6.7 LEAKAGE

The input to an FFT is not an infinite-time signal as in a continuous Fourier transform. Instead, the input is a section (a truncated version) of a signal. This truncated signal can be thought of as an infinite signal multiplied by a rectangular function. For a DFT, the product of the signal and the rectangular function is sampled (multiplied by a series of impulses). Because multiplication in the time domain corresponds to convolution in the frequency domain, the effect of truncating a signal is seen in the FFT results (Brigham, 1974). Figure 6.19 illustrates the effect truncation and sampling have on the Fourier transform.

Figure 6.19a shows z(t), a continuous cosine wave with a period of T_0 . Its Fourier transform, Z(f) is two impulses, at $1/T_0$ and $-1/T_0$. Figure 6.19c shows the product of z(t) and u(t), a sampling function. The sampled signal $z(t) \ge u(t)$ is truncated by multiplication with w(t), a rectangular function. Figure 6.19e shows the resulting signal, y(t), and its Fourier transform, Y(f) (the convolution of Z(f), U(f), and W(f)).

The DFT interprets its input as one complete cycle of a periodic signal. To create a periodic signal from the N samples (y(t)), we convolve y(t) with v(t), a series of impulses at intervals of T_0 . T_0 is the length of the rectangular function as well as exactly one period of the input signal z(t). Notice that V(f), the Fourier transform of v(t), is a series of impulses located at multiples of $1/T_0$. Because the zero values of the side lobes of Y(f) are also located at multiples of $1/T_0$, multiplying Y(f) by V(f) in Figure 6.19g produces the same transform as in Figure 6.19c (the transform of the non-truncated signal).

If the length of the rectangular function (w(t)) is not equal to one period or a multiple of periods of the input signal, leakage effects appear in the DFT output. Figure 6.20 illustrates these effects. Notice that in this case T_1 , the width of the rectangular function w(t), is not equal to T_0 , the period of z(t). Because of the convolution of impulses at locations $-1/T_0$ and $1/T_0$ with W(f), which has zero values at multiples of $1/T_1$, Y(f) has zero values at frequencies other than multiples of $1/T_1$ or $1/T_0$. Convolution in the time domain of y(t) and v(t) in Figure 6.20g corresponds to multiplication of Y(f) and V(f) in the frequency domain. Because the samples in V(f) spaced at $1/T_1$ do not correspond to zero values in Y(f), noise (or leakage) in the DFT output is produced.

Another way to think of leakage is to conceptualize the DFT output as a series of bins at specific frequencies. If f_s is the sampling frequency and N

Figure 6.19 Development of DFT, Window = Input Period

Figure 6.20 Development of DFT, Window \neq Input Period

is the number of samples, the bins range from 0 Hz to $f_s/2$ Hz and are equally spaced in frequency f_s/N Hz apart. If the N input samples contain one period or a multiple of periods of the input signal, each of the frequency components falls into a frequency bin. If the N input samples do not contain one period or a multiple of periods, at least one of the frequency components falls between bins. The energy of this frequency component is distributed to the surrounding bins, producing a spectrum similar to Figure 6.20g (Brigham, 1974).

In a real system, it is difficult to capture exactly one period or a multiple of periods of a signal. In most cases, leakage in the FFT output will result. One method of reducing this leakage is called windowing.

Although windowing has many applications, we use it here to reduce leakage. Truncation of a signal is a form of windowing in which the window function is rectangular. Leakage caused by truncation can be reduced by selecting a non-rectangular window function with specific characteristics.

The window function is selected for two characteristics (Brigham, 1974). First, to reduce the effect of side lobe multiplication, the side lobes in the Fourier transform of the window function should be significantly smaller than those of the rectangular window function's Fourier transform. Second, the main lobe of the window function's Fourier transform should be sufficiently narrow so that important signal information is not lost. Two examples of window functions that exhibit these characteristics are the Hanning and the Hamming windows.

Hanning:	$w(n) = 1/2 [1 - \cos(2\pi n/(N-1))]$	$0 \le n \le N 1$
Hamming:	$w(n) = 0.54 - 0.46\cos(2\pi n/(N-1))$	$0 \le n \le N-1$

Noise reduction is accomplished by dividing the selected window function into N equally spaced samples (called window coefficients) and multiplying each FFT input sample by the corresponding coefficient. The module *window*, shown in Listing 6.37, performs this calculation. This module works with both the radix-2 and radix-4 DIF subroutines. It assumes that the *inplacedata* buffer contains sequentially ordered data organized with real and imaginary values interleaved. It is written for a 1024-point FFT, but the window size can be changed by changing the constant N_x_2 .

	The <i>window_coeffs</i> buffer buffer is organized with is initialized with an exte precalculated window co	is initialized with the window coefficients. This real and imaginary values interleaved. The buffer rnal file <i>window_coeffs.dat</i> that contains the efficients.		
	Pointers are set to point t initial data fetch of a win loop. Inside the loop, a co time as the next coefficien the product is written ov repeated for N samples (n	o the <i>inplacedata</i> and <i>window_coeffs</i> buffers. The dow coefficient and a sample is done before the befficient and sample are multiplied at the same nt and sample are read. After each multiplication, er the original FFT input sample. The loop is real and imaginary parts).		
.MODULE	windowing;			
{	Calling Parameters FFT input data in the inplacedata buffer			
	Return Values Windowed FFT input data in the inplacedata buffer			
	Altered Registers I0,I1,I4,M0,M4,MX0,MY	0, MR		
}				
.CONST	N_x_2=2048;			
.VAR/PM	window_coeffs[N_x_2];			
.INIT	<pre>window_coeffs:<window_coefs.dat>;</window_coefs.dat></pre>			
.ENTRY	window;			
window:	<pre>I0=^inplacedata; I1=I0; I4=^window_coeffs; M0=1; M4=1; CNTR=N_x_2-1;</pre>	{IO> 1st sample in FFT input data} {I4> 1st window coefficient}		
window_loop:	<pre>M4); {Read 1st sample and coefficient} {Window N_x_2-1 samples} M(I0,M0),MY0=PM(I4,M4);</pre>			
	<pre>MR=MX0*MY0(RND); DM(I1,M0)=MR1; RTS;</pre>	{Multiply last sample and coefficient} {Last sample updated}		
. ENDMOD;				

Listing 6.37 Windowing Routine

6.8 BENCHMARKS

Benchmarks for the optimized radix-2 DIT FFT and radix-4 DIF FFT routines are given in this section.

Straight-line code occupies much more memory than looped code, is hard to understand and is tedious to debug. All programs used to generate the benchmarks presented in this section are relatively short and uncomplicated looped programs.

The FFT benchmarks in Table 6.1 are worst-case. For example, the 1024-point radix-2 FFT benchmark assumes that the data grows by two bits in every stage.

Routine	Number of Points	Number of Cycles	Execution Time (12.5MHz ADSP-2100A)
Radix-2 DIT Input scaling	1024	52911	4.23 ms
Radix-2 DIT Conditional BFP*	1024	113482	9.08 ms
Radix-4 DIF Input scaling	64 256 1024	1381 7372 37021	0.11 ms 0.59 ms 2.96 ms
Radix-4 DIF Input scaling Built-in digit-reverse	64 256 1024	1405 7423 37203	0.11 ms 0.59 ms 2.98 ms

* BFP = Block Floating-Point Scaling

Table 6.1 Benchmarks for FFT Routines

Table 6.2 lists the benchmarks for the other routines presented in this chapter (bit reversal, digit reversal, and windowing).

Routine	Number of Points	Number of Cycles	<i>Time</i> (12MHz ADSP-2100A) (μs)
Bit-Reverse	64	138	11.04
(scramble,	128	266	21.28
real data)	256	522	41.76
	1024	2058	164.64
Bit-Reverse	64	270	21.60
(unscramble,	128	526	42.08
complex data)	256	1038	83.04
1 ,	1024	4110	328.80
Digit-Reverse	64	430	34.40
(unscramble,	256	1812	144.96
complex data)	1024	7188	575.04
compress data)		. 100	
Window	64	267	21.36
(complex data)	128	523	41.84
(<u>r</u> /	256	1035	82.80
	1024	4107	328 56
	1041	1107	

Table 6.2 Benchmarks for Other Routines

6.9 **REFERENCES**

Brigham, E.O. 1974. *The Fast Fourier Transform*. Englewood Cliffs, N.J.: Prentice-Hall, Inc.

Burrus, C.S. and T.W. Parks. 1985. *DFT and Convolution Algorithms*. New York, NY: John Wiley and Sons.

Dudgeon, D. and Mersereau, R. 1984. *Multidimensional Digital Signal Processing*. Englewood Cliffs, N.J.: Prentice-Hall Inc.

Gonzalez, R. and Wintz, P. 1977. *Digital Image Processing*. Reading, MA: Addison-Wesley Publishing Company.

Hakimmashhadi, H. 1988. "Discrete Fourier Transform and FFT." *Signal Processing Handbook*. New York, NY: Marcel Dekker, Inc.

Haykin, S. 1983. Communication Systems. New York: John Wiley and Sons.

Oppenheim, A. V., and Schafer, R. W. 1975. *Digital Signal Processing*. Englewood Cliffs, N.J.: Prentice-Hall, Inc.

Proakis, J. G. and D. G. Manolakis. 1988. *Introduction to Digital Signal Processing*. New York, NY: Macmillan Publishing Company.

Rabiner, L. R. and Gold, B. 1975. *Theory and Applications of Digital Signal Processing*. Englewood Cliffs, N.J.: Prentice-Hall, Inc.

Rabiner, Lawrence R. and Gold, Bernard. 1975. *Theory and Applications of Digital Signal Processing*. Englewood Cliffs, N.J.: Prentice-Hall, Inc.