sends the desired beam sample to its D/A
converter before shifting it into the FIFO. The overhead of this analog port
is minimal, and the port is a very useful test point for system debugging.

15.4.715.4.715.4.715.4.715.4.7 System ConfigurationsSystem ConfigurationsSystem ConfigurationsSystem ConfigurationsSystem Configurations
The minimum system configuration consists of a master, a slave and an
A/D module. The maximum possible system configuration is limited by
the speed of the internal hardware and the maximum data rate capability
of the output port. All buses must be present in any system configuration.

15.515.515.515.515.5 SYSTEM HARDWARESYSTEM HARDWARESYSTEM HARDWARESYSTEM HARDWARESYSTEM HARDWARE
The system hardware includes ADSP-2100 DSP processors, high speed
hybrid A/D converters and very high speed CMOS and bipolar LSI
components. Hardware selection, design, operation and interface issues in
the system are discussed in the following sections.

15.5.115.5.115.5.115.5.115.5.1 Component SelectionComponent SelectionComponent SelectionComponent SelectionComponent Selection
The ADSP-2100 fulfills the high computational requirements of the slave
modules. It also fulfills the CPU requirements of the master module by
enabling high speed input data transfers between the A/D modules and
the slaves as well as the output transfers. It provides easy handling of
memory mapped peripherals and can handle four external interrupts.
Design time is saved by using the same processor for both master and
slave.

The 12-bit fast A/D converters, high precision sample and hold circuits,
low noise operational amplifiers used in the input gain section and anti-
aliasing filters are also critical for a high performance system. Front-end
analog signal conditioning and A/D circuit design and production using
discrete components is a difficult task in noisy digital environments such
as the one assumed in the example system. A hybrid A/D converter with
on-board voltage references along with sample and hold circuits can
perform the required duties better than any discrete circuit with similar
functionalities.
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Analog Devices’ AD1332 A/D converter is appropriate and convenient for
several reasons:

• The AD1332 integrates several of the necessary components inside. Its
central element is a 12-bit 5µs AD7672 A/D converter. A voltage
reference for the converter is included. The converter is preceded by an
on-board AD585 sample and hold circuit which itself is preceded by an
optional 4-pole Butterworth low-pass filter (anti-aliasing filter). The
converter output is fed into a 12-bit latch with tristate output buffers
(an optional integrated FIFO is also available for the temporary storage
of the conversion results).

• The AD1332 is easily addressed from a microprocessor, which makes it
ideal for this application.

• Because the front end circuitry must be duplicated for all incoming
sensor inputs, the use of a hybrid helps reduce design, prototyping
and production times. Multiplexing the sample and hold outputs into
fewer converters is not desirable because of system performance
considerations.

The selection of the rest of the high speed VLSI and LSI components in the
system is not as crucial to system performance. Several levels of address
decoding and buffering that are present in the system result in high
demands on the memory components. Integrated Device Technologies’
(IDT) 2Kx8 CMOS static RAMs with 25ns access times are used as the data
memory components on the slaves. The program memories for the master
and the slaves also need to be very fast. Cypress Semiconductor’s 2Kx8
CMOS EPROMs with 35ns access times are used as the program memory
components for all ADSP-2100s.

The slave FIFOs are IDT’s 72413L35 64x5 CMOS FIFOs. Analog Devices’
AD569 16-bit D/A converters provide analog output ports on the slaves.
The rest of the LSI components are off-the-shelf Advanced Schottky
(Fairchild’s FAST and Texas Instruments’ 74AS series), Advanced Low
Power Schottky (Texas Instruments’ 74ALS series) or very high speed
CMOS (IDT’s 74FCT series) integrated circuits. More detailed information
and specifications for these components are available from their
manufacturers.

The interface card between the PC and the master should be a parallel I/O
card that can easily be plugged into the PC’s backplane and addressed
from a high level program. There are a large number of such I/O boards
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available. A short development time discourages spending effort on a
complicated protocol, and thus a simple protocol and a very flexible I/O
card is preferable. Analog Devices’ RTI-817 parallel I/O board contains
three 8-bit bidirectional ports that accept user-configured directions. These
ports are memory mapped and addressable from high level programs.
More detailed information about the card can be found in the RTI-817
User’s Manual published by Analog Devices.

15.5.215.5.215.5.215.5.215.5.2 Master Board HardwareMaster Board HardwareMaster Board HardwareMaster Board HardwareMaster Board Hardware
A high level block diagram for the master board is shown in Figure 6.8.
The circuitry on the master board is centered around an ADSP-2100
processor running at 8MHz. This master CPU takes its instructions from
three CY7291-35 2Kx8 EPROMs (program memory) mapped to the CPU’s
program memory address space (see Figure 15.9 on the next page). The
master board does not contain any data memory. The ADSP-2100’s
internal registers are sufficient for most operations except during the
configuration phase. The details of the configuration operation are
discussed later in the firmware section.

The master recognizes two interrupts. The first interrupt occurs every
100µs and notifies the master about the availability of new A/D
conversion results. This interrupt comes directly from the sampling clock.
The second one notifies the master that the external signal processor has
received a beam sample and is ready to receive the next one.

Figure 15.8  Master Module Block DiagramFigure 15.8  Master Module Block DiagramFigure 15.8  Master Module Block DiagramFigure 15.8  Master Module Block DiagramFigure 15.8  Master Module Block Diagram
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Figure 15.9  Master Module Program Memory InterfaceFigure 15.9  Master Module Program Memory InterfaceFigure 15.9  Master Module Program Memory InterfaceFigure 15.9  Master Module Program Memory InterfaceFigure 15.9  Master Module Program Memory Interface

A set of devices generates the sampling clock that is used to sample the
analog sensor inputs and to initiate the A/D conversions. These clock
signals are sent over the backplane to the A/D boards.

The master board has a number of decoders, latches and buffers that it
uses to write to slave data memories, to read slave FIFOs, to send control
information to the slaves, to access the PC communication ports and to
receive status flags over the backplane bus. See Figure 15.10.

The master board contains a large number of devices dedicated for the
CPU’s external bus interfaces. These are shown in Figure 15.11. A bank of
bus drivers and transceivers provide the necessary buffering for the
signals that are traveling over the backplane bus. The communications
with the PC are handled through three octal latches that provide a direct
interface to the I/O board that is plugged into the PC’s backplane. This
board also has two inverting octal latches which facilitate the beam
sample transfers over the digital output bus.

The interface to the three buses requires four separate connectors: a 96-pin
Eurocard connector which is the connection to the backplane, a 50-pin flat
cable connector which connects the master and the PC, a 28-pin connector
and a 50-pin flat cable connector which are used on the output bus



1515151515Sonar BeamformingSonar BeamformingSonar BeamformingSonar BeamformingSonar Beamforming

519519519519519

DMD0-15

DMA

Master
ADSP-2100

Address
Decoding Direction Control

Octal
Latches

RT1-817
Data
Bus

Figure 15.10  Master Module PC InterfaceFigure 15.10  Master Module PC InterfaceFigure 15.10  Master Module PC InterfaceFigure 15.10  Master Module PC InterfaceFigure 15.10  Master Module PC Interface

connections between the master and the external signal processor. The
master only requires +5V power.
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15.5.315.5.315.5.315.5.315.5.3 Slave Board HardwareSlave Board HardwareSlave Board HardwareSlave Board HardwareSlave Board Hardware
A high level block diagram for the slave board is shown in Figure 15.12.
The circuitry on the slave board is centered around an ADSP-2100
processor running at 8MHz. The slave CPU takes its instructions from
three CY7291-35 2Kx8 EPROMs (program memory) which are mapped
into the program memory address space of the slave CPU (see Figure
15.13). Two 2Kx8, 35ns static RAMs are also mapped into the program
memory address space and available for data storage using the upper 16
bits of the ADSP-2100’s PMD bus. A decoder provides the necessary
address decoding for the PMA lines.

There are ten IDT6116LA-25 2Kx8 static RAM chips on the slave board.
These devices are mapped onto the data memory address space of the
slave CPU (see Figure 15.14). The first 8K locations of this space are
dedicated to the circular sample buffer. The remaining 2K locations are
used for additional data storage. A decoder provides the necessary
address decoding for the static data RAMs as well as the data memory
address mapping for some additional devices and flags.

The output FIFO for the slave module consists of four IDT72413L35 64x5
FIFO components. These can be loaded (written to) from the slave DMD
bus. The contents of the FIFO can be read from the backplane data bus
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Figure 15.12  Slave Module Block DiagramFigure 15.12  Slave Module Block DiagramFigure 15.12  Slave Module Block DiagramFigure 15.12  Slave Module Block DiagramFigure 15.12  Slave Module Block Diagram
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Figure 15.13  Slave Module Program Memory InterfaceFigure 15.13  Slave Module Program Memory InterfaceFigure 15.13  Slave Module Program Memory InterfaceFigure 15.13  Slave Module Program Memory InterfaceFigure 15.13  Slave Module Program Memory Interface

through buffers (see Figure 15.15). Each FIFO has a unique location in the
master’s data memory address space; this location is determined by DIP
switch settings on the slave board.

The slave CPU only recognizes one external interrupt, the one generated
by the master in order to start the beamforming operation after a new
sample buffer update. The slave CPU clears this interrupt immediately
after it finishes forming its assigned beams.

The slave board, like the master, contains a large number of bus drivers
and transceivers for easy interface with the backplane bus. Several lines on
the backplane bring control information from the master. Some of these
controls cause the slave CPU to halt its operation and surrender the
control of its buses to the master. Some status flags are also sent to the
master over the backplane.

The AD569 16-bit D/A converter is mapped into the slave data memory
address space (see Figure 15.16). An AD588 ±5V voltage reference is used
with this D/A converter. Because the D/A converter has a slow access
time, the slave write cycle must be extended using the DMACK signal
(this is an input to the slave CPU). A small circuit is used to generate
DMACK during a write cycle to the D/A converter.
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The slave board has a 16-position thumbwheel switch which selects the
beam that is sent out through the D/A converter. A set of four DIP
switches give each slave board its own identity. Setting these switches
before power-up allows the slave CPU to read them later to determine the
beams that are under its responsibility.

There are two connectors on the slave board: a 96-pin Eurocard connector
and a male BNC connector. The first is used to interface to the backplane
bus, and the second is connected to the analog output of the D/A
converter. You can use the BNC connector to send the switch-selected
output beam to another device. The slave board requires +5V digital and
±12V analog power supplies.

15.5.415.5.415.5.415.5.415.5.4 A/D Board HardwareA/D Board HardwareA/D Board HardwareA/D Board HardwareA/D Board Hardware
A high level block diagram for the A/D board is shown in Figure 15.17.
Each A/D board can receive up to four analog inputs ranging between
±5V and can convert them into 16-bit signed fixed-point (1.15 format)
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numbers with 12-bit accuracy. The circuitry on the board is designed
around four AD1332 12-bit hybrid A/D converters.

For each input, a gain stage which uses ADOP07 operational amplifiers is
included on the A/D board to provide the necessary amplification of the
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Figure 15.15  Slave Module FIFO InterfaceFigure 15.15  Slave Module FIFO InterfaceFigure 15.15  Slave Module FIFO InterfaceFigure 15.15  Slave Module FIFO InterfaceFigure 15.15  Slave Module FIFO Interface



1515151515

 524 524 524 524 524

Sonar BeamformingSonar BeamformingSonar BeamformingSonar BeamformingSonar Beamforming

hydrophone outputs. The gain is selected (from 1, 10, 100 and 1000) using
an external 4-position rotary switch. AD7590 analog CMOS switches select
the resistor combination for the amplifier’s feedback loop. The CMOS
switches are used to allow the future possibility of using CPU-generated
signals to make gain selections (i.e., to implement automatic gain control).

The board contains two octal bus drivers to provide adequate buffering
for the AD1332 outputs. The outputs of these buffers are tied to the
backplane DMD bus (see Figure 15.18). The A/D output, which is in offset
binary format, has to have its most significant bit inverted because of the
fixed-point format that is used in the system.

A decoder provides a unique location for each AD1332 in the master’s
data memory address space. The configuration of this decoder must be
different in each A/D board for each A/D converter to have a unique
location. The A/D board requires +5V digital and ±12V analog power
supplies. There are five connectors on the A/D board: a 96-pin male
Eurocard connector that is used to interface to the backplane bus and four
male BNC connectors that accept the hydrophone outputs.

Figure 15.17  A/D Module Block DiagramFigure 15.17  A/D Module Block DiagramFigure 15.17  A/D Module Block DiagramFigure 15.17  A/D Module Block DiagramFigure 15.17  A/D Module Block Diagram
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(listing continues on next page)

15.615.615.615.615.6 SYSTEM FIRMWARESYSTEM FIRMWARESYSTEM FIRMWARESYSTEM FIRMWARESYSTEM FIRMWARE
The ADSP-2100 assembly code that is responsible for the master and slave
CPUs’ operation is discussed in this section.

15.6.115.6.115.6.115.6.115.6.1 Master FirmwareMaster FirmwareMaster FirmwareMaster FirmwareMaster Firmware
The firmware that runs in the master CPU is relatively short. It is
assembled using the system specification source file shown in Listing 15.1.

.SYSTEM master_system;

.SEG/ROM/ABS=0/PM/CODE rom_program_storage[2048];

.SEG/RAM/ABS=0/DM/DATA sample_mem[8160];

.SEG/RAM/ABS=8160/DM/DATA system_info[32];

.SEG/RAM/ABS=8192/DM/DATA shading_coeff_mem[32];

.SEG/RAM/ABS=8224/DM/DATA scratch_mem[2016];

.SEG/RAM/ABS=10240/DM/DATA ad_converters[32];

.SEG/RAM/ABS=14337/DM/DATA fifos[7];

{The ports declared below are used to set and clear various flags
as well as to communicate with the PC and the external signal
processor}

.PORT/ABS=H#300F setbmoutrdy;

.PORT/ABS=H#304F clrbmoutrdy;

.PORT/ABS=H#308F pcwe;

.PORT/ABS=H#310F setsbr;

.PORT/ABS=H#314F clrsbr;
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.PORT/ABS=H#318F clrslhalt;

.PORT/ABS=H#31CF setslhalt;

.PORT/ABS=H#30C8 setbpoe;

.PORT/ABS=H#30C9 clrbpoe;

.PORT/ABS=H#30CA clrbmtaken;

.PORT/ABS=H#30CD setsmemrd;

.PORT/ABS=H#30CE clrsmemrd;

.PORT/ABS=H#30CF setslint;

.PORT/ABS=H#3007 pcrd;

.PORT/ABS=14336 beamsend;

.ENDSYS;

Listing 15.1  System Specification for Master FirmwareListing 15.1  System Specification for Master FirmwareListing 15.1  System Specification for Master FirmwareListing 15.1  System Specification for Master FirmwareListing 15.1  System Specification for Master Firmware

The master code, shown in Listing 15.2, only occupies 180 locations in
program memory. It can be divided into two sections: the PC
communications section and the A/D result handling section.

The PC communications section of the master code starts at the beginning
of the file and ends at the wait routine. The beginning contains a series of
port, variable and interrupt declarations. The program starts by clearing
certain flags and then entering the pc_init_wait routine which causes the
master CPU to wait until the PC is ready to download the system
configuration data. Then, the pc_comm routine sets some of the internal
CPU registers to be used during the communication. At the end of this
routine, the PC is notified that the master is ready and the master CPU
enters the pc_wait1 loop.

The first six pieces of data downloaded by the PC are handled differently
than the rest. These first six pieces are the following information:

• The number of sensors in the system
• The number of beams to be formed
• The total number of indexes to be used (the indexes are used by the

slave CPUs to pick the desired input samples from the circular buffer)
• The number of slaves in the system
• The number of beams assigned to each slave
• The number of beams assigned to the last slave

This data is stored by the init_sto routine in the master CPU’s data
memory (which actually is the same as the slave data memories) in
consecutive locations that are declared at the beginning of the program.
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Next, the indexes that were calculated by the PC are received and stored
in data memory by the index_store routine. Then in the checksum routine,
the master compares the number of pieces of data it received with the
number that the PC indicates that it sent (the PC sends a count value to
the master in this routine). If these values are equal, that implies that the
download was successful.

The comm_end routine prepares the master, using the downloaded data,
for its next set of tasks (responding to A/Ds, etc.). This routine and the
init_sto routine are the only times the master CPU reads a value from a
slave data memory. This type of read operation is only allowed from a
single slave which must be plugged into a designated slot on the
backplane.

Another piece of data that is calculated in this routine is the shading
coefficient that will be used in the current set of beams. The system
currently can only handle a rectangular window with a magnitude of 1.
Additional code to handle several different shading windows can be
added later.

After configuration, the master CPU issues a signal which commands the
slaves to prepare themselves using the recently downloaded data (the
slave CPUs were in a TRAP state until now). The master waits for 1000
cycles, more than enough time for the slaves to get prepared. It then
enables two nested interrupts and enters the wait loop.

The second major section of the code starts at the wait loop. The master
waits for the “conversion complete” interrupt to occur, then it jumps to
the adcomplete routine. During this routine, the master reads the output
latches (conversion results) of each AD1332 and writes these values into
all of the slaves’ sample buffers. The master keeps track of a few pointers
in order to address the circular buffers and the A/D boards properly.

Next, in the sendbeam routine the master reads beam samples from all the
slave FIFOs in sequence and writes them to the system output port.
Output beam samples are sent one at a time. The handshaking with the
external signal processor is executed for each beam sample. The master
starts the handshake by asserting the BMOUTRDY signal and then waits
for the BMTAKEN interrupt (set by the external processor) that indicates
that the external processor is ready to receive the next value. Then the
interrupt is cleared by the master and the next beam sample is sent out in
the same manner.



1515151515

 528 528 528 528 528

Sonar BeamformingSonar BeamformingSonar BeamformingSonar BeamformingSonar Beamforming

For a given number of desired beam directions, it is not always possible to
divide the job evenly among the slaves. Thus, the number of beams
formed by the last slave may be different than the number formed by each
of the rest of the slaves. Consequently, the output FIFO of the last slave is
handled by the oneslave routine, which serves a similar purpose to the
sendbeam routine except it only handles the last slave.

Once the beam output tasks are completed, a RTI (return from interrupt)
instruction is executed and the program returns to the wait loop where the
master waits for the next adcomplete interrupt.

The master continues its cyclic, double-interrupt-driven operation until
the assertion of RESET or a system power-down.

.MODULE/ROM/ABS=0 master_code;

{The following are declarations for ports that are used to set
and clear several flags. Data memory mapped D-flipflops are used
to generate flags}

.PORT setbmoutrdy; {Beam output ready flag}

.PORT clrbmoutrdy;

.PORT pcwe; {PC output port}

.PORT setsbr; {Slave bus request flag}

.PORT clrsbr;

.PORT setslhalt; {Slave halt flag}

.PORT clrslhalt;

.PORT setbpoe; {Backplane output enable flag}

.PORT clrbpoe;

.PORT clrbmtaken;

.PORT setsmemrd; {Slave memory read flag}

.PORT clrsmemrd;

.PORT setslint; {Slave interrupt}

.PORT pcrd; {PC input port}

.PORT beamsend; {Interrupt the external processor}

{The following are variables that contain the system
configuration info.}

.VAR/DM/ABS=8160 sensor_num;

.VAR/DM/ABS=8161 beam_num;

.VAR/DM/ABS=8162 index_num;

.VAR/DM/ABS=8163 slave_num;

.VAR/DM/ABS=8164 beams_per_slave;

.VAR/DM/ABS=8165 last_slave_beam_num;
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{The following is the main body of the master program}

{Interrupt vectors occupy the first four PM locations}
JUMP adcomplete; {Vectored address for

IRQ0}
RTI;
JUMP beamtaken; {for IRQ2}
RTI;

{Program execution starts here}
IMASK=b#0000;
ICNTL=b#00000;
AY0=h#0FFF;
DM(clrbmoutrdy)=MX0; {Clear all flags by}
DM(clrbmtaken)=MX0; {writing a value into}
DM(clrsbr)=MX0;   {their respective DM}

  {mapped port locations}
DM(clrslhalt)=MX0;
DM(clrbpoe)=MX0;
DM(clrsmemrd)=MX0;

pc_init_wait: AX0=DM(pcrd); {Wait for the ready}
AR=AX0-AY0; {message from the PC}
IF EQ JUMP pc_comm;
JUMP pc_init_wait;

pc_comm: MX0=h#FF0F ; {Initial set up before
the}

AY0=5; {PC communications.}
AF=AY0+1; {A message is sent to the PC}
AY0=h#1FFF; {at the end of this routine}
AX1=h#FFFF; {signaling that the master is}
MX1=h#FF0F; {ready}
M0=0;
I1=8160;
L1=6;
I2=0;
M2=1;
L2=8160;
M3=-1;
I4=8166;
M4=1;
I5=9000;
M5=0;
L5=1;
I6=0;
M6=1;

(listing continues on next page)
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L6=2055;
DM(setsbr)=AY0; {Set slave Bus Request flag}
DM(pcwe)=MX0;   {Send Ready mesage to the

PC}
JUMP pc_wait1;

pc_comm_end_check: AY1=I3;   {Counter register to check
for}

AR=AY1-1;   {the end of the index}
IF LT JUMP pc_end; {downloading}

pc_wait1: AY1=DM(pcrd); {Wait for FFFF from the
PC}

AR=AY1-AX1;
IF EQ JUMP pc_read;
JUMP pc_wait1;

pc_read: MODIFY(I6,M6);  {Write the initial 6 pieces}
AF=AF-1 ;     {of data and then start}
IF LT JUMP index_store; {the index storage}

init_read: AX0=DM(pcrd);   {Read data sent from the PC}
AY1=h#E000;
AR=AX0 AND AY1; {Mask out bottom 13 bits}
AY1=h#A000;
AR=AR-AY1;
IF EQ JUMP init_sto; {Compare to h#A000}
JUMP init_read;

init_sto: AR=AX0 AND AY0;    {Mask out top 3 bits}
DM(setbpoe)=MX0; {Enable backplane drivers}
DM(I1,M1)=AR;
DM(setsmemrd)=MX0; {Enable reading from}

 {slave DM}
L4=DM(beam_num);
I3=DM(index_num);
DM(clrsmemrd)=MX0; {Disable reading from}

 {slave DM}
L3=I3;
DM(clrbpoe)=MX0; {Disable backplane

drivers}
JUMP pc_wait1;

index_store: AX0=DM(pcrd); {Read the PC output}
AY1=h#E000;
AR=AX0 AND AY1; {Mask out bottom 13 bits}
AY1=h#A000;
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AR=AR-AY1;
IF EQ JUMP sto; (Compare to h#A000}
JUMP index_store;

sto: AR=AX0 and AY0;
DM(setbpoe)=MX0;
DM(I2,M2)=AR ; {Store index}
MODIFY(I3,M3);
DM(clrbpoe)=MX0;
JUMP pc_comm_end_check;

pc_end: AX1=h#FF0F;
pc_end_loop: AY1=DM(pcrd); {Read PC output and
decide}

AR=AX1-AY1;    {whether communication
should}

IF EQ JUMP checksum; {be completed or not}
JUMP pc_end_loop;

checksum: AX1=I6; {Perform cheksum
operation}
checksum_loop: AY1=DM(pcrd);

AR=AX1-AY1;
IF EQ JUMP comm_end;
JUMP checksum_loop;

comm_end: MX0=h#F0; {This routine ends the PC}
DM(pcwe)=MX0;  {communications and does

some}
DM(setbpoe)=MX1; {reads from the slave DM

in}
AY0=h#0201; {order to prepare for the}
AF=AY0-1 ; {beamforming tasks}
AY0=0;
DM(setsmemrd)=MX0;
SI=DM(sensor_num); {Read #of sensors from}
DM(clrsmemrd)=MX0; {slave DM and do the}
AY0=SI; {necessary division to obtain a}
AR=AY0-1; {scaled magnitude value for the}
IF EQ JUMP onesensor; {rectangular shading}
AY0=0; {window}
SR=LSHIFT SI BY 9 (LO);
AX1=SR0;
ASTAT=0;
DIVQ AX1;
DIVQ AX1;DIVQ AX1;DIVQ AX1;
DIVQ AX1;DIVQ AX1;DIVQ AX1;
DIVQ AX1;DIVQ AX1;DIVQ AX1;

(listing continues on next page)
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DIVQ AX1;DIVQ AX1;DIVQ AX1;
DIVQ AX1;DIVQ AX1;DIVQ AX1;
DM(8192)=AY0; {Shading coefficient}
JUMP allsensor;

onesensor: AY0=h#7FFF; {This is shading coefficient}
DM(8192)=AY0; {in case of a single sensor}

allsensor: DM(setsmemrd)=MX1;
AY0=DM(slave_num); {Do the rest of the}
AX1=DM(beams_per_slave); {necessary reads}
MY1=DM(last_slave_beam_num);

{before releasing slave BR flag}
MX0=DM(sensor_num);
DM(clrsmemrd)=MX0; {Clear the slave DM read}
MY0=255;  {flag and set up some}
MR=MX0*MY0(UU);{pointers to be used later

on}
SI=MR0 ; {#of samples to be placed}
SR=LSHIFT SI BY -1 (HI);

{into the sample buffer}
L2=SR1;
AR=AY0-1;
DM(clrsbr)=MX1;
AX0=AR;
I1=10240;
L1=MX0;
I2=0;
M2=1;
IF EQ JUMP fix_base;
I3=h#3800; {Base addr. for the FIFOs}
AR=AY0+1; {with multiple slaves}
L3=AR;
JUMP normal;

fix_base: I3=h#3801; {Base addr. for the FIFO}
L3=0; {with single slave}

normal: DM(setslhalt)=MX1; {HALT the slaves, this}
DM(clrslhalt)=MX1; {will cause them to get}
DM(clrbpoe)=MX1; {out of their TRAP state}
CNTR=1000;
DO slave_wait UNTIL CE; {Wait until all}

slave_wait:    NOP; {slaves are ready to go}
AR=1;
AY1=1;
ICNTL=b#00101;
IMASK=b#0001;

{Enable sampling interrupt IRQ0}
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wait: JUMP wait;

adcomplete: AR=AR-AY1; {Ignore the first}
IF EQ JUMP first_adcomp; {IRQ0 by using

this}
DM(setsbr)=MX1;
AF=AY0-1;
DM(setbpoe)=MX1; {This routine is used}
CNTR=MX0; {to fill up the sample}
DO sample_store UNTIL CE; {memory after

each}
   MX1=DM(I1,M1); {A/D conversion}

sample_store:    DM(I2,M2)=MX1;
DM(clrsbr)=MX1;
DM(setslint)=MX1;
DM(clrbpoe)=MX1;

sendbeam: IF EQ JUMP oneslave; {Read out the beams in}
MODIFY(I3,M1);    {a sequential manner

in}
CNTR=AX0; {each FIFO in order of

numbering}
DO beamout UNTIL CE; {Send beam outputs via}
   CNTR=AX1;  {the digital output port}
   DO fifo_out UNTIL CE;
      DM(setbpoe)=MX1;
      MX1=DM(I3,M0);
      DM(clrbpoe)=MX1;
      DM(beamsend)=MX1;
      IMASK=b#0100;{Enable data receive

intr}
      DM(setbmoutrdy)=MX1; {Set a flag}
      CNTR=6;  {for the external processor}
      DO resp_wait UNTIL CE;

resp_wait:          NOP;
fifo_out:       NOP;
beamout:    MODIFY(I3,M1);

oneslave: CNTR=MY1;
DO endfifo UNTIL CE;
   DM(setbpoe)=MX1; {This routine is for}
   MX1=DM(I3,M0);   {single slave}
   DM(clrbpoe)=MX1; {configurations and is}

  {also used for handling}
   DM(beamsend)=MX1; {the last FIFO read

out}
   IMASK=b#0100; {It handles the}
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   DM(setbmoutrdy)=MX1; {irregularity of the}
   CNTR=6; {last set of beams,}
   DO resp_wt UNTIL CE; {i.e. possibly fewer}

resp_wt:       NOP; {beams}
endfifo:    NOP;
first_adcomp: AR=0;

RTI;

beamtaken: DM(clrbmoutrdy)=MX1;
{Interrupt routine to handle}

DM(clrbmtaken)=MX1;
{the data receive confirmation}

RTI; {from the external processor}

.ENDMOD;

Listing 15.2  Master FirmwareListing 15.2  Master FirmwareListing 15.2  Master FirmwareListing 15.2  Master FirmwareListing 15.2  Master Firmware

15.6.215.6.215.6.215.6.215.6.2 Slave FirmwareSlave FirmwareSlave FirmwareSlave FirmwareSlave Firmware
The slave board requires less firmware than the master. It is assembled
using the system specification source file shown in Listing 15.3.

.SYSTEM slave_system;

.SEG/ROM/ABS=0/PM/CODE rom_program_storage[2048];

.SEG/RAM/ABS=2048/PM/DATA index_mem[2048];

.SEG/RAM/ABS=0/DM/DATA sample_mem[8160];

.SEG/RAM/ABS=8160/DM/DATA system_info[32];

.SEG/RAM/ABS=8192/DM/DATA shading_coeff_mem[32];

.SEG/RAM/ABS=8224/DM/DATA scratch_mem[2016];

{The ports declared below are used to set and clear some flags as
well as to write to the DAC and to read from some hardware
switches}

.PORT/ABS=H#2800 beamout;

.PORT/ABS=H#3000 beamdac;

.PORT/ABS=H#3800 clrslint;

.PORT/ABS=H#3900 slave_id;

.PORT/ABS=H#3A00 dac_beam_sel;

.ENDSYS;

Listing 15.3  System Specification for Slave FirmwareListing 15.3  System Specification for Slave FirmwareListing 15.3  System Specification for Slave FirmwareListing 15.3  System Specification for Slave FirmwareListing 15.3  System Specification for Slave Firmware
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The slave firmware code occupies only 100 locations in program memory.
The slave firmware, shown in Listing 15.4, can be divided into two
sections: the system set-up section and the beamforming section.

The set-up section of the code starts at the beginning of the file and ends at
the wait routine. The beginning contains a series of port, variable and
interrupt declarations. Only one interrupt, SLINT, is recognized by the
slave; this is the interrupt initiated by the master to start the beamforming
operation.

After system parameters are declared, the slave enters a TRAP state. The
slave gets reactivated after the master is finished communicating with the
PC. The master asserts the SLHALT signal, which wakes up the slave and
causes the program execution to continue from the location following the
TRAP instruction.

In the first part of the program, the slave moves the indexes from its data
memory into its “index memory” which is located in its program memory
space (the indexes are in data memory initially because the master has to
store them there temporarily). Then, the slave sets up its address registers
using the downloaded beamforming information. Next, the slave enters
the wait loop to wait for the beamforming interrupts issued by the master.

The slave constantly monitors the D/A beam selection switch while it is in
the wait loop. Since the slave returns to the wait loop every 100µs, it can
decide, in real time, which beam to send out through the analog port.

The second major section of the program starts at the wait loop. As soon as
the SLINT interrupt is received, the slave jumps to the beam_form routine.
The beam_form routine contains very tight loops which allows the slave to
form a large number of beams. The routine reads the index memory and
picks the indexed samples from the sample buffer. These samples are the
delayed samples that are needed for the beam summation.
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The frame of the circular buffer is rotated every time a new set of samples
comes in. Therefore the indexes that are read must be modified before
being used, because they are referenced to the absolute origin of the
circular buffer.

The samples that are read are multiplied by the shading factor (which is
currently 1) and accumulated in the MR register. The resulting beam
sample is written into the FIFO. If the beam sample belongs to the beam
that is requested at the analog port, it is then written to the beamdac port
(the D/A converter). Before returning from the interrupt, the slave clears
the SLINT flag. Then the program returns to the wait loop to wait for the
next SLINT interrupt.

The slave continues its cyclic, single-interrupt-driven operation until the
assertion of RESET or a system power-down.

.MODULE/ROM/ABS=0 slave_code;

{The following are declarations for data memory mapped ports. One
is used to clear a flag, while others are used to write data to
the DAC, FIFO and read the hardware switches on the slave board}

.PORT beamout; {FIFO}

.PORT beamdac; {DAC}

.PORT clrslint; {Clear the slave interrupt}

.PORT slave_id; {Slave identity dipswitch}

.PORT dac_beam_sel; {Analog output selection switch}

{The following are variables that contain the system
configuration info}

.VAR/DM/ABS=8160 sensor_num;

.VAR/DM/ABS=8161 beam_num;

.VAR/DM/ABS=8162 index_num;

.VAR/DM/ABS=8163 slave_num;

.VAR/DM/ABS=8164 beams_per_slave;

.VAR/DM/ABS=8165 last_slave_beam_num;

{The following is the main body of the slave program}

JUMP beam_form; {Vectored addr. for IRQ0}
RTI;
RTI;
RTI;
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IMASK=b#0000; {Disable interrupts}
ICNTL=b#00000;
DM(clrslint)=MX0;
TRAP; {TRAP until pc_comm ends}

pc_comm_end: I1=0; {This initial routine is used}
M1=1; {to transfer the indexes from}
L1=DM(index_num); {sample_mem into the}
I4=2048; {index_mem in PM}
M4=1;
L4=L1;
CNTR=L1;
DO index_store UNTIL CE;
   MX0=DM(I1,M1);

index_store:    PM(I4,M4)=MX0;

MX0=DM(sensor_num);
MY0=255;
MR=MX0*MY0(UU);
SI=MR0;
SR=LSHIFT SI BY -1 (HI);

{SR1 contains the length}
I1=MX0; {of the circular sample}
M1=MX0; {buffer}
L1=SR1;
SI=DM(slave_id); {Determine this slave’s}
SR=LSHIFT SI BY -12 (HI);

{ID# and the starting}
AX0=DM(slave_num); {location of the first}
AY0=SR1; {index.Also determine}
AF=AX0-AY0; {the # of indexes}
AF=AF-1; {for this slave}
IF EQ JUMP last_slave;
SE=DM(beams_per_slave);
JUMP all_slave;

last_slave: SE=DM(last_slave_beam_num);

all_slave: MX0=DM(sensor_num);
{This routine calculates}

MY0=DM(beams_per_slave);
{the starting address of}

MR=MX0*MY0(UU); {this slave’s indexes}
SI=MR0;
SR=LSHIFT SI BY -1 (HI);
MX0=SR1;
AR=AX0-AY0;

(listing continues on next page)
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AY1=AR;
AR=AY1-1;
MY0=AR;
MR=MX0*MY0(UU);
SI=MR0;
SR=LSHIFT SI BY -1 (HI);
AX1=2048;
AY1=SR1;
AR=AX1+AY1;
I5=AR; {Starting address of the}
M5=1; {indexes for this slave}
M7=-1;
MX0=SE;
MY0=DM(sensor_num); {# of indexes per beam}
MR=MX0*MY0(UU);
SI=MR0;
SR=LSHIFT SI BY -1 (HI);
L5=SR1; {Total # of indexes to}
M3=0; {be used by this slave}
L3=L1;
I6=8192;
M6=0;
L6=1;
MY1=DM(I6,M6); {Shading coefficient; there}
AY1=DM(sensor_num);

{is only one now since it is}
AR=AY1-1; {a rectangular window}
AX1=AR;
ICNTL=b#00001;
IMASK=b#0001; {Enable slave interrupt IRQ0}

wait: SI=DM(dac_beam_sel); {Setup down counter to}
SR=LSHIFT SI BY -12(HI);

{be used in deciding}
AY1=SR1; {which beam to send out}
AF=AY1+1; {to the DAC}
JUMP wait; {Wait for sample buffer update}

beam_form: CNTR=SE;
DO beam_end UNTIL CE;
   MR=0; AY0=PM(I5,M5); {Read index}
   M3=I1;
   I3=AY0;
   MODIFY(I3,M3); {Modify index}

   MX0=DM(I3,M3); {Get first sample}
   AY0=PM(I5,M5);
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   CNTR=AX1;
   DO single_beam_sample UNTIL CE;{Beamform}
      I3=AY0;
      MODIFY (I3,M3);

single_beam_sample:       MR=MR+MX0*MY1(SS),
MX0=DM(I3,M3),AY0=PM(I5,M5);

   MR=MR+MX0*MY1(RND), AY0=PM(I5,M7);
   AF=AF-1;        {Check which beam

to}
   IF EQ JUMP dac_write; {send to the DAC}

beam_end:    DM(beamout)=MR1;      {Write result to
FIFO}

MODIFY(I1,M1);         {Advance circular
sample}

DM(clrslint)=MX0;         {buffer pointer}
RTI;

dac_write: DM(beamdac)=MR1; {Write result to DAC}
JUMP beam_end;

.ENDMOD;

Listing 15.4  Slave FirmwareListing 15.4  Slave FirmwareListing 15.4  Slave FirmwareListing 15.4  Slave FirmwareListing 15.4  Slave Firmware

15.715.715.715.715.7 SYSTEM SOFTWARESYSTEM SOFTWARESYSTEM SOFTWARESYSTEM SOFTWARESYSTEM SOFTWARE
The system software consists of the PC program that is responsible for the
user interface and the downloading of the system configuration data. The
code is written in the C language and compiled on the Microsoft C
Compiler.

The declaration section at the beginning of the program includes certain
useful libraries, defines a number of variables and declares the 8-bit
parallel I/O port addresses. These ports are located on an Analog Devices
RTI-817 parallel I/O card which is plugged into the PC’s backplane.
Following this section there are a series of function definitions and the
execution loop of the program.

The program interactively takes in the system variables from the user.
Some questions are displayed on the screen which are answered by the
user via the keyboard. The values that have to be entered by the user are:
the number of sensors, the number of beams to be formed, the number of
slaves in the system, the cartesian coordinates for the sensor locations and
the spherical coordinates for the desired beams. The program assigns
these values to variables and arrays in order to calculate the necessary tap
delays for beamforming.
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The program converts the spherical coordinate beam directions to
cartesian coordinates. Then it calculates the necessary delays using the
equation (2). The propagation speed of sound in water is assumed to be
1470 m/s, which is typical for the ocean water. (This value can be changed
easily in the code to conform to the application environment.) The
program identifies the beams that the system is unable to produce with
the given array configuration. This task is accomplished by checking
whether any one of the required delays falls outside of the sample buffer
length.

Next, the program determines the maximum number of beams that can be
formed with the given system configuration. It also calculates the number
of beams to be assigned to each slave and the number of beams to be
assigned to the last slave. These values are stored as variables to be
downloaded to the master.

The program downloads the system configuration information to the
master, beginning with six pieces of system set-up data, as explained
earlier in the master firmware section. Then the program sends all the
calculated indexes to the master, followed by a checksum, which, as
explained earlier, corresponds to the number of pieces of data (number of
indexes + 6) just downloaded. If the master acknowledges that the
download was successful, the downloading operation is completed by
sending a confirmation message to the PC screen. If the master indicates
an unsuccessful download, the downloading operation is terminated by
sending a failure message to the the screen. In this case, the user is given
the choice of aborting or retrying the download.

The download is easily executable by the user. Once the system
parameters are entered, it takes at most a few seconds for the PC to
download all the information to the master.

15.815.815.815.815.8 ENHANCEMENTSENHANCEMENTSENHANCEMENTSENHANCEMENTSENHANCEMENTS
There are several ways to improve the performance, functionality and the
user interface of the example beamformer. Possible additional features as
well as some architectural and circuit level enhancements are briefly
discussed in this section.

15.8.115.8.115.8.115.8.115.8.1 Additional FeaturesAdditional FeaturesAdditional FeaturesAdditional FeaturesAdditional Features
A large number of features can be added to this system without great
difficulty. One feature is the choice of frequencies for the input sampling
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clock. It is possible to route an external clock to the A/D boards by
incorporating additional hardware on the master board. The external
sampling clock option would an additional piece of data collected by
comm.c during the system parameter configuration. The program would
download the information to the master, which would activate the
necessary signals for clock selection. The program would also have to
modify the beam assignments, because the system cycle may be shorter or
longer depending on the choice of sampling frequency.

A software enhancement is the ability to save the current system
parameters into a file. This allows the system to be restarted by instructing
comm.c to boot up the system using the saved parameters instead of
getting them from the user. A user could edit this file to restart the system
with a new set of configuration parameters in a very short time. This
feature would make comm.c even more user-friendly.

Another feature is the addition of a filtering and smoothing circuit for the
output of the D/A converter. Smoothing the output of the D/A converters
would make it possible to feed the analog output beams into a spectrum
analyzer or a general purpose data acquisition system for further signal
analysis.

The availability of various shading windows for the inputs is another
useful enhancement. The modifications would have to be done in comm.c
and also the system firmware programs. In comm.c, the shading window
option would be gotten from to the user and the shading coefficients
would be calculated on the fly and downloaded to the master. The master
would send these coefficients to the slaves instead of the unit rectangular
window.

The shading factors would reside in the program memory space of each
slave and could ultimately be used by the slaves during beamforming.
The downloading overhead would be minimal. The additional program
memory accesses during the beamforming loop should not result in a
performance degradation since they can be performed in parallel with the
data accesses. Careful calculations are needed to determine the exact
performance consequences of such a system modification.

15.8.215.8.215.8.215.8.215.8.2 Performance ImprovementsPerformance ImprovementsPerformance ImprovementsPerformance ImprovementsPerformance Improvements
There are several ways to improve the performance of the beamformer
described in this chapter by making relatively minor modifications to the
hardware and software. Some modifications, with ascending levels of
complexity, are discussed in this section.
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An important performance issue for a real-time beamformer is the beam
throughput. The main goal of such a system is to form as many
simultaneous beams as possible using the existing technology. There are
several ways to improve the beam throughput within the existing
distributed processing architecture. The most obvious and relatively easy
way to achieve this goal is to replace the ADSP-2100s with ADSP-2100As.
The ADSP-2100A has an 80ns instruction cycle time as opposed to 125ns
cycle time of the ADSP-2100. This upgrade would result in ≈50% increase
in system beam throughput.

The ADSP-2100A is pin and source code compatible with the ADSP-2100.
This allows the easy upgrade of the system with no firmware changes.
The modifications that are needed are mostly in hardware. The timing
requirements during the ADSP-2100A’s data and program memory access
operations must be carefully analyzed and faster devices should be placed
on the critical data paths. It is possible to upgrade only the existing
memory components to compensate for the new shorter data and program
memory access cycles.

A modification to comm.c would also be necessary because it would have
to be able to assign a larger number of beams per slave. The input
bandwidth of the external signal processor would have to be carefully
evaluated, because it is likely that the output bandwidth of the upgraded
system, in maximum configuration, would be higher than the input
capacity of the external processor. If such an incompatibility resulted, you
could use fewer slaves to match the output bandwidth requirements. The
overall consequence would be a cost reduction for the less demanding
users and higher performance for the more demanding users.

Another improvement is increasing the maximum number of sensor
inputs. It is possible to add more input channels to the beamformer.
However, each added A/D converter would have to be placed in a unique
location in the master CPU’s data memory address space, requiring some
additional address decoding circuitry on the A/D boards. There is enough
room for more digital components on these boards and the changes in the
wiring would be relatively simple.

One important effect of adding channels is a reduction of the maximum
number of beams that can be formed simultaneously, because the master
will have to read more inputs within one system cycle and consequently
will have less time to read the results from the slave FIFOs. It is possible to
keep the beam throughput at the current level by upgrading the
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processors while increasing the number of sensor inputs. These
performance tradeoffs should be considered carefully before expanding
the A/D capabilities of the system.

A major improvement is to redesign the A/D boards with multi-channel
A/D converter hybrids replacing the single-channel AD1332s. Analog
Devices’ AD1334 would be the optimal choice. The system redesign effort
that is necessary to implement the substitution of AD1334s is of moderate
difficulty. The savings in the number of A/D cards would prove this
redesign effort to be very valuable, especially if the need for input
channels is expected to rise.

The AD1334 contains four sample and hold circuits, a 4-to-1 analog
multiplexer, an AD7672 12-bit, 5µs A/D converter and an output FIFO.
The sample and hold circuit (AD585) and the A/D converter are the same
as the ones used in the AD1332. The output FIFO is 12 bits wide and 64
locations deep. It is possible to use this hybrid in a mode where all of the
sample and hold circuits sample the inputs simultaneously.

Some overhead analog circuitry must be added externally because of the
lack of on board low-pass filters in the AD1334. The AD1334 has the same
package as the AD1332, so it would be possible to fit as many as three
A/D hybrid packages on the same board even with the additional digital
and analog overhead circuitry that is needed. Such a construction strategy
would allow each A/D board to handle up to 12 sensor inputs.

Some minor modifications in the master firmware would also be needed
in order to properly address the AD1334s.
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