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18.118.118.118.118.1 OVERVIEWOVERVIEWOVERVIEWOVERVIEWOVERVIEW
This chapter describes host interfacing techniques in general using the
example of the Motorola 680x0 family of processors. Today’s computer
CPUs are very powerful. They have large, versatile instruction sets and
addressing modes. They can handle complicated sequencing and stacking,
address and manage large data spaces, even while keeping track of virtual
memory, user and supervisor modes, etc. However, these CPUs do not
perform fast numerical operations. The ADSP-2100 can act as a fast
numerical coprocessor to a host CPU. The host CPU takes care of
administrative duties while the ADSP-2100 processes numerical data
concurrently. This coprocessor configuration is useful in computationally
intensive applications, such as graphics, spectral analysis, data
compression, linear algebra, vector estimation, encryption, error coding,
image processing, and speech recognition.

18.218.218.218.218.2 INTERFACE CONFIGURATIONSINTERFACE CONFIGURATIONSINTERFACE CONFIGURATIONSINTERFACE CONFIGURATIONSINTERFACE CONFIGURATIONS
One of the most common host/coprocessor architectures is the master-
slave arrangement. The host CPU acts as the master in a system, passing
data and/or instructions to the slave coprocessor. Communication from
the slave coprocessor back to the host is usually very minimal, consisting
of interrupt signals sent to the host or flags set for the host to poll.

Host interfacing is also an issue for interprocessor communications in
distributed processing architectures. Hardware and software interface
issues are similar to those of the master-slave configuration. Although
only the master-slave(s) architecture is discussed in this chapter,
distributed processing intercommunications can be developed from the
principles outlined here.

There are four general methods of communication between processors:

• Memory bus sharing/arbitration
• Hardware communication ports separate from the memory interface
• Concurrent memory sharing using dual-ported memory
• Memory swapping
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18.2.118.2.118.2.118.2.118.2.1 Bus SharingBus SharingBus SharingBus SharingBus Sharing
The ADSP-2100 has bus request (BR) and bus grant (BG) pins for memory
bus sharing and arbitration protocol (see Figure 18.1). A host CPU asserts
the BR input of the ADSP-2100 to request access to the ADSP-2100’s local
program or data memory. The ADSP-2100 responds by asserting its BG
output and releasing control of its memory interface. The host CPU can
then drive the ADSP-2100’s memory interface with its own signals. Data
stored in data memory or program memory can be read, written or
modified, and program instructions in program memory can be initialized
or inspected. When the host CPU is done driving the ADSP-2100’s
memory interface, it deasserts the BR input. The ADSP-2100 responds by
re-establishing its memory interface, deasserting BG and continuing
program execution.
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18.2.218.2.218.2.218.2.218.2.2 Communication PortsCommunication PortsCommunication PortsCommunication PortsCommunication Ports
Hardware communication ports on chip provide a communication
channel separate from the memory interface. Whether serial or parallel,
these ports usually operate at a rate considerably slower than direct
memory access through bus sharing. The ADSP-2100 does not provide
any hardware communication ports. However, the ADSP-2101/2
microcomputer has two serial communication ports (see Figure 18.2). Use
of the serial ports is explained in the ADSP-2101/2 User’s Manual and the
application note “Loading an ADSP-2101 Program via the Serial Port.”

BRBGAddress

Data

ADSP-2101/2

Data
Memory

Program
Memory

Host
CPU

serial
port 1

serial
port 0
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18.2.318.2.318.2.318.2.318.2.3 Dual-Port MemoryDual-Port MemoryDual-Port MemoryDual-Port MemoryDual-Port Memory
Dual-port memories are high-speed SRAM memories which have two sets
of address, data and read/write control signals (see Figure 18.3). Each set
of memory controls can independently and simultaneously access any
word in the memory; both sides of the dual-port RAM can access the same
memory location at the same time. For host interfacing, you connect one
side of the dual-port memory to the main CPU and the other side to the
ADSP-2100. Because the two processors can write to the same location in
memory at the same time, or one can read a location while the other is
changing the same location, there must be some arbitration to decide
which device has precedence, and there must be a way to hold off the
processor of lower priority so it can extend its bus cycle until the memory
is accessible.
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Dual-port memories offer four types of arbitration:

• Hardware busy logic generates a busy signal to one port when the other
port is writing the same location. The busy signal holds off Port B
access to a location to which Port A is writing, and vice versa.

• Semaphore logic has on-chip semaphore latches that can be set and
polled; each port passes a flag, or token, to the other to indicate that a
shared resource is in use. Semaphore logic allows one processor to lock
out the other when accessing a particular block of data.
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• Interrupt logic generates an interrupt at Port B when Port A writes to a
special location. Port B clears the interrupt by reading that location.
When Port B writes to another special location, a similar interrupt is
generated at Port A.

• No arbitration logic at all is used on some dual-port RAMs. If these
devices are used, the system must have been designed so that
contention never occurs.

See Chapter 17, Multiprocessing, for an example of the use of dual-port
memory.

18.2.418.2.418.2.418.2.418.2.4 Memory SwappingMemory SwappingMemory SwappingMemory SwappingMemory Swapping
Memory swapping uses several hardware copies of the same memory
space; only one copy (called a frame) is enabled at a time per processor
(see Figure 18.4, on the following page). A different frame is enabled for
each processor. The host processor can load one frame with data while the
slave processor is processing data in another frame. When both processors
are done, the enable signals to the memories are switched, and it appears
to each processor as if all the data in its frame has changed
instantaneously. This scheme is often used in systems in which multiple
processors compute assigned sections of a larger algorithm. When two
frames are used, or when two buffers within a frame are exchanged in
software, this is called ping-ponging.

18.318.318.318.318.3 ADSP-2100 INTERFACE CONSIDERATIONSADSP-2100 INTERFACE CONSIDERATIONSADSP-2100 INTERFACE CONSIDERATIONSADSP-2100 INTERFACE CONSIDERATIONSADSP-2100 INTERFACE CONSIDERATIONS
This section describes in detail the considerations for implementing a bus
sharing interface to the ADSP-2100.

18.3.118.3.118.3.118.3.118.3.1 Bus RequestBus RequestBus RequestBus RequestBus Request
The normal synchronous mode of granting a bus request proceeds as
follows. The external device (host CPU) requests the buses by asserting
the BR input of the ADSP-2100. This input is recognized by the ADSP-
2100 at the end of the next internal clock state three, and the ADSP-2100
halts in state eight of the same instruction cycle. The ADSP-2100
handshakes with the host CPU by asserting BG at the end of state three of
what would have been the next instruction cycle (four CLKIN cycles after
the bus request is recognized). Typically, the BG output of the ADSP-2100
is used to enable bus transceiver chips (74F244 or 74F245), establishing a
connection between the host CPU’s bus signals and the ADSP-2100’s
memory.
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The ADSP-2100 then tristates all outputs, including PMA, PMD, PMDA,
PMWR, PMRD, and PMS for program memory, and DMA, DMD, DMWR,
DMRD, DMS for data memory. The PMD, PMS, PMWR, PMRD, DMD,
DMS, DMWR and DMRD signals are internally pulled up by 50kΩ while
BG is active. The PMA, PMDA, and DMA signals are not internally pulled
up.
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When the host CPU is finished accessing the ADSP-2100’s memory, it
deasserts BR. The ADSP-2100 deasserts BG four CLKIN cycles (internal
clock states) later and re-establishes control over its program and data
memory signals in state one of the next instruction cycle, resuming
operation as it left off.

A bus grant can occur even in the double instruction cycle execution of a
program data memory fetch when the cache is not valid. It is possible to
interrupt that instruction’s execution with BR in between the two cycles.

The ADSP-2100’s internal state is not affected by the bus granting
operation. The only restriction is that RESET should not be changed
during a bus grant. Activity on the RESET input while the ADSP-2100 is
asserting BG causes indeterminate operation. When downloading a
program to program memory from an external device (on power-up for
example), you should proceed in the following order. This order ensures
that program execution starts at PC=h#0004 with the ADSP-2100 in a
known state.

1. Assert the RESET signal for the standard full instruction cycle
2. Assert the BR signal
3. Download the information
4. Deassert the BR signal
5. Deassert the RESET signal

During RESET, the timing of BR and BG is different from their timing
during normal operation; the operation is asynchronous during RESET.
See the ADSP-2100/2100A Data Sheet or the ADSP-2100 User’s Manual for
details.
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18.3.218.3.218.3.218.3.218.3.2 Software HandshakeSoftware HandshakeSoftware HandshakeSoftware HandshakeSoftware Handshake
Handshaking information is needed to tell the slave coprocessor when
new data is available and the host when the slave coprocessor is done
processing its data. A simple method uses two locations in ADSP-2100
memory reserved as flags: one, which the ADSP-2100 polls, to indicate the
presence of new data, and the other, which the host polls, to indicate the
completion of the data processing task. The ADSP-2100 can poll the new-
data flag until data is available, process the data, set the data-done flag,
and go back to polling for new data. An example of the ADSP-2100 code
to execute this loop is shown below:

.VAR/ABS=h#3FFE new_data;

.VAR/ABS=h#3FFD data_done;

.INIT new_data: 0; {0=FALSE, else =TRUE}

.INIT data_done: 0; {0=FALSE, else =TRUE}

idlestart: DO idleloop UNTIL NE; {wait for new data}
AR=DM(new_data);

idleloop: AR=PASS AR;
AR=PASS 0;
DM(new_data)=AR; {clear the flag}
CALL process_it; {process the data}
AX0=h#FFFF;
DM(data_done)=AX0; {indicate processing done}
JUMP idlestart;

18.3.318.3.318.3.318.3.318.3.3 Hardware Handshake Using InterruptsHardware Handshake Using InterruptsHardware Handshake Using InterruptsHardware Handshake Using InterruptsHardware Handshake Using Interrupts
The ADSP-2100 and host CPU can also handshake by sending hardware
interrupts to indicate, for example, that new data is available or that data
processing is complete. The simplest configuration connects the ADSP-
2100’s TRAP output directly to the host CPU’s interrupt input. The routine
that the ADSP-2100 executes is terminated by a TRAP instruction. This
halts the ADSP-2100 and asserts the TRAP output high. The host’s
interrupt service routine can use BR and BG to download new data to the
ADSP-2100’s memories and then assert and release the ADSP-2100’s
HALT line, causing the ADSP-2100 to continue processing on the next
instruction. The next instruction can jump back to the beginning of the
same routine.

Another way to handshake with interrupts is to have address decoding
logic generate an interrupt to one processor when the other processor
accesses a particular memory address. The interrupt signal can be tailored
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for an active low, active high, or edge-triggered interrupt, depending on
the input of the particular processor.

18.3.418.3.418.3.418.3.418.3.4 Software and Hardware Handshake ComparisonSoftware and Hardware Handshake ComparisonSoftware and Hardware Handshake ComparisonSoftware and Hardware Handshake ComparisonSoftware and Hardware Handshake Comparison
The advantage of a hardware handshake over a software flag handshake
is speed. The receiving processor responds to the interrupt as soon as it
becomes active. Code is reduced as well because there is no need to
perform the polling functions using BR and BG.

The advantage of software flag polling over the hardware interrupts is
that the whole system remains in a static state on a cycle-by-cycle basis.
The handshaking status can be inspected using the CPU’s software
development tools, making the system easier to debug. In addition, there
is no need to redesign interrupt logic if the interrupts are used for other
purposes. The example described in this chapter performs software flag
handshaking.

18.418.418.418.418.4 68000 INTERFACE CONSIDERATIONS68000 INTERFACE CONSIDERATIONS68000 INTERFACE CONSIDERATIONS68000 INTERFACE CONSIDERATIONS68000 INTERFACE CONSIDERATIONS
This section describes the characteristics of the 68000 microprocessor that
are relevant to the ADSP-2100 interface.

18.4.118.4.118.4.118.4.118.4.1 68000 Addressing68000 Addressing68000 Addressing68000 Addressing68000 Addressing
The 68000 processor has a 16-bit data bus and a 24-bit address bus. Its 16
general purpose internal registers are each 32 bits wide. The 68000
recognizes five data types:

• Bit
• BCD (4-bit)
• Byte
• Word
• Long word (32-bit)

The 24-bit address bus allows the 68000 to access 16 megabytes of external
memory; however, only 23 address bits actually are externally available as
address pins. The least significant address bit (A0) is not externally
available. Therefore, the 16 megabytes of memory are actually organized
as 8 megawords of 16-bit words located at even-numbered addresses (LSB
= 0).

Byte addressing allows the 68000 to access 8-bit byte data on both even
and odd address boundaries in memory. The UDS (upper data strobe) and
LDS (lower data strobe) outputs of the 68000 are used for byte-oriented
addressing.
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18.4.218.4.218.4.218.4.218.4.2 68000 Bus Signals68000 Bus Signals68000 Bus Signals68000 Bus Signals68000 Bus Signals
The block diagram of the 68000 in Figure 18.5 shows the control signals to
the 68000. The interface with the ADSP-2100 described in this chapter
involves only the address bus, data bus, and asynchronous bus control
signals. All other signals are left to the 68000 system designer’s
implementation because they do not affect the ADSP-2100 interface
directly.
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The control of the 68000’s bus is asynchronous. Once a bus cycle is
initiated, it is not completed until a handshaking signal (DTACK) is
asserted by external circuitry. The signals that control address and data
transfers are:

• Address strobe (AS)
• Read/write (R/W)
• Upper data strobe (UDS)
• Lower data strobe (LDS)
• Data transfer acknowledge (DTACK)
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The 68000 asserts AS when an address is available and asserts R/W high
or low to indicate whether a read or a write is to take place over the bus.
Because the bus cycle is asynchronous, external circuitry must signal the
68000 when the bus cycle can be completed by asserting the DTACK input
to the 68000. During a read cycle, DTACK low tells the 68000 that valid
data exists on the data bus. In response, the 68000 latches in the data into
the chip and terminates the bus cycle. Similarly, on a write cycle, DTACK
low informs the 68000 that the data has been successfully written to
memory or a peripheral device, and the 68000 responds by ending the bus
cycle.

On the ADSP-2100, DMACK can be tied high if all memory accesses can
complete in a single instruction cycle; in the absence of a DMACK low, the
ADSP-2100 data memory read or write cycle ends in one cycle. Similarly,
DTACK on the 68000 can be hardwired low if the design of the system is
such that the 68000 bus cycle can always be completed without any wait
states.

The UDS and LDS signals act as an extension of the address bus, replacing
the address LSB A0. In the case of a byte transfer, they indicate whether
the data is on the upper data lines (D15-8) or the lower data lines (D7-0) as
shown below:

R/W UDS LDS Operation
0 0 0 word —> memory or peripheral
0 0 1 high byte —> memory or peripheral
0 1 0 low byte —> memory or peripheral
0 1 1 (invalid data)
1 0 0 word —> 68000
1 0 1 high byte —> 68000
1 1 0 low byte —> 68000
1 1 1 (invalid data)

18.518.518.518.518.5 68000-TO-ADSP-2100 BUS SHARING INTERFACE68000-TO-ADSP-2100 BUS SHARING INTERFACE68000-TO-ADSP-2100 BUS SHARING INTERFACE68000-TO-ADSP-2100 BUS SHARING INTERFACE68000-TO-ADSP-2100 BUS SHARING INTERFACE
The example in this chapter shows how a 68000 CPU can control DMA to
and from an ADSP-2100 processor using bus sharing and arbitration.
Other CPUs in the 680x0 family have similar interfaces. A schematic for
the interface is shown in Figure 18.11 later in this chapter.

18.5.118.5.118.5.118.5.118.5.1 Memory MappingMemory MappingMemory MappingMemory MappingMemory Mapping
Data transfers between the 68000 and the ADSP-2100 occur in a 16-bit
word format because that is the data type expected by the ADSP-2100.
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Note that 16-bit words are stored in ADSP-2100 memory on every address
boundary, whereas the 68000 expects 16-bit words only on even address
boundaries. In this example, the ADSP-2100 data memory space overlays
the 68000 memory in the address range $02xxxx. The interface circuit
maps the ADSP-2100 data memory addresses h#0000 to h#3FFF into 68000
memory addresses $020000 to $027FFE, as shown in Figure 18.6.
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Figure 18.6  Memory Map OverlapFigure 18.6  Memory Map OverlapFigure 18.6  Memory Map OverlapFigure 18.6  Memory Map OverlapFigure 18.6  Memory Map Overlap
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Software handshaking is implemented by memory-mapping two
hardware control registers in the 68000’s address space. Figure 18.7 shows
the 68000 decoding logic to select between ADSP-2100 memory and the
transmit and receive control registers. The control registers are used to
pass hardware signals between the 68000 and the ADSP-2100, under
software control. These registers are described in the next section. The
68000 address bit A15 differentiates between accesses to the “68000
memory” that is actually the ADSP-2100 data memory space and accesses
to the control registers. The control registers are memory-mapped in the
68000 memory space at address $028000. However, because only $02xxxx
and A15 are decoded, the registers can be accessed at any address from
$028000 to $02FFFE. The 68000 R/W output differentiates between the
transmit and receive control registers.
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18.5.218.5.218.5.218.5.218.5.2 Control RegistersControl RegistersControl RegistersControl RegistersControl Registers
The 68000 requests access to the ADSP-2100 memory by writing to the
transmit control register. The 68000 reads back the status of BG from the
ADSP-2100 by reading the receive control register. An example circuit for
the transmit control register is shown in Figure 18.8. The register in this
example consists of 74F74 D flip-flops. One of the 74F74 Q output pins is
tied directly to the BR input of the ADSP-2100. To assert or deassert BR,
software writes a logic 0 or 1 to the BR bit position.
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An example receive control register circuit is shown in Figure 18.9. The
receive control register is implemented by simply connecting the BG
output of the ADSP-2100 to an input of a 74F244 bus transceiver and
connecting the output of the transceiver to the 68000’s data bus. The
74F244 bus transceiver is normally deselected, but when the 68000 outputs
the address for the control register, the transceiver is enabled, and BG is
then electrically connected to the 68000’s data bus. The same transceiver
can be used to inspect seven other hardware logic levels or to provide a
read-back function to the transmit control register or can even be
expanded in parallel to monitor more signals.
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Examples of the 68000 address decoding logic used to select the hardware
control registers are shown in Figure 18.10. Each register’s address is
decoded with a 74F138 and/or 74F521 and is qualified by AS. The output
of the decoder clocks the data from the 68000 data bus into the 74F74 flip-
flops of the transmit control register or enables the transceiver of the
receive control register.
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When the 68000 writes to the transmit control register, DTACK is returned
to the 68000 by a 74F244 buffer that is enabled whenever a valid access to
address $02xxxx memory space (the interface circuitry) is detected.
Because the 68000 in this example runs so much slower than the ADSP-
2100, there is no need to extend the 68000 bus cycle. Therefore, the
DTACK input to the 74F244 buffer is simply tied to ground. In a different
application requiring wait states in the 68000 bus cycle, the grounded
input of the 74F244 would be replaced by the output of a wait state
generator.
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18.5.318.5.318.5.318.5.318.5.3 Interprocessor Data TransfersInterprocessor Data TransfersInterprocessor Data TransfersInterprocessor Data TransfersInterprocessor Data Transfers
Once control of the ADSP-2100’s buses has been granted to the 68000, the
68000 must be able to send and receive data and memory control signals.
Another bit in the transmit control register enables a pair of 74F244 bus
buffers which provide a path for 68000-generated addresses to the ADSP-
2100’s data memory address bus. Because the two 74F244 buffers can pass
16 signals, but the ADSP-2100 requires only 14 address signals, the two
extra lines can be used for memory control signals. They can be used to
send DMRD and DMWR, while the existing ADSP-2100 address decoding
logic generates DMS. In this example, the ADSP-2100 data memory has all
DMRD inputs grounded, and DMS is used as an enable to the decoding
logic (74F138), so the two lines are used to send DMS and DMWR. A
4.7kΩ resistor pulls up the DMWR signal so that when the 74F244 buffers
are deselected (outputs are tristated, but BG is still asserted), the DMWR
signal is forced high.

Two 74F245 bus transceivers connect the 68000’s data bus to the ADSP-
2100’s data bus. In this case, all 16 bits are used for data. The transceivers’
enables (G) are connected to address decoding logic. The direction
controls (DIR) are tied directly to the 68000’s R/W output.

The direct memory access operation between the 68000 and the ADSP-
2100 proceeds as follows:

1. The 68000 and ADSP-2100 are processing separate tasks
2. The 68000 writes a 1 to the BR bit in the transmit control register
3. The 68000 reads the receive control register, and continues to read it

until the BG bit is low
4. The 68000 writes a 1 to the bit in the transmit control register which

enables the address buffers to the ADSP-2100 data memory (make sure
to keep the BR bit set)

5. The 68000 reads or writes ADSP-2100 memory by accessing addresses
$020000 to $027FFE in its own memory space

6. The 68000 writes a 0 to the bit in the transmit control register to
deselect the address buffers

7. The 68000 writes a 0 to the BR bit in the transmit control register to
deassert BR

8. The 68000 reads the receive control register, and continues to read it
until the BG bit is high

9. The 68000 and ADSP-2100 continue processing separate tasks

Important: If the 68000 is running much slower than the ADSP-2100, it is
possible to simplify the 68000 software by not checking for the deassertion
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of BG in step 8, and steps 6 and 7 can be combined into one data write.
Step 3 should not be skipped, however, because the ADSP-2100 might be
waiting for DMACK to be asserted, in which case the ADSP-2100 would
not immediately assert BG. When the ADSP-2100 is halted or in a TRAP
state, the bus request is latched by the ADSP-2100 and serviced after the
normal synchronization delay; in this case, the ADSP-2100 remains halted,
and tristates its buses. See the ADSP-2100 User’s Manual for details.

18.618.618.618.618.6 USING PALSUSING PALSUSING PALSUSING PALSUSING PALS
The ADSP-2100 interface to a host processor using bus arbitration
involves some logic functions which can be performed by a PAL
(programmable array logic; a registered trademark of Monolithic
Memories, Inc.) device rather than discrete logic devices. The savings in
chip count is not significant because most of the chips needed for the
interface are bus buffers and transceivers. It may be desirable, however, to
integrate discrete gate functions into a PAL to allow more flexibility; the
PAL can be reprogrammed, if necessary, to debug the circuit. A GAL
(generic array logic; a registered trademark of Lattice Semiconductors,
Inc.) device can emulate several types of PALs, providing even more
flexibility.

To program a PAL or a GAL, you determine Boolean expressions for all
the output signals as functions of the input signals. PAL programming
software generates a file from these expressions which is used to burn
(program) the PAL.

The following example of generating the BR signal shows how to derive
the Boolean equations for PAL programming. BR is one bit of the transmit
control register and is shown in the schematic of Figure 18.11 as the
output of a D-latch or flip-flop. A registered PAL has internal D-latches
(registers); one of the D-latches on a registered PAL can be used instead of
discrete logic to generate BR. The three signals needed for the D-latch are
D (input), Q (output), and CLK. The input is the LSB (D0) of the 68000 data
bus, and the output is BR. CLK must be generated internally by the logical
combination of other input signals. The transmit control register is clocked
by a combination of R/W low, LDS low, A15 high, AS low, and E1
($02xxxx access) low (see the schematic in Figure 18.11). These signals are
inputs to the PAL and are logically combined to yield an output signal
which is tied directly to the PAL’s clock input (pin 1 on a 16R4A).
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Figure 18.11  68000 Interface SchematicFigure 18.11  68000 Interface SchematicFigure 18.11  68000 Interface SchematicFigure 18.11  68000 Interface SchematicFigure 18.11  68000 Interface Schematic

PLEASE PASTE IN
FIGURE 18.11 HERE
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18.718.718.718.718.7 680X0 FAMILY OF MICROPROCESSORS680X0 FAMILY OF MICROPROCESSORS680X0 FAMILY OF MICROPROCESSORS680X0 FAMILY OF MICROPROCESSORS680X0 FAMILY OF MICROPROCESSORS
The example in this chapter shows the ADSP-2100 interface with the
Motorola 68000 processor, a typical host CPU. Any other CPU requires a
similar interface, including the other processors in Motorola’s 68000
family. Some of the differences are described in this section. See Johnson
in References for more information about the differences between the 680x0
processors.

The other processors in the 68000 family are:

68008 8-bit byte version of the 68000
68010 same as 68000, but supports virtual memory
68012 extended physical address space as well as virtual memory

support
68020 complete 32-bit virtual memory processor, coprocessor

interface, instruction cache, dynamic bus sizing, more
instructions, more addressing modes

68030 similar to the 68020, but more of everything, including data
cache

Because all processors in this family are object-code upward compatible,
the interface software is easily adapted from one family member to
another. And because the 68000’s asynchronous bus signals are practically
the same throughout the 68000 family, the hardware is likewise easily
adapted from one family member to another.

The 68010 hardware interface is exactly the same as the 68000 interface
because the two processors are pin compatible. The 68010 supports virtual
memory; if the ADSP-2100 has a full complement of memory physically
present, there is no need to be concerned with page faults (access to
virtual memory outside the currently active physical memory).

The 68012 is similar to the 68010 in its virtual memory support, but it has
30 external address bits (A29-1, A31) instead of 23 (A23-1). Its asynchronous
bus signals are the same as those of the 68010 and 68000, so the 68012
interface is the same as the 68000 interface except that it must decode
more address bits. The 68012 has an additional asynchronous bus signal,
RMC (Read-Modify Cycle), which indicates that an indivisible read-
modify-write cycle is being executed. Because read-modify-write
operations are not necessary for the ADSP-2100 interface, this signal can
be ignored.

The 68008 is similar to the 68000, but it has only an 8-bit wide external
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data bus. Its asynchronous bus signals are the same as the 68000’s, except
that UDS and LDS are consolidated into DS. If ADSP-2100 uses only 8 bits
of its data bus, the 68008 interface is the same as the 68000 interface;
however, if 16-bit data is needed, you must multiplex the 68008 data bus
into high-byte and low-byte operations or, better yet, use a 68000.

The 68020 is a complete 32-bit processor with virtual memory support. All
32 address bits (A31-0) and all 32 data bits (D31-0) are available externally.
The 68020 supports more instructions, more addressing modes, and more
supervisor functionality than the 68000, plus a 256-byte instruction cache.
The 68020 also features a coprocessor interface, intended for instruction-
mapped coprocessors, such as the MC68882 floating-point coprocessor,
not a memory-mapped coprocessor, such as the ADSP-2100 in this
example.

An important additional feature of the 68020 is dynamic bus and data
sizing. Because the 68020 can operate on many data types (bit, byte, word,
long-word), the UDS and LDS signals of the 68000 are replaced by a data
strobe (DS) used in conjunction with two data-size output encoding
signals (SIZ1, SIZ0). The SIZ1 and SIZ0 outputs indicate the number of
bytes of an operand remaining to be transferred during a given bus cycle.
Because all transfers between the 68020 and the ADSP-2100 are assumed
to be 16-bit words, the SIZ1 and SIZ0 signals can be ignored.

DTACK is replaced by two signals, DSACK1 and DSACK0, on the 68020.
The DSACKx pins perform the same asynchronous bus transfer
acknowledge function, but with greater functionality. The DSACKx pins
are defined as follows:

DSACK1 DSACK0 Result
H H insert wait states in current bus cycle
H L cycle complete - data bus port size is 8 bits wide
L H cycle complete - data bus port size is 16 bits wide
L L cycle complete - data bus port size is 32 bits wide

For example, if the processor is executing an instruction that requires a
read of a long-word operand, it attempts to read 32 bits in the first bus
cycle. If the port is 32 bits wide, the 68020 latches all 32 bits of data and
continues with the next operation. If the port is 16 bits wide, the 68020
latches the 16 bits of data and runs another cycle to obtain the remaining
16 bits. An 8-bit port is handled similarly, requiring four read cycles.

In the ADSP-2100 interface, the 68020 operates on 16-bit word data
(specified in 68020 assembly language by the .W qualifier). Therefore, the
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ADSP-2100 interface keeps DSACK0 always high, and returns DSACK1
high to insert wait states and low to complete the cycle. Notice that the 16
bits of the ADSP-2100 data must be tied to the 16 MSBs (D31-16) of the 32-bit
68020 data bus. Additional asynchronous bus signals (ECS, OCS, RMC
and DBEN) can be ignored for the ADSP-2100 interface.

The 68030 has all the features of the 68020, plus a data cache with several
external cache control pins. Its asynchronous bus signals are identical to
those of the 68020, and thus its ADSP-2100 interface is the same as that of
the 68020.

18.818.818.818.818.8 SUMMARYSUMMARYSUMMARYSUMMARYSUMMARY
There are four general methods of interfacing a host processor to the
ADSP-2100. The same methods can be used to interface multiple ADSP-
2100s with a host processor or with each other. The method of bus
arbitration using the BR and BG pins of the ADSP-2100 to provide an
interface with a Motorola 68000 host CPU has been presented in this
chapter. The same interface can be easily adapted to other members of the
68000 family.
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