
Image ProcessingImage ProcessingImage ProcessingImage ProcessingImage Processing 88888

285285285285285

8.18.18.18.18.1 OVERVIEWOVERVIEWOVERVIEWOVERVIEWOVERVIEW
Image processing often involves computation on large matrices (of data
values) that represent digitized images. Each element of the array
represents a pixel of the image; its location in the array corresponds to its
location in the image, and its value determines the color or shading of the
pixel.

The largest two-dimensional matrix that a full complement of ADSP-2100
data memory will hold contains 16384 elements (128 rows by 128
columns). If your application requires a larger array, you must use
extended memory addressing. For more information on a hardware
implementation of this type of memory architecture, contact Analog
Devices’ DSP Applications Group.

The CNTR register of the ADSP-2100 is a 14-bit unsigned register that can
track loop iteration; a loop can be set to execute up to 16383 times. If more
loop iterations are needed, they can be obtained by nesting loops. If the
number of iterations needed can not be achieved easily through loop
nesting, the loop can be programmed explicitly. In this method, the AF
register is preloaded with the number of loops, and at the end of the loop
it is decremented. A conditional jump tests the AF value after the
decrement; if it is not zero, a jump to the top of the loop is executed, and if
it is zero, no jump occurs, and the loop is exited. A loop using this method
can be iterated up to 65535 times. Each loop execution incurs a two-cycle
overhead penalty, however.

8.28.28.28.28.2 TWO-DIMENSIONAL CONVOLUTIONTWO-DIMENSIONAL CONVOLUTIONTWO-DIMENSIONAL CONVOLUTIONTWO-DIMENSIONAL CONVOLUTIONTWO-DIMENSIONAL CONVOLUTION
Two-dimensional convolution has a variety of applications in image
processing. One common application is finding an object in an image
using two-dimensional edge detection. To determine the orientation of the
edge, an input window is convolved with several different templates. A
direction is chosen based on the template that yields the maximum
convolution value. Another application is pixel smoothing, which can be
accomplished with two-dimensional convolution by varying the
convolution coefficients. A smoothed pixel value is based on the weighted
average of the unsmoothed value and those of the eight neighboring
pixels.

88888

286286286286286

Image ProcessingImage ProcessingImage ProcessingImage ProcessingImage Processing

When implementing the convolution, instead of giving the address of the
pixel being convolved, the address of the upper left hand corner of the
convolving window is given and the convolution window will not extend
outside the input window. Due to this fact, the output window will be
smaller (by two pixels per row and column) than the input window.
Input and coefficient matrices stored by rows allow you to take advantage
of the one-cycle address modification capability of the ADSP-2100 using
modify (M) registers. When the pointer to the input window reaches the
end of each coefficient row, it is updated with a different modify register
that causes the pointer to move to the beginning of the next row of the
convolution window. When the multiplication is complete, still another
modify register moves the index register to the point at which the next
convolution will begin.

The routine in Listing 8.1 uses two loops to allow for large input windows.
Because the CNTR register is 14-bits wide, a single loop would restrict the
input matrix to 16383 elements. The two loops also may be easily modified
for extended memory addressing.

Before calling the routine you must store the address of the input matrix
in I0, the coefficient matrix in I4, and the output matrix in I1. The length
registers L0 and L1 should be set to zero. L4 should be set to nine to use
the circular buffer modulo addressing with the pointer to the convolution
matrix, I4, because the matrix is used repeatedly. When performing the
convolution on an MxN matrix, CNTR should be set to M–2, the number
of output rows, and M1 should be set to N–2, the number of output
columns. M1 is also used to move the I0 pointer from one row to the next,
which is necessary because the nine values of the input matrix used in the
convolution are not contiguous in memory. M2 is set to –(2N +1) to move
the I0 pointer back to the beginning of the convolution window, and M3 is
set to two to move the I0 pointer to the next input row. M0 and M4 are set
to one for sequential fetches from data memory and program memory.

The routine begins by reading the first data and coefficient values. The
in_row loop is executed once for each row of the output matrix. The in_col
loop executes once for each column of the output matrix. Inside this loop,
one multiply/data fetch multifunction instruction is executed for each
element of the convolution window.

The last instruction of the in_col loop saves the output data point. A
MODIFY instruction that moves the input matrix pointer, I0, to the
beginning of the next input row finishes the in_row loop.

88888Image ProcessingImage ProcessingImage ProcessingImage ProcessingImage Processing

287287287287287

.MODULE Two_Dimensional_Convolution;

{ 3 3
G(x,y) = ∑ ∑ [H(i,j) × F(x+i, y+j)]
 i=1 j=1

Calling Parameters
I0 —> F(x,y), MxN Input Matrix L0 = 0
I1 —> G(x,y), (M-2)x(N-2) Output Matrix L1 = 0
I4 —> H(i,j), 3x3 Coefficient Matrix (circular) L4 = 9
CNTR = M-2 M3 = 2
M0 = 1 M4 = 1
M1 = N-2 M2 = -(2 × N + 1)

Return Values
G(x,y) Filled

Altered Registers
MX0,MY0,MR,I0,I1,I4

Computation Time
((10 × (N-2) + 4) × (M-2)) + 3 + 10 cycles

}

.ENTRY conv;

conv: MX0=DM(I0,M0), MY0=PM(I4,M4); {Get first data and coeff}
DO in_row UNTIL CE; {Loop M-2 times}
 CNTR=M1;
 DO in_col UNTIL CE; {Loop N-2 times}
 MR=MX0*MY0 (SS), MX0=DM(I0,M0), MY0=PM(I4,M4);
 MR=MR+MX0*MY0 (SS), MX0=DM(I0,M1), MY0=PM(I4,M4);
 MR=MR+MX0*MY0 (SS), MX0=DM(I0,M0), MY0=PM(I4,M4);
 MR=MR+MX0*MY0 (SS), MX0=DM(I0,M0), MY0=PM(I4,M4);
 MR=MR+MX0*MY0 (SS), MX0=DM(I0,M1), MY0=PM(I4,M4);
 MR=MR+MX0*MY0 (SS), MX0=DM(I0,M0), MY0=PM(I4,M4);
 MR=MR+MX0*MY0 (SS), MX0=DM(I0,M0), MY0=PM(I4,M4);
 MR=MR+MX0*MY0 (SS), MX0=DM(I0,M2), MY0=PM(I4,M4);
 MR=MR+MX0*MY0 (RND), MX0=DM(I0,M0), MY0=PM(I4,M4);

in_col: DM(I1,M0)=MR1; {Save convolution value}
in_row: MODIFY(I0,M0); {Point to next input row}

 RTS;
.ENDMOD;

Listing 8.1 Two-Dimensional ConvolutionListing 8.1 Two-Dimensional ConvolutionListing 8.1 Two-Dimensional ConvolutionListing 8.1 Two-Dimensional ConvolutionListing 8.1 Two-Dimensional Convolution

88888

288288288288288

Image ProcessingImage ProcessingImage ProcessingImage ProcessingImage Processing

8.38.38.38.38.3 SINGLE-PRECISION MATRIX MULTIPLYSINGLE-PRECISION MATRIX MULTIPLYSINGLE-PRECISION MATRIX MULTIPLYSINGLE-PRECISION MATRIX MULTIPLYSINGLE-PRECISION MATRIX MULTIPLY
Matrix multiplication is commonly used to translate or rotate an image.
The routine presented in this section multiplies two input matrices: X, an
RxS (R rows, S columns) matrix stored in data memory, and Y, an SxT (S
rows, T columns) matrix stored in program memory. The output Z, an
RxT (R rows, T columns) matrix, is written to data memory.

Before calling the routine, which is shown in Listing 8.2, the values must
be set up as follows. The starting address of X must be in I2 and the
starting address of Y in I5. The starting address of the result buffer Z must
be in I1. All matrices are stored by rows; that is, each successive memory
location contains the next sequential row element, and the last element of
a row is followed by the first element of the next row. M0 and M4 must be
set to one. M5 must contain the value of T (number of columns in Y), and
M1 the value of S (number of columns in X). The CNTR register must
contain the value of R (number of rows in X), and SE must contain the
value necessary to shift the result of each multiplication into the desired
format. For example, SE would be set to zero to obtain a matrix of 1.31
values from the multiplication of two matrices of 1.15 values.

The row_loop loop is executed once for each row of the result matrix (R
times). Before the column_loop loop is entered, CNTR is set to the value of
T and I5 is reset to point to the beginning of the Y matrix. The column_loop
loop is executed once for each column of the result matrix (T times). The
element_loop loop is executed to compute one element of the output matrix.

Before the element of the output matrix is computed, CNTR is set to S for
the number of multiplies necessary, I0 is set to the first element of the
current X matrix row, and I4 is set to the first element of the current Y
matrix column. The MR register is cleared, the first element of the current
X row is loaded into MX0, and the first element of the current Y column is
loaded into MY0.

After an element of the output matrix is computed, it is adjusted in the
shifter to maintain data integrity. For example, if each matrix is composed
of 4.12 elements, each output element must be shifted to the left three bits
to form a 4.12 value before being stored, if the output matrix is also to be
composed of 4.12 elements. The magnitude of the shift is controlled by the
value that was preloaded in the SE register. During the first shift
operation, the multiword instruction also updates the pointer to the next
column of the Y matrix.

88888Image ProcessingImage ProcessingImage ProcessingImage ProcessingImage Processing

289289289289289

The last instruction in the column_loop loop stores the value of the output
element in memory. The row_loop loop finishes by modifying the pointer
to the current row of the X matrix.

The time required to complete the multiplication depends on the size of
the input matrices. The routine requires one cycle for the return
instruction and one cycle to start the row_loop loop, which is executed R
times. The row_loop loop requires four cycles in addition to the cycles used
in column_loop, which is executed T times. The column_loop loop contains
eight cycles overhead plus the element_loop loop, which executes in S
cycles. Two more cycles are required for data reads from program
memory before the code is completely contained in cache memory. The
total execution time is therefore ((S + 8) × T + 4) × R + 4 cycles.

.MODULE matmul;

{
Single-Precision Matrix Multiplication

 S
Z(i,j) = ∑ [X(i,k) × Y(k,j)] i = 0 to R; j = 0 to T

 k=0

X is an RxS matrix
Y is an SxT matrix
Z is an RxT matrix

Calling Parameters
I1 —> Z buffer in data memory L1 = 0
I2 —> X, stored by rows in data memory L2 = 0

 I6 —> Y, stored by rows in program memory L6 = 0
M0 = 1 M1 = S
M4 = 1 M5 = T
L0,L4,L5 = 0
SE = Appropriate scale value
CNTR = R

Return Values
Z Buffer filled by rows

Altered Registers
I0,I1,I2,I4,I5,MR,MX0,MY0,SR

Computation Time
((S + 8) × T + 4) × R + 2 + 2 cycles

}

(listing continues on next page)

88888

290290290290290

Image ProcessingImage ProcessingImage ProcessingImage ProcessingImage Processing

.ENTRY spmm;

spmm: DO row_loop UNTIL CE;
I5=I6; {I5 = start of Y}
CNTR=M5;
DO column_loop UNTIL CE;

I0=I2; {Set I0 to current X row}
I4=I5; {Set I4 to current Y col}
CNTR=M1;
MR=0, MX0=DM(I0,M0), MY0=PM(I4,M5); {Get 1st data}
DO element_loop UNTIL CE;

element_loop: MR=MR+MX0*MY0 (SS), MX0=DM(I0,M0), MY0=PM(I4,M5);
SR=ASHIFT MR1 (HI), MY0=DM(I5,M4); {Update I5}
SR=SR OR LSHIFT MR0 (LO); {Finish shift}

column_loop: DM(I1,M0)=SR1; {Save output}
row_loop: MODIFY(I2,M1); {Update I2 to next X row}

RTS;
.ENDMOD;

Listing 8.2 Single-Precision Matrix MultiplyListing 8.2 Single-Precision Matrix MultiplyListing 8.2 Single-Precision Matrix MultiplyListing 8.2 Single-Precision Matrix MultiplyListing 8.2 Single-Precision Matrix Multiply

8.48.48.48.48.4 HISTOGRAMHISTOGRAMHISTOGRAMHISTOGRAMHISTOGRAM
A histogram describes the frequency of occurrences of a particular value
in a matrix (or, more generally, any set of data). A common image-
processing application is determining the number of times a particular
gray scale (pixel value) occurs in a digitized two-dimensional image.

To perform a histogram on a range of data, you must know the number of
unique values each datum can have. The histogram contains one location
for each value in which it records the occurrences of that value. For
example, if each pixel in an image is represented by an 8-bit value, each
pixel can take on 256 (28) different values. Its histogram has 256 different
locations, one for each value.

The histogram routine is shown in Listing 8.3. The address of the input
array is read from the address stored in I0; L0 and L4 must both be set to
zero. The modify register M1 must be set to one, and M5 and M0 must be
set to zero. All locations of the output array, whose address is stored in I4,
must be initialized to zero before the routine is called.

88888Image ProcessingImage ProcessingImage ProcessingImage ProcessingImage Processing

291291291291291

The routine checks the value of each element in the input data array and
increments the appropriate location for the value in the output array. The
routine begins by reading in the first value of the input data array. This
value is used to modify the index register, which initially points to the
beginning of the output data array. The second input value is then read,
and the CNTR is set to the number of remaining input points (the total
number less two).

Each pass through the histo_loop loop calculates the modify value for the
output buffer pointer (I4), reads in and increments the current counter,
inputs the next value, and modifies the I4 register to point to the next
location as it saves the new counter value. The instructions following the
histo_loop loop read in and increment the counters for the last two data
values.

No boundary checking is performed on the input data, so the calling
routine must ensure that the output histogram has enough locations to
accommodate the maximum possible range of the input data.

.MODULE Histogram_subroutine;

.CONST N_less_2=2046; {number of pixels - 2}

{
Calculates histogram of input data

Calling Parameters
I0 —> Input buffer in data memory L0 = 0
I4 —> Histogram buffer in program memory L4 = 0
 (I4 initialized to first location;

 All buffer locations initialized to 0)
M0 = 0
M1 = 1
M5 = 0

Return Values
Histogram buffer filled with results

Altered Registers
AX0,AX1,AY0,AF,AR,I0,I4,M4

Computation Time
7 + (4 × (Input buffer length - 2) + 2) + 12 cycles

}

(listing continues on next page)

88888

292292292292292

Image ProcessingImage ProcessingImage ProcessingImage ProcessingImage Processing

.ENTRY histo;

histo: AX1=DM(I0,M1); {Get 1st data value}
M4=AX1;
MODIFY(I4,M4); {Point to its counter}
AX0=DM(I0,M0); {Get 2nd data value}
AF=PASS AX1; {Pass to y operand}

CNTR=N_less_2;

DO histo_loop UNTIL CE;
 AR=AX0-AF, AX1=DM(I0,M1), AY0=PM(I4,M5);

{Calc index, reread data, locate cntr}
 M4=AR; {Transfer index to modify register}
 AR=AY0+1, AX0=DM(I0,M0); {Incr cntr, load next data}

histo_loop: PM(I4,M4)=AR, AF=PASS AX1;
 {Save updated cntr, point to next, pass to y}

AR=AX0-AF, AY0=PM(I4,M5); {Calc index, locate cntr}
M4=AR; {Transfer index to modify register}
AR=AY0+1; {Increment cntr}
PM(I4,M4)=AR; {Save updated cntr, point to next}
AY0=PM(I4,M5); {Locate cntr}
AR=AY0+1; {Incr cntr}
PM(I4,M5)=AR; {Store updated cntr}
RTS;

.ENDMOD;

Listing 8.3 HistogramListing 8.3 HistogramListing 8.3 HistogramListing 8.3 HistogramListing 8.3 Histogram

8.58.58.58.58.5 REFERENCESREFERENCESREFERENCESREFERENCESREFERENCES
Offen, R.J. 1985. VLSI Image Processing. New York: McGraw-Hill Book
Company.

Oppenheim, A.V. ed. 1978. Applications of Digital Signal Processing.
Englewood Cliffs, N.J.: Prentice-Hall, Inc.

	Chapter 8: Image Processing
	8.1 Overview
	8.2 Two-Dimensional Convolution
	8.3 Single-Precision Matrix Multiply
	8.4 Histogram
	8.5 References

