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3.13.13.13.13.1 OVERVIEWOVERVIEWOVERVIEWOVERVIEWOVERVIEW
In fixed-point number representation, the radix point is always at the
same location. While this convention simplifies numeric operations and
conserves memory, it places a limit on the magnitude and the precision of
the number representation. In situations that require a large range of
numbers or high resolution, a relocatable radix point is desirable. Very
large and very small numbers can be represented in floating-point format.

Floating-point format is scientific notation; a floating-point number
consists of a mantissa  and an exponent. Each part of the floating-point
number is stored in a fixed-point format. The mantissa is usually in a full
fractional format, and the exponent is in a full integer format (see Chapter
2 for a discussion of fixed-point formats). In some cases, a constant (excess
code or bias) is added to the exponent so that it is always positive.

A floating-point number is “normalized” if it contains no redundant sign
bits; all bits are significant. Normalization provides the highest precision
for the number of bits available. It also simplifies the comparison of
magnitudes, because the number with the greater exponent has the
greater magnitude; only if the exponents are equal is it necessary to
compare the fractions. Most routines (and all the routines presented in this
chapter) assume normalized input and produce normalized results.

Floating-point numbers are inherently inexact because each number has
multiple representations that differ only in precision. This fact introduces
error into floating-point calculations (relative to the exact result). Floating-
point multiplication and division do not magnify this error much, but
addition or subtraction can cause significant increases in the error.
Therefore, the associative law does not always hold for floating-point
calculations. For an excellent discussion of floating-point accuracy see
Knuth, 1969.

The routines in this chapter demonstrate ways of performing standard
mathematical operations on floating-point numbers using the ADSP-2100.
Because floating-point numbers can be stored in a variety of formats, each
example assumes that the input numbers are converted to a standard
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format before the routine is called. The standard format, called “two-
word” format, provides one word (16 bits) for the exponent and one word
for the fraction. Signed twos-complement notation is assumed for both the
fraction and the exponent. The exponent has the option of an excess code;
if the excess code is not needed, it should be set to zero for all the routines
that use it.

If additional precision is required, the fraction can be expanded. If
additional range is needed, the exponent can be expanded. Expanding
either the fraction or the exponent can be accomplished by substituting a
multiprecision fixed-point arithmetic operation (see Chapter 2) for the
basic operation used in the floating-point routine.

The two-word format is tailored for the ADSP-2100. It takes advantage of
ADSP-2100 instructions to make calculations or conversions fast and
simple. However, certain applications may require the use of IEEE 754
standard floating-point format. Details of the IEEE format can be found in
the IEEE-STD-754 document, 1985. The major ways in which IEEE format
differs from two-word format are:

• The number consists of a 32-bit doubleword divided into fields for
(from left to right) sign bit, exponent, and fraction (mantissa)

• The exponent field is 8-bits wide (unsigned) and biased by +127
• The fraction field is 23-bits wide (unsigned)
• A “hidden bit” with a value 1 is assumed to be to the left of the

fraction.

You can choose the numeric format (fixed-point or floating-point) that is
better for a particular situation. In this chapter, we present routines that
convert numbers from fixed-point format into floating-point format (both
IEEE 754 and two-word) and vice versa. These routines are followed by
examples of routines for performing basic arithmetic operations on
numbers in two-word floating-point format.

3.23.23.23.23.2 FIXED-POINT TO FLOATING-POINT CONVERSIONFIXED-POINT TO FLOATING-POINT CONVERSIONFIXED-POINT TO FLOATING-POINT CONVERSIONFIXED-POINT TO FLOATING-POINT CONVERSIONFIXED-POINT TO FLOATING-POINT CONVERSION
Conversion of numbers from 1.15 fixed-point format into IEEE 754 and
two-word floating-point format is discussed in this section. The
corresponding floating-point to fixed-point conversions are described in
the next section.

Two ADSP-2100 instructions used in fixed-point to floating-point
conversion are EXP, which derives an exponent, and NORM, which
normalizes (eliminates nonsignificant digits from) the mantissa.
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3.2.13.2.13.2.13.2.13.2.1 Fixed-Point (1.15) to IEEE Floating-PointFixed-Point (1.15) to IEEE Floating-PointFixed-Point (1.15) to IEEE Floating-PointFixed-Point (1.15) to IEEE Floating-PointFixed-Point (1.15) to IEEE Floating-Point
Because all numbers that can be represented in 1.15 fixed-point format can
also be represented in IEEE 754 floating-point format, the conversion from
the fixed-point format to the floating-point format is exact. Conversion
from floating-point back to fixed-point format cannot always be exact and
therefore generates errors, as discussed in section 3.3.1.

The subroutine in Listing 3.1 converts a number in 1.15 format stored in
AX0 into IEEE 754 floating-point format, stored in SR1 (MSW) and SR0
(LSW). The routine first checks for two special-case integer input values, –
1 and 0. If the input value is either –1 or 0, the routine outputs the IEEE
754-format values explicitly. All other 1.15 numbers are fractions that can
be converted to IEEE 754 format by the section that begins at cvt. At this
point, the input has been made positive by the absolute value function,
and the original sign bit has been preserved in a flag. An exponent is
derived, and the number is normalized. The exponent is biased by 126 (the
IEEE 754 bias of 127 minus one, because of the hidden bit). The 32-bit
result is put together, using the shifter to place the output values into the
correct fields.

.MODULE cvt_fixed_to_ieee_floating;

{ Converts 1.15 fixed-point to 32-bit IEEE 754 floating-point

Calling Parameters
AX0 = 1.15 fixed-point number

Return Values
SR1 = MSW of IEEE 754 floating-point number
SR0 = LSW of IEEE 754 floating-point number

Altered Registers
AX1,AY0,AY1,AF,AR,SR,SE,SI

Computation Time
20 cycles (maximum)

}
.ENTRY ieeeflt;

ieeeflt: AY0=H#8000; {neg. one = H#8000}
AY1=126; {-127 bias + 1 for hidden bit shift
AR=AX0-AY0; {AY0 = -1? (H#8000)}
IF NE JUMP numok; {no, do conversion}
AR=H#BF80; {if neg one, do float right now}
SR=LSHIFT AR BY 0 (HI); {this is IEEE float for -1}

(listing continues on next page)
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RTS; {skip conversion, output right now}
numok: AR=PASS AX0; {1.15 number to convert is in AR}

AF=ABS AR; {make positive}
IF NE JUMP notzero; {if not zero, do conversion}
SR=LSHIFT AR BY 0 (HI); {special case for zero}
RTS; {exit if zero}

notzero: IF NEG JUMP itisneg;
itispos: SI=H#0000; {CLEAR sign bit flag if positive}

JUMP cvt;
itisneg: SI=H#8000; {SET sign bit flag if negative}
cvt: AR=PASS AF; {use abs(orig_number) }

SE=EXP AR (HI); {derive exponent}
SR=NORM AR (HI); {normalize fraction}
AX1=SE; {load AX1 with exponent}
AR=AX1 + AY1; {add 126 to exponent}
SR=LSHIFT SR1 BY +2 (HI); {remove sign & hidden bit}
SR=LSHIFT SR1 BY -9 (HI); {open sign bit and expo field}
SR=SR OR LSHIFT SI BY 0 (HI); {paste sign bit}
SR=SR OR LSHIFT AR BY +7 (HI); {paste exponent}
RTS;

.ENDMOD;
Listing 3.1  Fixed-Point to IEEE Floating-PointListing 3.1  Fixed-Point to IEEE Floating-PointListing 3.1  Fixed-Point to IEEE Floating-PointListing 3.1  Fixed-Point to IEEE Floating-PointListing 3.1  Fixed-Point to IEEE Floating-Point

.MODULE single_fixed_to_floating;

{
Convert 1.15 fixed-point to two-word floating-point

Calling Parameters
AR = fixed point number [1.15 signed twos complement]
AX0 = exponent bias (0=unbiased) [16.0 signed twos complement]

Return Values
AR = biased exponent [16.0 signed twos complement]
SR1 = mantissa [1.15 signed twos complement]

3.2.23.2.23.2.23.2.23.2.2 Fixed-Point (1.15) to Two-Word Floating-PointFixed-Point (1.15) to Two-Word Floating-PointFixed-Point (1.15) to Two-Word Floating-PointFixed-Point (1.15) to Two-Word Floating-PointFixed-Point (1.15) to Two-Word Floating-Point
The routine shown in Listing 3.2 converts a number in 1.15 fixed-point
format into two-word floating-point format. An exponent is derived, the
number is normalized, and a bias is added to the exponent value. If no
bias is needed, the routine should be called with the bias value set to zero.
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Altered Registers
SE,SR,AY0,AR

Computation Time
5 cycles

}

.ENTRY fltone;

fltone: SE=EXP AR (HI); {Determine exponent}
SR=NORM AR (HI); {Remove redundant sign

bits}
AY0=SE;
AR=AX0+AY0; {Add bias}
RTS;

.ENDMOD;

Listing 3.2  Fixed-Point to Two-Word Floating-PointListing 3.2  Fixed-Point to Two-Word Floating-PointListing 3.2  Fixed-Point to Two-Word Floating-PointListing 3.2  Fixed-Point to Two-Word Floating-PointListing 3.2  Fixed-Point to Two-Word Floating-Point

3.33.33.33.33.3 FLOATING-POINT TO FIXED-POINT CONVERSIONFLOATING-POINT TO FIXED-POINT CONVERSIONFLOATING-POINT TO FIXED-POINT CONVERSIONFLOATING-POINT TO FIXED-POINT CONVERSIONFLOATING-POINT TO FIXED-POINT CONVERSION
Conversion of numbers from either IEEE 754 or two-word floating-point
format into 1.15 fixed-point format is discussed in this section. The
corresponding fixed-point to floating-point conversions are described in
the previous section.

3.3.13.3.13.3.13.3.13.3.1 IEEE Format to Fixed-Point Format (1.15)IEEE Format to Fixed-Point Format (1.15)IEEE Format to Fixed-Point Format (1.15)IEEE Format to Fixed-Point Format (1.15)IEEE Format to Fixed-Point Format (1.15)
Not all numbers that can be represented in IEEE 754 floating-point format
can be represented in 1.15 fixed-point format. Therefore, the routine that
converts from IEEE 754 floating-point to 1.15 fixed-point format generates
an error word. The error word indicates which error condition (positive or
negative, overflow or underflow) the IEEE 754 floating-point number
conversion creates and also if a loss of precision occurs due to the
truncation of the 23-bit mantissa to 15 bits. Truncation forces rounding
toward zero, one of four possible rounding modes defined in the IEEE 754
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standard. The error word protocol is listed below.

No loss of precision (8 LSBs of IEEE 754 mantissa are all zeros):

Error Condition Error Word Result (hexadecimal)
none 0000 1.15 conversion result
positive overflow F000 7FFF
positive underflow 0F00 0000
negative underflow 00F0 0000
negative overflow 000F 8001

8-bit loss of precision:

Error Condition Error Word Result (hexadecimal)
precision loss only FFFF 1.15 conversion result
positive overflow 0FFF 7FFF
positive underflow F0FF 0000
negative underflow FF0F 0000
negative overflow FFF0 8001

The subroutine shown in Listing 3.3 converts an IEEE 754 floating-point
number to 1.15 fixed-point format. The IEEE 754 floating-point MSW is
read from MR1, and the LSW is read from MR0. The 1.15 fixed-point
result is returned in MX1, and the error word is returned in MX0.

The routine first checks the input for the special cases of integers –1 and 0.
If the input is either of these integers, the conversion is loaded into MX1
directly and returned. If the input is fractional, the routine checks the
exponent field to determine whether the input number is out of the 1.15
fixed-point format range. If it is, the input is examined further to set the
appropriate error word for the error condition. Then the error word is
toggled if the eight LSBs of the input number are not all zeros. The
conversion ignores the eight LSBs, so precision is lost if any of these bits
are nonzero.

The conversion of input that can be represented in 1.15 format is done in
the section beginning at the label convert. First, the exponent field is
extracted and unbiased, and the resulting exponent is stored in the SE
register. Then, the mantissa is shifted by the amount stored in the SE
register. This shift results in a valid 1.15 number in the SR1 register.
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Finally, if the input number is negative, the result is negated.

.MODULE cvt_ieee_float_to_fixed;

{
Convert 32-bit IEEE 754 floating-point to 1.15 fixed-point

Calling Parameters
MR1 = MSW of IEEE 754 floating point number
MR0 = LSW of IEEE 754 floating point number

Return Values
MX1 = 1.15 fixed point number
MX0 = ERROR word

Altered Registers
AX0,AX1,AY0,AY1,AF,AR,MX0,MX1,SR,SE

Computation Time
51 cycles (maximum)

}

.ENTRY ieeefix;

ieeefix: AY0=H#00FF; {mask to extract exp, lo_bit check}
AY1=H#0100; {mask for overflow sign}
MX1=H#0000; {clear fixed result}
MX0=H#0000; {clear ERROR status}
AX1=H#0000; {clear UNDER/OVERFLOW flag}

zero: SR=LSHIFT MR1 BY 0 (LO); {check for flt_num = 0}
SR=SR OR LSHIFT MR0 BY 0 (LO);
AR=PASS SR0;
IF EQ RTS;

negone: AF=PASS MR0; {check for flt_num = -1}
IF NE JUMP checkexpo;
AF=PASS MR1;
AX0=H#BF80;
AR=AX0-AF;
IF NE JUMP checkexpo;
MX1=H#8000;
MX0=H#0000;
RTS;

checkexpo: SR=LSHIFT MR1 BY -7 (LO); {extract exponent}
AF=SR0 AND AY0; {extract exponent}
AX0=H#007E; {upper valid expo — 126 decimal}
AR=AF-AX0; {is expo .gt. max valid ???}
IF GT JUMP overflow; {if YES, then overflow}
AX0=H#0070; {lower valid expo — 112 decimal}
AR=AF-AX0; {is expo .lt. min valid ???}

(listing continues on next page)
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IF LT JUMP underflow; {if YES, then underflow}
JUMP eightlsb; {go check if 8 LSBs are set}

overflow: AX1=H#FFFF; {set UNDER/OVERFLOW FLAG true}
AF=SR0 AND AY1; {extract sign bit with AND mask}
IF NE JUMP negover;

posover: MX0=H#F000; {ERROR = “positive overflow”}
MX1=H#7FFF; {make fixed result max. pos. value}
JUMP eightlsb;

negover: MX0=H#000F; {ERROR = “negative overflow”}
MX1=H#8001; {make fixed result max. neg. value}
JUMP eightlsb;

underflow: AX1=H#FFFF; {set UNDER/OVERFLOW FLAG true}
AF=SR0 AND AY1; {extract sign bit with AND mask}
IF NE JUMP negunder;

posunder: MX0=H#0F00; {ERROR = “positive underflow”}
JUMP eightlsb; {fixed result remains zero}

negunder: MX0=H#00F0; {ERROR = “negative underflow”}
JUMP eightlsb; {fixed result remains zero}

eightlsb: SR=LSHIFT MR0 BY 0 (LO); {get 16 LSBs of flt_num}
AF=SR0 AND AY0; {extract lower 8 LSBs with AND mask}
IF EQ JUMP endlsb;
AR=MX0; {if any are set, toggle ERROR}
AR=NOT AR;
MX0=AR; {ERROR value stored in MX0}

endlsb: AR=PASS AX1; {check for under/overflow situation}
IF NE RTS; {do not convert if under/overflow}

convert: SR=LSHIFT MR1 BY -7 (LO); {set up exponent field to mask}
AF=SR0 AND AY0; {extract exponent field by AND}
AX0=H#007F; {exponent bias — 127 decimal}
AR=AF-AX0; {subtract bias from exponent}
SE=AR; {unbiased expo into SE register}
SR=LSHIFT MR1 BY 8 (HI); {paste hi mantissa word}
SR=SR OR LSHIFT MR0 BY 8(LO); {paste lo mantissa word}
AY1=H#8000; {hidden “1” bit}
AR=SR1 OR AY1; {paste hidden “1” bit}
SR=LSHIFT AR (HI); {denormalize mantissa}
AF=PASS MR1; {set sign bit if orig. was neg.}
AR=SR1; {use only 16 MSBs of result}
IF LT AR=-SR1; {if neg. orig. do twos complement}
MX1=AR;

RTS;
.ENDMOD;
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Listing 3.3  IEEE Floating-Point to Fixed-PointListing 3.3  IEEE Floating-Point to Fixed-PointListing 3.3  IEEE Floating-Point to Fixed-PointListing 3.3  IEEE Floating-Point to Fixed-PointListing 3.3  IEEE Floating-Point to Fixed-Point

3.3.23.3.23.3.23.3.23.3.2 Two-Word Format to Fixed-Point Format (1.15)Two-Word Format to Fixed-Point Format (1.15)Two-Word Format to Fixed-Point Format (1.15)Two-Word Format to Fixed-Point Format (1.15)Two-Word Format to Fixed-Point Format (1.15)
Converting two-word floating-point numbers to 1.15 fixed-point format is
very simple using ADSP-2100 instructions. The exponent word is
decremented by the exponent bias that has been passed to the conversion
routine, and the result is stored in the SE register. The SE register
determines the amount of shift performed by a shift instruction for which
no immediate shift value is given. After the fractional part is shifted
(arithmetically) the 1.15 fixed-point result is in the SR1 register. The
conversion routine is shown in Listing 3.4. Note that this routine does not
provide error handling for floating-point numbers that cannot be
represented in fixed-point format.

.MODULE cvt_2word_float_to_fixed;

{
Convert two-word floating-point to 1.15 fixed-point

Calling Parameters
AX0 = exponent [16.0 signed twos complement]
AY0 = exponent bias [16.0 signed twos complement]
SI = mantissa [1.15 signed twos complement]

Return Values
SR1 = fixed-point number [1.15 signed twos complement]

Altered Registers
AR,SE,SR

Computation Time
4 cycles

}

.ENTRY fixone;

fixone: AR=AX0-AY0; {Compute unbiased exponent}
SE=AR;
SR=ASHIFT SI (HI); {Shift fractional part}
RTS;

.ENDMOD;
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Listing 3.4  Two-Word Floating-Point to Fixed-PointListing 3.4  Two-Word Floating-Point to Fixed-PointListing 3.4  Two-Word Floating-Point to Fixed-PointListing 3.4  Two-Word Floating-Point to Fixed-PointListing 3.4  Two-Word Floating-Point to Fixed-Point

3.43.43.43.43.4 FLOATING-POINT ADDITIONFLOATING-POINT ADDITIONFLOATING-POINT ADDITIONFLOATING-POINT ADDITIONFLOATING-POINT ADDITION
The algorithm for adding two numbers in two-word floating-point format
is as follows:

1. Determine which number has the larger exponent. Let’s call this
number X (= Ex, Fx) and the other number Y (= Ey, Fy).

2. Set the exponent of the result to Ex.
3. Shift Fy right by the difference between Ex and Ey, to align the radix

points of Fx and Fy.
4. Add Fx and Fy to produce the fraction of the result.
5. Normalize the result.

Note that if the exponents are equal, the exponent of the result can be set
to either, and no shifting of the fraction is necessary before the addition.

The ADSP-2100 version of the above algorithm is shown in Listing 3.5.
The routine reads the exponents of the input operands from AX0 and AY0
and the corresponding fractions from AX1 and AY1. Upon return, AR
holds the exponent of the result and SR1 holds the fraction. The routine
first determines the operand with the largest exponent and shifts the
fractional part of the other operand to equate the exponents. The fractions
are added to form an unnormalized sum. This sum is fed to the exponent
detector (in HIX mode to allow for overflow in the ALU) to determine the
direction and magnitude of the shift required to normalize the number.
The NORM instruction of the shifter uses the negative of the value in SE
for the magnitude of the shift. The value in SE is then added to the
exponent of the result to yield the normalized exponent.

.MODULE floating_point_add;

{
Floating-Point Addition

z = x + y

Calling Parameters
AX0 = Exponent of x
AX1 = Fraction of x
AY0 = Exponent of y
AY1 = Fraction of y
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Return Values
AR = Exponent of z
SR1 = Fraction of z

Altered Registers
AX0,AY1,AY0,AF,AR,SI,SE,SR

Computation Time
11 cycles

}

.ENTRY fpa;

fpa: AF=AX0-AY0; {Is Ex > Ey?}
IF GT JUMP shifty; {Yes, shift y}
SI=AX1, AR=PASS AF; {No, shift x}
SE=AR;
SR=ASHIFT SI (HI);
JUMP add;

shifty: SI=AY1, AR=-AF;
SE=AR;
SR=ASHIFT SI (HI), AY1=AX1;
AY0=AX0;

add: AR=SR1+AY1; {Add fractional parts}
SE=EXP AR (HIX);
AX0=SE, SR=NORM AR (HI); {Normalize}
AR=AX0+AY0; {Compute exponent}
RTS;

.ENDMOD;

Listing 3.5  Floating-Point AdditionListing 3.5  Floating-Point AdditionListing 3.5  Floating-Point AdditionListing 3.5  Floating-Point AdditionListing 3.5  Floating-Point Addition

3.53.53.53.53.5 FLOATING-POINT SUBTRACTIONFLOATING-POINT SUBTRACTIONFLOATING-POINT SUBTRACTIONFLOATING-POINT SUBTRACTIONFLOATING-POINT SUBTRACTION
The algorithm for subtracting one number from another in two-word
floating-point format is as follows:

1. Determine which number has the larger exponent. Let’s call this
number X (= Ex, Fx) and the other number Y (= Ey, Fy).

2. Set the exponent of the result to Ex.
3. Shift Fy right by the difference between Ex and Ey, to align the radix

points of Fx and Fy.
4. Subtract the fraction of the subtrahend from the fraction of the

minuend to produce the fraction of the result.
5. Normalize the result.

Note that if the exponents are equal, the exponent of the result can be set
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to either, and no shifting of the fraction is necessary before the subtraction.

The ADSP-2100 version of the above algorithm is shown in Listing 3.6.
The routine reads the exponents of the input operands from AX0 and AY0
and the corresponding fractions from AX1and AY1. Upon return, AR
holds the exponent of the result and SR1 holds the fraction. The routine
first determines the operand with the largest exponent and shifts the
fractional part of the other operand to equate the exponents. The
unnormalized difference of the fractions is then found. This difference is
fed to the exponent detector (in HIX mode to allow for overflow in the
ALU) to determine the direction and magnitude of the shift required to
normalize the number. The NORM instruction of the shifter uses the
negative of the value in SE for the magnitude of the shift. The value in SE
is then added to the exponent of the result to yield the normalized
exponent.

.MODULE floating_point_subtract;

{
Floating-Point Subtraction

z = x - y

Calling Parameters
AX0 = Exponent of x
AX1 = Fraction of x
AY0 = Exponent of y
AY1 = Fraction of y

Return Values
AR = Exponent of z
SR1 = Fraction of z

Altered Registers
AX0,AY1,AY0,AF,AR,SI,SE,SR

Computation Time
11 cycles

}

.ENTRY fps;

fps: AF=AX0-AY0; {Is Ex > Ey?}
IF GT JUMP shifty; {Yes, shift y}
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SI=AX1, AR=PASS AF; {No, shift x}
SE=AR;
SR=ASHIFT SI (HI);
AR=SR1-AY1; {Subtract fractions}
JUMP subt;

shifty: SI=AY1, AR=-AF;
SE=AR;
SR=ASHIFT SI (HI);
AY1=SR1;
AY0=AX0, AR=AX1-AY1; {Subtract fractions}

subt: SE=EXP AR (HIX);
AX0=SE, SR=NORM AR (HI); {Normalize}
AR=AX0+AY0; {Compute exponent}
RTS;

.ENDMOD;

Listing 3.6  Floating-Point SubtractionListing 3.6  Floating-Point SubtractionListing 3.6  Floating-Point SubtractionListing 3.6  Floating-Point SubtractionListing 3.6  Floating-Point Subtraction

3.63.63.63.63.6 FLOATING-POINT MULTIPLICATIONFLOATING-POINT MULTIPLICATIONFLOATING-POINT MULTIPLICATIONFLOATING-POINT MULTIPLICATIONFLOATING-POINT MULTIPLICATION
Multiplication of two numbers in two-word floating-point format is
simpler than either addition or subtraction, because there is no need to
align the radix points. The algorithm to multiply two numbers x and y (Ex,
Fx and Ey, Fy) whose exponents are biased by an excess code of b (which
may be set to zero) is as follows:

1. Add Ex and Ey; subtract b from this sum to produce the exponent of
the result.

2. Multiply Fx by Fy to produce the fraction of the result.
3. Normalize the result.

The ADSP-2100 routine shown in Listing 3.7 reads the exponents of the
operands from AX0 and AY0 and the corresponding fractions from AX1
and AY1. The excess value, b, is read from MX0. This routine returns the
exponent of the result in AR, and the fraction in SR1. After the exponent
and fraction of the result are calculated, the routine checks the MV bit for
overflow of the least significant 32 bits of the MR register. If MV is set, the
MR register is saturated to its full scale value. Saturation is necessary
because the exponent detector is unable to process overflowed numbers in
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the multiplier. If MR were not saturated on overflow, the routine would
incorrectly compute the product of –1 and –1 as –1. The routine finishes by
normalizing the product.

.MODULE floating_point_multiply;

{
Floating-Point Multiply

Z = X × Y

Calling Parameters
AX0 = Exponent of X
AX1 = Fraction of X
AY0 = Exponent of Y
AY1 = Fraction of Y
MX0 = Excess Code

Return Values
AR = Exponent of Z
SR1 = Fraction of Z

Altered Registers
AF,AR,AX0,MY1,MX1,MR,SE,SR

Computation Time
9 cycles

}

.ENTRY fpm;

fpm: AF=AX0+AY0, MX1=AX1; {Add exponents}
MY1=AY1;
AX0=MX0, MR=MX1*MY1 (RND); {Multiply fractions}
IF MV SAT MR; {Check for overflow}
SE=EXP MR1 (HI);
AF=AF-AX0, AX0=SE; {Subtract bias}
AR=AX0+AF; {Compute exponent}
SR=NORM MR1 (HI); {Normalize}
RTS;



33333Floating-Point ArithmeticFloating-Point ArithmeticFloating-Point ArithmeticFloating-Point ArithmeticFloating-Point Arithmetic

4747474747

.ENDMOD;

Listing 3.7  Floating-Point MultiplicationListing 3.7  Floating-Point MultiplicationListing 3.7  Floating-Point MultiplicationListing 3.7  Floating-Point MultiplicationListing 3.7  Floating-Point Multiplication

3.73.73.73.73.7 FLOATING-POINT DIVISIONFLOATING-POINT DIVISIONFLOATING-POINT DIVISIONFLOATING-POINT DIVISIONFLOATING-POINT DIVISION
The algorithm to divide one number X (= Ex, Fx) by another number Y (=
Ey, Fy) in two-word floating-point format is as follows:

1. Subtract Ey from Ex; add the excess value (if any) to this number to
form the exponent of the result.

2. Divide Fx by Fy to yield the fraction of the result.
3. Normalize the result.

The ADSP-2100 implementation of this algorithm is shown in Listing 3.8.
The routine reads the exponent of X (the dividend) from AX0 and the
fraction from AX1. It reads the exponent of Y (the divisor) from AY0 and
the fraction from AY1. The excess code b is read from MX0. The routine
returns the exponent of the quotient in AR, and the fraction of the quotient
in SR1. Because both Fx and Fy are in 1.15 format, their division produces
a 1.15 quotient. To ensure a valid (1.15 format) quotient, Fx must be less
than Fy. If Fx is not less than Fy, the routine shifts Fx one bit right, and Ex
is increased by one. After the shift, the division can be performed without
producing an overflow. The routine finishes by normalizing the result.

.MODULE floating_point_divide;

{
Floating-Point Divide

z = x ÷ y

Calling Parameters
AX0 = Exponent of x
AX1 = Fraction of x
AY0 = Exponent of y
AY1 = Fraction of y
MX0 = Excess Code

Return Values
AR = Exponent of z
SR1 = Fraction of z

Altered Registers

(listing continues on next page)
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AF,AR,MR,SE,SI,SR,AX1,AX0,AY0

Computation Time
33 cycles (maximum)

}

.ENTRY fpd;

fpd: SR0=AY1, AR=ABS AX1;
SR1=AR, AF=ABS SR0;
SI=AX1, AR=SR1-AF; {Is Fx > Fy?}
IF LT JUMP divide; {Yes, go divide}
SR=ASHIFT SI BY -1 (LO); {No, shift Fx right}
AF=PASS AX0;
AR=AF+1, AX1=SR0; {Increase exponent}
AX0=AR;

divide: AX0=MX0, AF=AX0-AY0;
MR=0;
AR=AX0+AF, AY0=MR1;
AF=PASS AX1, AX1=AY1; {Add bias}
DIVS AF, AX1; {Divide fractions}
DIVQ AX1; DIVQ AX1; DIVQ AX1; DIVQ AX1; DIVQ AX1;
DIVQ AX1; DIVQ AX1; DIVQ AX1; DIVQ AX1; DIVQ AX1;
DIVQ AX1; DIVQ AX1; DIVQ AX1; DIVQ AX1; DIVQ AX1;
MR0=AY0, AF=PASS AR;
SI=AY0, SE=EXP MR0 (HI);
AX0=SE, SR=NORM SI (HI); {Normalize}
AR=AX0+AF; {Compute exponent}
RTS;

.ENDMOD;

Listing 3.8  Floating-Point DivisionListing 3.8  Floating-Point DivisionListing 3.8  Floating-Point DivisionListing 3.8  Floating-Point DivisionListing 3.8  Floating-Point Division

3.83.83.83.83.8 FLOATING-POINT MULTIPLY/ACCUMULATEFLOATING-POINT MULTIPLY/ACCUMULATEFLOATING-POINT MULTIPLY/ACCUMULATEFLOATING-POINT MULTIPLY/ACCUMULATEFLOATING-POINT MULTIPLY/ACCUMULATE
The floating-point multiply/accumulate routine computes the sum of N
two-operand products. This value can also be found using repeated calls
to the floating-point multiplication and addition routines, but the
multiply/accumulate routine functions more efficiently because it
removes overhead. The multiply/accumulate algorithm is as follows:

1. Multiply the first two operands and normalize the product.
2. Multiply the next two operands and normalize the product.
3. Compare the product to the accumulated result, and shift one or the

other to align the radix points.
3. Add the product to the accumulated result and normalize the sum.
4. Repeat steps 2 to 4 until all input operands are exhausted.
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The routine shown in Listing 3.9 uses I0 to point to the x buffer, I1 to point
to the y buffer. Each buffer should be organized with the exponent of each
value first, followed by the fraction. The routine calculates the first
product before entering the loop, so CNTR should store the value of the
buffer length minus one. MX0 stores the excess value (which may be zero).
M0 should be initialized to one. The multiply/accumulate result is
returned with the exponent in AR and the fraction in SR1.

After each product is calculated, the MV bit is checked to see whether the
MR register overflowed. If overflow occurs, MR is saturated to positive
full scale. This saturation is necessary because the exponent detector
cannot process overflowed MR register values.

.MODULE floating_point_multiply_accumulate;

{ Floating-Point Multiply/Accumulate
    n
z = ∑ (x(i) × y(i))
   i=1

Calling Parameters
I0 —> x Buffer L0 = 0
I1 —> y Buffer L1 = 0
M0 = 1
CNTR = Length of Buffer - 1
MX0 = Excess Code

Return Values
AR = Exponent of z
SR1 = Fraction of z

Altered Registers
AF,AR,AX0,AX1,AY0,AY1,MX1,MY1,SE,MR,SR

Computation Time
13 × (n-1)+16

}
.ENTRY fpmacc;

fpmacc: AX0=DM(I0,M0); {Get 1st Ex}
AY0=DM(I1,M0); {Get 1st Ey}
AF=AX0+AY0, MX1=DM(I0,M0); {Add exp., get 1st Fx}
AR=PASS AF, MY1=DM(I1,M0); {Get 1st Fy}
AX1=AR, MR=MX1*MY1(RND); {Multiply fractions}
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IF MV SAT MR; {Check for overflow}
SE=EXP MR1(HI);
AY1=SE, SR=NORM MR1(HI); {Normalize}
AR=AX1+AY1, AX0=DM(I0,M0);
AX1=AR;
AY0=DM(I1,M0);
DO macc UNTIL CE;
AF=AX0+AY0, MX1=DM(I0,M0); {Compute product exp.}
AR=AX1-AF, MY1=DM(I1,M0); {Sum exp. > product exp.?}
IF GT JUMP shiftp; {Yes, shift product}
SE=AR, MR=MX1*MY1(RND); {No, shift sum}
IF MV SAT MR;
AY1=MR1, AR=PASS AF;
AX1=AR, SR=ASHIFT SR1(HI);
JUMP add;

shiftp: AF=PASS AR;
AR=-AF;
SE=AR, MR=MX1*MY1(RND);
IF MV SAT MR;
AY1=SR1, SR=ASHIFT MR1(HI);

add: AR=SR1+AY1, AX0=DM(I0,M0); {Accumulate}
SE=EXP AR(HIX);
AY1=SE, SR=NORM AR(HI); {Normalize}
AR= AX1+AY1, AY0=DM(I1,M0);

macc: AX1=AR;
SR0=MX0; {Get bias}
AF=PASS SR0;
AR=AX1-AF; {Subtract bias}
RTS;

.ENDMOD;

Listing 3.9  Floating-Point Multiply/AccumulateListing 3.9  Floating-Point Multiply/AccumulateListing 3.9  Floating-Point Multiply/AccumulateListing 3.9  Floating-Point Multiply/AccumulateListing 3.9  Floating-Point Multiply/Accumulate
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