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2.52.52.52.52.5 ADAPTIVE EQUALIZATIONADAPTIVE EQUALIZATIONADAPTIVE EQUALIZATIONADAPTIVE EQUALIZATIONADAPTIVE EQUALIZATION
This section presents subroutines for an ADSP-2100 family
implementation of an adaptive channel equalizer for a high speed modem.
The CCITT’s V.32 recommendation for a 9600 bps modem specifies the
use of this type of equalizer in the receiver section.

The architecture used in this equalizer is a fractionally-spaced tapped
delay line with a least-mean-squared (LMS) algorithm for adapting the tap
weights.

The topics discussed in this section are:

• Historical perspective of adaptive filters
• Applications of adaptive filters
• Channel equalization in a modem
• Equalizer structures
• Least Mean Square (LMS) Algorithm
• Program Structure
• Practical considerations

2.5.12.5.12.5.12.5.12.5.1 History Of Adaptive FiltersHistory Of Adaptive FiltersHistory Of Adaptive FiltersHistory Of Adaptive FiltersHistory Of Adaptive Filters
Until the mid-1960s, telephone-channel equalizers were either fixed
equalizers that caused performance degradation or manually adjustable
equalizers that were cumbersome to adjust.

In 1965, Lucky (see “References” at the end of this chapter) introduced the
zero-forcing algorithm for automatic adjustment of the equalizer tap
weights. This algorithm minimizes a certain distortion, which has the
effect of forcing the intersymbol interference (ISI) to zero. This
breakthrough by Lucky inspired other researchers to investigate different
aspects of the adaptive equalization problem, leading to new improved
solutions.
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Proakis and Miller (1969) reformulated the adaptive equalizer problem
using a new criterion known as the mean squared error (MSE). This
formulation requires a relatively modest amount of computation and
remains the most popular approach for data rates up to 9600 bits/s.

Three years later, Ungerboeck (1972) improved on this work by presenting
a detailed mathematical analysis of the convergence properties of an
adaptive transversal equalizer using the least-mean-squared (LMS)
algorithm. This algorithm is described later in this chapter.

A more powerful algorithm for adjusting the tap weights based on
Kalman filtering theory was developed soon afterward (Godard, 1974).
This algorithm is computationally demanding, but it was later modified
by Falcomer and Ljing (1978) to simplify its computational complexity.

All of these adaptive equalizer implementations are synchronous, that is,
the spacing between taps is equal to the reciprocal of the symbol interval.
Other possible structures include the fractionally spaced equalizer (FSE)
and the decision feedback equalizer (DFE).

The FSE has the ability to better compensate for channel distortion by
spacing the tap weights more closely than in the conventional
synchronous equalizer. Brady (1970) did some early work on this class of
equalizers and was followed by Ungerboeck (1976). The DFE, on the other
hand, uses a more elaborate structure and can yield good performance in
the presence of severe ISI as experienced in fading radio channels.

2.5.22.5.22.5.22.5.22.5.2 Applications Of Adaptive FiltersApplications Of Adaptive FiltersApplications Of Adaptive FiltersApplications Of Adaptive FiltersApplications Of Adaptive Filters
Adaptive filters offer a significant improvement in performance over
fixed-tap-weight digital filters because of their ability to detect signals in
environments of unknown characteristics. They are successfully used in
several areas including:

System Identification And Modeling
An adaptive transversal filter can be forced to converge to the same
impulse response as an unknown linear system and then can be used to
model the unknown system. To determine the taps for this filter, an
excitation input drives both the unknown system and the adaptive filter.
The outputs of these two systems are compared, and the error signal
generated is used to adjust the tap weights of the adaptive filter to reduce
the error size. After a sufficiently large number of iterations, the error is
reduced to some small value (in a statistical sense) and the tap weights
converge to model the real system.
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If the unknown system is dynamic and time-variant, the adaptive filter
can track these variations provided they are sufficiently slow compared to
the convergence time of the filter.

Echo Cancellation
In telephone systems that include both 2-wire and 4-wire loops, hybrid
circuits couple these lines. These hybrid circuits create impedance
mismatches which in turn create signal reflections, heard at both ends of
the line as echo. This echo is tolerable to some degree over long distance
voice connections, but can be catastrophic in high-speed data transmission
over cross-Atlantic links.

Echo cancellers, in the form of adaptive filters, model the impulse
response of the echo path. Cancellation is achieved by making an estimate
of the echo and subtracting it from the return signal.

Linear Predictive Coding
In the past 20 years, digital coding of speech waveforms has become a
popular technique for reducing speech degradation due to transmission.
Of the speech coding techniques, linear predictive coding (LPC) stands
out for its ability to produce low data rates. Basic speech parameters (e.g.
pitch, vocal tract, formants) are estimated, transmitted and then used at
the receiver to resynthesize the speech through a speech production
model. Adaptive filters can be used to estimate speech parameters in
model-based speech coding systems.

The speech quality of LPC is synthetic when compared to other coding
techniques such as PCM or ADPCM; however, its significantly lower data
rates make it attractive. The GSM standard for the Pan-European cellular
digital mobile radio network specifies an LPC-based coding scheme.

Adaptive Beamforming
A spatial form of adaptive signal processing finds applications in radar
and sonar. By combining signals from an array of sensors, it is possible to
change the directivity pattern of the array. Independent sensors (e.g.
antennas or hydrophones) placed at various locations in space or water
detect incoming waveforms. The collection of sensor outputs at a
particular instant is analogous to the set of consecutive tap inputs in a
transversal filter. The sensitivity and directivity of the sensor array can be
adaptively adjusted. Beamforming is discussed in Chapter 15 of Digital
Signal Processing Using the ADSP-2100 Family.
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Adaptive Channel Equalization For Data Transmission
Adaptive filters used in digital communication systems as channel
equalizers minimize transmission distortion and maximize the use of
channel bandwidth. A typical bandlimited telephone channel or radio link
suffers from intersymbol interference (ISI) and additive noise. To improve
system performance in additive-noise channels, transmission power can
be increased. However, increased power has no effect on ISI since it
amplifies both the intended symbol sample as well as interfering ones.

The traditional technique for alleviating ISI is an equalizing filter at the
receiver. The receiver equalizer filter combines the channel characteristics
and the transmitter filter to minimize ISI distortions. Channel
characteristics, however, vary over time. An adaptive equalizer is needed
to ensure a constant transmission quality.

Since the channel conditions are unknown, a training sequence is
transmitted to bring up the equalizer from its initial (usually zero) state.
This sequence is known at the receiver and therefore the deviation error of
received samples from the expected sequence is used to adjust the
equalizer tap weights. Once the training period is completed, the weights
can still be continually updated in a decision directed mode. In this mode,
a minimum distance detector at the receiver decides which symbol was
transmitted. In normal operation these decisions have a high probability
of being correct, and thus are good enough to allow the equalizer to
maintain proper adjustment.

2.5.32.5.32.5.32.5.32.5.3 Channel Equalization In A ModemChannel Equalization In A ModemChannel Equalization In A ModemChannel Equalization In A ModemChannel Equalization In A Modem
The International Telegraph and Telephone Consultative Committee
(CCITT) sets standards and protocols for telephone and telegraph
equipment. Its V.32 modem recommendation specifies a fractionally
spaced transversal filter as the channel equalizer in the receiver. This
equalizer, along with trellis coding and quadrature amplitude modulation
(QAM), maximizes data rates over the bandlimited telephone channel.
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A telephone channel can suffer from a variety of limitations as a
communications medium:

• As a bandlimited channel, it creates an environment for ISI.
• Channel additive noise requires increased transmitted power to

improve signal-to-noise ratio.
• Radio links create fading channels and echo in cross-Atlantic

connections
• When several connections are frequency multiplexed, baseband speech

signals are modulated into the passband using different carrier
frequencies for transmission. Demodulating these passband signals
can create frequency offsets as well as amplitude and phase distortion.

• Phase jitter (poor timing recovery).
• Envelope delay or harmonic distortion is another limitation.

These channel limitations combined with the dense symbol constellation
of the V.32 modem necessitate adaptive equalization for acceptable error
rates at 9600 bits/s.

2.5.3.12.5.3.12.5.3.12.5.3.12.5.3.1 EqualizationEqualizationEqualizationEqualizationEqualization
The basic function of the equalizer is to create an ideal transmission
medium from a real channel. An example channel’s short impulse
response {h1, h2, h3, h4} is shown in Figure 2.26. The ideal medium is
characterized as a pure delay, shown in Figure 2.27.
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Figure 2.26  Example Short Impulse ResponseFigure 2.26  Example Short Impulse ResponseFigure 2.26  Example Short Impulse ResponseFigure 2.26  Example Short Impulse ResponseFigure 2.26  Example Short Impulse Response
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Figure 2.27  Pure Delay Impulse ResponseFigure 2.27  Pure Delay Impulse ResponseFigure 2.27  Pure Delay Impulse ResponseFigure 2.27  Pure Delay Impulse ResponseFigure 2.27  Pure Delay Impulse Response

Take for example the equalizer shown in Figure 2.28 which has three taps
{c1, c2, c3}. Convolving this response with the channel’s impulse response
from Figure 2.26 yields

y1 c1 0 0 0 h1
y2 c2 c1 0 0 h2
y3 = c3 c2 c1 0 X h3
y4 0 c3 c2 c1 h4
y5 0 0 c3 c2
y6 0 0 0 c3

c1

c2

c3
c(t)

t

Figure 2.28  Equalizer Impulse ResponseFigure 2.28  Equalizer Impulse ResponseFigure 2.28  Equalizer Impulse ResponseFigure 2.28  Equalizer Impulse ResponseFigure 2.28  Equalizer Impulse Response
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The outputs {y1, y2, y3, y4, y5, y6} represent samples of the impulse response
of the combined channel/equalizer system.

If the equalizer is to create ideal conditions for transmission, all the y’s
should be zeros except for one main sample. Rewriting the equation for
ideal equalization yields:

0 c1 0 0 0 h1
0 c2 c1 0 0 h2
1 = c3 c2 c1 0

X
h3

0 0 c3 c2 c1 h4
0 0 0 c3 c2
0 0 0 0 c3

or

0 = c1h1
0 = c1h2 + c2h1
1 = c1h3 + c2h2 + c3h1
0 = c1h4 + c2h3 + c3h2
0 = c2h4 + c3h3
0 = c3h4

The system of equations above has only three controllable variables
(unknowns) but six simultaneous equations. The system is
overdetermined and can only be solved approximately. To approximate
this solution, a reformulation of a recursive technique known as method
of steepest descent can be used. This iterative algorithm is defined by the
equation:

(1) Ck+1 = Ck – ∆ ∂E/∂Ck

where E is a defined performance index to be optimized. It is a function of
some controllable parameters (tap weights Ck). E is minimized by
adjusting the tap weights in small steps (∆). The gradient vector ∂E/∂Ck

indicates the direction of the adjustment required to minimize E. This
method converges to an optimum solution when ∂E/∂Ck is zero.
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2.5.3.22.5.3.22.5.3.22.5.3.22.5.3.2 Performance IndexPerformance IndexPerformance IndexPerformance IndexPerformance Index
It is important to choose a meaningful performance index that is a linear
function of the tap weights and that defines a smooth error surface (bowl)
in the space spanned by the tap weight vector. This ensures the
convergence of the algorithm to the lowest point (minimum) of the error
surface.

In some cases, a desirable performance index is a nonlinear function of the
adjustable parameters and the solution is unrealizable. As an example,
consider the probability of error in a digital communication system. Even
though this is a meaningful measure of system performance, it is a highly
nonlinear function of the equalizer tap weights. Using the method of
steepest descent, it cannot be determined whether the adaptive equalizer
has converged to the optimum solution or to one of the relative minima of
the surface. For this reason some desirable performance indices must be
rejected.

A practical and popular index for performance is the mean squared error
(MSE). The error is measured as the difference between the received signal
and the ideal signal value. The MSE index is a measure of the energy in
this error signal averaged over a signaling interval. It results in a
quadratic performance surface as a function of the filter coefficients and
thus has a single minimum (optimal solution). An implementation of an
MSE-based iterative adaptation algorithm is developed for the ADSP-2100
processor family in this chapter; it is discussed in a later section.

2.5.42.5.42.5.42.5.42.5.4 Equalizer ArchitecturesEqualizer ArchitecturesEqualizer ArchitecturesEqualizer ArchitecturesEqualizer Architectures
The preferred form of a linear equalizer is a tapped delay line. The delay
line consists of delay elements in a feedforward path and possibly a
feedback path.

If the delay line has feedforward delays only, its transfer function can be
expressed as a single polynomial in Z–1 and therefore the equalizer has a
finite impulse response (FIR). This type of equalizer is often called a
nonrecursive or transversal equalizer (Figure 2.29).

If the delay line also has feedback delay elements, its transfer function is a
rational function of Z–1 and the equalizer has an infinite impulse response
(IIR) due to its nonzero poles (Figure 2.30).

The V.32 modem equalizer has no feedback delay elements and is
therefore an FIR equalizer.
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Figure 2.29  Transversal (FIR) Delay LineFigure 2.29  Transversal (FIR) Delay LineFigure 2.29  Transversal (FIR) Delay LineFigure 2.29  Transversal (FIR) Delay LineFigure 2.29  Transversal (FIR) Delay Line

2.5.4.12.5.4.12.5.4.12.5.4.12.5.4.1 Real Or ComplexReal Or ComplexReal Or ComplexReal Or ComplexReal Or Complex
In a one-dimensional communication system (e.g. pulse amplitude
modulation or PAM), the signal is real and the equalizer has real
coefficients. The V.32 modem, which uses quadrature amplitude
modulation (QAM), transmits complex data by modulating two
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Figure 2.30  IIR Delay LineFigure 2.30  IIR Delay LineFigure 2.30  IIR Delay LineFigure 2.30  IIR Delay LineFigure 2.30  IIR Delay Line
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orthogonal carrier signals. Because of cross-distortion between the in-
phase and quadrature channels in this two-dimensional communication
system, an equalizer with complex tap coefficients is required.

Algorithms for the complex equalizer are essentially the same as for the
real equalizer with the added burden of complex arithmetic. A complex
equalizer typically requires four times as many multiplications and
introduces the complex conjugation operator in recursive algorithms such
as LMS adaptation.

2.5.4.22.5.4.22.5.4.22.5.4.22.5.4.2 Sampling RatesSampling RatesSampling RatesSampling RatesSampling Rates
It is often advantageous to space the delay elements in an equalizer more
closely than the symbol rate, as shown in Figure 2.31. This has the effect of
oversampling the input to the filter and thus increasing the effective
bandwidth of the equalizer. The input is pushed onto the delay line twice
for every one output computed. Fractionally spaced equalizers have
superior performance because of wider bandwidth, and they simplify the
problem of phase synchronization between transmitter and receiver. They
do, however, suffer from stability problems in low noise conditions and
are more computationally demanding (Ungerboeck, 1976).

Figure 2.31  Fractionally Spaced Delay Line (FSE)Figure 2.31  Fractionally Spaced Delay Line (FSE)Figure 2.31  Fractionally Spaced Delay Line (FSE)Figure 2.31  Fractionally Spaced Delay Line (FSE)Figure 2.31  Fractionally Spaced Delay Line (FSE)

A fractionally spaced filter can be designed the same way as a T-spaced
delay line filter. The basic delay line structure is the same for both. For a
T/2 FSE filter, the samples are shifted in at 2fs (twice the sampling
frequency) but the output is only computed at fs, i.e. every other input
time.

The ADSP-2100 routine to implement the delay line with complex tap
weights is in Listing 2.13.

T/2

Y(KT)

X(KT) T/2 T/2

+

C1 X C2 X Cn X
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{ Fractionally Spaced Filter (FSE) Subroutine

This Complex Fractionally Spaced Filter (FSE) Subroutine is used in the V32
equalizer. The basic structure for the delay line is the same as that of a
T-Spaced Filter (TSE). In the FSE case, however, samples are shifted in at
2Fs (Fs=Sampling Frequency) and the output is computed at Fs, i.e. at
alternate times. This subroutine will therefore be called after 2 new input
samples have been pushed onto the delay line.

Calling Parameters
I0—>Oldest data value in real delay line (Xr’s)
L0=filter length (N)
I1—>Oldest data value in imag. delay line (Xi’s)
L1=filter length (N)
I4—>Beginning of real coefficient table (Cr’s)
L4=filter length (N)
I5—>Beginning of imaginary coefficient table (Ci’s)
L5=filter length (N)
M0,M6=1
AX0=filter length minus one (N-1)
CNTR=filter length minus one (N-1)

Return Values
I0—>Oldest data value in real delay line
I1—>Oldest data value in imaginary delay line
I4—>Beginning of real coefficient table
I5—>Beginning of imaginary coefficient table
SR1=real output (rounded, cond. saturated)
MR1=imaginary output (rounded, cond. saturated)

Altered Registers
MX0,MY0,MR,SR1

Computation Time
2*(N-1)+2*(N-1)+13+8 cycles

All coefficients and data values are assumed to be in 1.15 format.
}
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Listing 2.13  Delay Line Routine, Complex Tap WeightsListing 2.13  Delay Line Routine, Complex Tap WeightsListing 2.13  Delay Line Routine, Complex Tap WeightsListing 2.13  Delay Line Routine, Complex Tap WeightsListing 2.13  Delay Line Routine, Complex Tap Weights

2.5.52.5.52.5.52.5.52.5.5 Least Mean Squared (LMS) AlgorithmLeast Mean Squared (LMS) AlgorithmLeast Mean Squared (LMS) AlgorithmLeast Mean Squared (LMS) AlgorithmLeast Mean Squared (LMS) Algorithm
Since the mean squared error (MSE) performance index is a convex
function of the tap weights (has a bowl-shaped surface), the optimum tap
weights can be obtained by the steepest descent algorithm. In this
algorithm, tap weights are assumed to have an arbitrary initial setup and
are moved in the direction of optimum value when MSE is minimized.
The direction is determined by the gradient of the objective function of
performance,

(2) E = | e(kt) |2

where e(kt) is the error between the estimated symbol and the received
sample and the bar above the expression denotes time averaging.
Optimum tap weights are determined when the derivative of the MSE
surface with respect to all the tap weights is zero.

(3) ∂E/∂Ck = 0 1 ≤ k ≤ N, for an N-tap filter

The error function E is a complex quadratic function because of the 2-
dimensional modulation scheme (QAM). The derivative expression is:

(4) ∂E/∂Cn(k) = –2 e(kt) y(kTsym – nTtaps)

fir: MR=0, MX0=DM(I1,M0), MY0=PM(I5,M6);
DO realloop UNTIL CE;

MR=MR-MX0*MY0(SS), MX0=DM(I0,M0), MY0=PM(I4,M6); {Xi*Ci}
realloop: MR=MR+MX0*MY0(SS), MX0=DM(I1,M0), MY0=PM(I5,M6); {Xr*Cr}

MR=MR-MX0*MY0(SS), MX0=DM(I0,M0), MY0=PM(I4,M6); {last Xi*Ci}
MR=MR+MX0*MY0(RND); {last Xr*Cr}
IF MV SAT MR;
SR1=MR1; {Store Yr}
MR=0, MX0=DM(I0,M0), MY0=PM(I5,M6);
CNTR=AX0;
DO imagloop UNTIL CE;

MR=MR+MX0*MY0(SS), MX0=DM(I1,M0), MY0=PM(I4,M6); {Xr*Ci}
imagloop: MR=MR+MX0*MY0(SS), MX0=DM(I0,M0), MY0=PM(I5,M6); {Xi*Cr}

MR=MR+MX0*MY0(SS), MX0=DM(I1,M0), MY0=PM(I4,M6); {last Xr*Ci}
MR=MR+MX0*MY0(RND); {last Xi*Cr}
IF MV SAT MR; {MR1=Yi}
RTS;
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where Ttaps is the spacing between the taps
Tsym is the spacing between symbols

Combining with equation (1) yields:

(5) Cn(k+1) = Cn(k) + βe(kt) y*(kTsym – nTtaps)

The implementation of the steepest descent algorithm requires the
evaluation of the cross-correlation of error signal e(kt) and received signal
y(t). Cross-correlation requires time-averaging, which is not a viable
option considering the real time requirements of the equalizer. To
alleviate this problem, the approximation:

(6) e(kt) y*(kTsym – nTtaps) ≈ e(kt) y*(kTsym – nTtaps)

is used instead of time-averaging. This simplification of the steepest
descent algorithm greatly reduces the amount of computation. It is very
popular and is generally referred to as the least mean square (LMS)
algorithm.

An LMS algorithm updates the equalizer tap weights according to

(7) Cn(k+1) = Cn(k) + βe(kt) y*(kTsym – nTtaps)

Listing 2.14 shows an LMS algorithm implemented on the ADSP-2100
family.



22222ModemsModemsModemsModemsModems

111111111111111

{ Complex SG Update LMS Subroutine.

This routine updates the complex taps according to the relation:

Cn(k+1)=Cn(k)-Beta.E(k).Y*(n-K)

where: <Beta>=Adaptation step size
<E(k)>=estimation error at time k
<Y*(n-k)>=Received signal complex

conjugated & sampled at time (n-k)

Calling Parameters
I0—>Oldest data value in real delay line L0=N
I1—>Oldest data value in imag. delay line L1=N
I4—>Beginning of real coefficient table L4=N
I5—>Beginning of imag coefficient table L5=N
MX0=real part of Beta*Error
MX1=imag part of Beta*Error
M0,M5=1
M1=-1
M6=0
CNTR=Filter length (N)

Return Values
Coefficients updated
I0—>Oldest data value in real delay line
I1—>Oldest data value in imag delay line
I4—>Beginning of real coefficient table
I5—>Beginning of imag coefficient table

Altered Registers
MY0,MY1,MR,SR,AY0,AY1,AR

Computation Time
6*N+10 cycles

All coefficients and data values are assumed to be in
1.15 format.

}

upd_taps: MY0=DM(I0,M0); {Get Xr}
MR=MX0*MY0(SS), MY1=DM(I1,M0); {Er*Xr, get Xi}
DO adaptc UNTIL CE;

MR=MR+MX1*MY1(RND), AY0=PM(I4,M6); {Ei*Xi, get Cr}
AR=AY0-MR1, AY1=PM(I5,M6); {Cr-(Er*Xr+Ei*Xi), get Ci}
PM(I4,M5)=AR, MR=MX1*MY0(SS); {Store new Cr, Ei*Xr}
MR=MR-MX0*MY1(RND), MY0=DM(I0,M0); {Er*Xi, get Xr}
AR=AY1-MR1,MY1=DM(I1,M0); {Ci-(Ei*Xr-Er*Xi), get Xi}

adaptc: PM(I5,M5)=AR, MR=MX0*MY0(SS); {Store new Ci, Er*Xr}
MODIFY (I0,M1); {point back to start}
MODIFY (I1,M1); {of complex delay line}
RTS;

Listing 2.14  LMS RoutineListing 2.14  LMS RoutineListing 2.14  LMS RoutineListing 2.14  LMS RoutineListing 2.14  LMS Routine
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2.5.62.5.62.5.62.5.62.5.6 Program StructureProgram StructureProgram StructureProgram StructureProgram Structure
The flowchart shown in Figure 2.32 depicts the sequence of operations of
an equalizer program. Each program section is discussed below.

Input 2 New Samples 

Estimate Reference
Symbol Based On

Min. Euclidean Distance  

Update Tap Using LMS

Output Decided Symbol

To Input  New 
   Samples

Initialize
Variables

Training
Required

?

N Y

2 input samples for
every output in this
fractionally-spaced
equalizer

Sr = Received sample

So = Output sample

Equalize and
Compute Output, So

Read Reference Sr From
Training Sequence

Estimate Error
So Sr–

Figure 2.32  Adaptive Equalizer FlowchartFigure 2.32  Adaptive Equalizer FlowchartFigure 2.32  Adaptive Equalizer FlowchartFigure 2.32  Adaptive Equalizer FlowchartFigure 2.32  Adaptive Equalizer Flowchart
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2.5.6.12.5.6.12.5.6.12.5.6.12.5.6.1 Input New SampleInput New SampleInput New SampleInput New SampleInput New Sample
The equalizer program is interrupt-driven. The arrival of a new complex
sample causes the equalizer to start executing. The sample_in port in
Listing 2.15 holds the new sample (real, then imaginary). Index registers I0
and I1 point to the complex delay line.

The V.32 modem recommendation specifies a fractionally spaced
equalizer. The delay line therefore consists of delays that are spaced at
one-half the symbol rate. This means that the output (at 2400 symbols/s)
is only computed for every two input samples (at 4800 symbols/s). The
variable decimator_flag is used to decide whether to get another sample or
to start computing the output.

{ input_new_sample routine

This part will read a new sample from the port ‘sample_in’ and
place it on the delay line. This new complex sample will
overwrite the oldest value on the delay line (complex also).
}

start: AR=DM(sample_in); {read in real & imag. values}
DM(I0,M0)=AR; {of new sample and store

them}
AR=DM(sample_in); {in delay line}
DM(I1,M0)=AR;
AR=DM(decimator_flag); {check flag to see if filtering}

{is required this time through.}
AR=NOT AR; {Then toggle the flag}
DM(decimator_flag)=AR; {to ensure that we filter}

{every other sample}
IF EQ RTS; {as required in an FSE}

Listing 2.15  Input RoutineListing 2.15  Input RoutineListing 2.15  Input RoutineListing 2.15  Input RoutineListing 2.15  Input Routine

2.5.6.22.5.6.22.5.6.22.5.6.22.5.6.2 Filtering (Equalizing)Filtering (Equalizing)Filtering (Equalizing)Filtering (Equalizing)Filtering (Equalizing)
The actual filtering is performed in the subroutine in Listing 2.16. The
calling parameters for the filter are initialized, and after the subroutine is
called the return values are stored in data memory.
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{ do the fir filtering (equalization)

Performs the actual fir filtering. Takes the input sample
from the receiver front end & produces an output value
(fir_out_real & fir_out_imag)
}

AX0=no_of_taps-1;
CNTR=no_of_taps-1;
CALL fir;
DM(fir_out_real)=SR1; {save return values of}

{subroutine in}
DM(fir_out_imag)=MR1; {their designated var names:}

{fir_out_real & fir_out_imag}

Listing 2.16  Filter RoutineListing 2.16  Filter RoutineListing 2.16  Filter RoutineListing 2.16  Filter RoutineListing 2.16  Filter Routine

2.5.6.32.5.6.32.5.6.32.5.6.32.5.6.3 Training SequenceTraining SequenceTraining SequenceTraining SequenceTraining Sequence
Initially the tap weights of the equalizer are at some arbitrary state
(possibly zero) that is typically far from the optimum state. The receiver
decisions based on the output of the equalizer are therefore incorrect with
a high probability. Decision-directed adaptation is not guaranteed to work
because of the initial high error rate. The equalizer might be unable to
move into the error-free region and the adaptation would diverge or stop
(MSE neither increasing nor decreasing significantly).

To train the equalizer through this blind stage, a data sequence that is
known at the receiver is used for initial transmission. If the locally
generated reference is properly synchronized to the received signal, this
training brings the equalizer to its optimum state. After training, slow
channel variations are tracked using decision-directed adaptation.

The stored training sequence at the receiver is read at the training_list port
(real, then imaginary) in Listing 2.17. The received signal is read in from
the filter outputs fir_out_real and fir_out_imag. A complex error value
which is equal to the Euclidean distance between the two samples is
generated. The estimation error is stored in data memory (error_real and
error_imag).
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{ estimate the transmitted symbol ( training )

Given fir_out_real & fir_out_imag, we compute the error value
(real and complex) using the training sequence as a reference.
This estimate for error is used only initially to train the
equalizer. Following the training, decision directed adaptation
would take over.
}

AX0=DM(fir_out_real); {inputs are fed in directly}
AX1=DM(fir_out_imag); {from output of fir}
AY0=DM(training_list);
AY1=DM(training_list);
CALL est_error_train;

{———————————————————————————————}
{
Est_error_train subroutine: Returns the equalizer output minus
the
ideal value available from the training sequence.

AX0=fir_out_real
AX1=fir_out_imag
AY0=ideal_symbol_real
AY1=ideal_symbol_imag

Returns:
error_real
error_imag

}

est_error_train: AR=AX0-AY0;
DM(error_real)=AR;
AR=AX1-AY1;
DM(error_imag)=AR;
RTS;

Listing 2.17  Training Sequence RoutineListing 2.17  Training Sequence RoutineListing 2.17  Training Sequence RoutineListing 2.17  Training Sequence RoutineListing 2.17  Training Sequence Routine

2.5.6.42.5.6.42.5.6.42.5.6.42.5.6.4 Decision-Directed AdaptationDecision-Directed AdaptationDecision-Directed AdaptationDecision-Directed AdaptationDecision-Directed Adaptation
Once the equalizer is trained, decision-directed adaptation is possible. In
this mode, symbols estimated at the receiver are used as the reference
from which to measure the deviation error and subsequently adjust the
taps. With the equalizer trained, low decision-error rates make it possible
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to continue to adapt to small changes in channel conditions.

In Listing 2.18, the estimated symbol is chosen as the symbol
geometrically closest to the received coordinates. A 15-instruction loop
(worst case) computes the distance to each of the 32 symbols in the symbol
table and determines the nearest one. The routine returns a pointer to the

estimated symbol in the table as well as the real and imaginary values of the error.
{              estimate the transmitted symbol    ( no training )

Given fir_out_real & fir_out_imag, we compute the error value (real and
complex) using a Euclidean distance routine (decision directed adaptation).
In this mode the estimated symbol is the geometrically closest to the
received coordinates.  This routine also returns the complex error value.
}
        AX0=DM(fir_out_real);   {these inputs are fed in directly}
        AX1=DM(fir_out_imag);   {from the output of the fir}
        CALL est_error_eucl;
{————————————————————————————————}
{Estimate_error_euclidean Symbol Subroutine
(normal mode, i.e. no training):

Maps input sample onto an ideal symbol in the constellation table This
routine also returns the value of the error measured as the Euclidean
distance between received signal and its ideal value.

Calling Parameters
AX0 contains Xr
AX1 contains Xi
M0=1
M1=-1

Return Values
SI=decision index j
(position with respect to end of table)
AF=minimum distance (squared)
I2—>Beginning of constellation table

Altered Registers
AY0,AY1,AF,AR,MX0,MY0,MY1,MR,SI
AR_SAT mode enabled

Computation Time
15*N+5 (maximum)

}
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Listing 2.18  Decision-Directed Adaptation RoutineListing 2.18  Decision-Directed Adaptation RoutineListing 2.18  Decision-Directed Adaptation RoutineListing 2.18  Decision-Directed Adaptation RoutineListing 2.18  Decision-Directed Adaptation Routine

2.5.6.52.5.6.52.5.6.52.5.6.52.5.6.5 Tap Update (LMS Algorithm)Tap Update (LMS Algorithm)Tap Update (LMS Algorithm)Tap Update (LMS Algorithm)Tap Update (LMS Algorithm)
Once an estimate error is computed, it is possible to adapt the equalizer
coefficients to a new set of values closer to the optimum vector. The LMS
routine in Listing 2.19 performs the computation. The estimation error is
first scaled down by the adaptation step size (β). This constant provides a
mechanism to trade off convergence speed against the amount of jitter in
the steady state value of the tap vector.

est_error_eucl: I2=^constellation_table;
L2=3; {number of symbols in}

{constellation table}
AY0=32767; {Initialize minimum distance to}

{largest possible value}
ENA AR_SAT; {put ALU in saturation mode to}

{prevent overflow}
AF=PASS AY0, AY0=DM(I2,M0); {Get Cr}
CNTR=32;
DO ptloop UNTIL CE;

AR=AX0-AY0, AY1=DM(I2,M0); {Xr-Cr, Get Ci}
MY0=AR, AR=AX1-AY1; {Copy Xr-Cr, Xi-Ci}
MY1=AR; {Copy Xi-Ci}
MR=AR*MY1(SS), MX0=MY0; {(Xi-Ci)^2,}

{Copy Xr-Cr}
MR=MR+MX0*MY0(SS); {(Xr-Cr)^2}
IF MV SAT MR; {clip result to max value}
AR=MR1-AF; {Compare with previous minimum}
IF GE JUMP ptloop;
AF=PASS MR1; {New minimum if MR1<AF}
AR=AX0-AY0; {error is euclidean distance}
DM(error_real)=AR; {between actual received}
AR=AX1-AY1; {signal and ideal symbol}
DM(error_imag)=AR; {coordinates}
SI=CNTR; {Record constellation index}

ptloop: AY0=DM(I2,M0);
MODIFY(I2,M1); {Point to beginning of table}
RTS;
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{ update the taps

Takes the estimation error values previously computed multiply
them by the step size (beta). The upd_taps routine is then called
to update coefficients of the equalizer.

}

MY0=DM(error_real); {MX0=beta x error_real}
MX0=beta;
MR=MX0*MY0(SS);
MX0=MR1;

MY1=DM(error_imag);
MX1=beta; {MX1=beta x error_imag}
MR=MX1*MY1(SS);
MX1=MR1;
CNTR=No_of_taps;
CALL upd_taps;

Listing 2.19  Tap Update RoutineListing 2.19  Tap Update RoutineListing 2.19  Tap Update RoutineListing 2.19  Tap Update RoutineListing 2.19  Tap Update Routine

2.5.6.62.5.6.62.5.6.62.5.6.62.5.6.6 OutputOutputOutputOutputOutput
These equalizer routines can be integrated into other modules to form the
receiver block of a V.32 modem. As specified in the V.32 recommendation,
the equalized sample is decoded using the Viterbi algorithm. The
equalizer output (real and the imaginary) is therefore written to an I/O
port sample_out.

{ output the resulting sample of the equalizer}

AR=DM(fir_out_real); {output the equalizer output}
DM(sample_out)=AR; {to the outport port}
AR=DM(fir_out_imag);
DM(sample_out)=AR;
RTS; {return from equalizer routine and}

{wait for a new sample interrupt}

Listing 2.20  Output RoutineListing 2.20  Output RoutineListing 2.20  Output RoutineListing 2.20  Output RoutineListing 2.20  Output Routine
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2.5.72.5.72.5.72.5.72.5.7 Practical ConsiderationsPractical ConsiderationsPractical ConsiderationsPractical ConsiderationsPractical Considerations
This section describes considerations for using and modifying the routines
in this chapter.

2.5.7.12.5.7.12.5.7.12.5.7.12.5.7.1 Viterbi DecoderViterbi DecoderViterbi DecoderViterbi DecoderViterbi Decoder
In the implementation of decision-directed adaptation, the received
sample is matched to the nearest symbol and the error is used to adjust the
taps. A few wrong decisions could cause the equalizer to wander off
temporarily, but because right decisions have a proportionately larger
effect, convergence is ensured.

If a sophisticated algorithm such as Viterbi decoding is used to improve
the decision, the signal sample and error are not available until several
symbol intervals after the input time. This Viterbi delay requires a
modified LMS updating routing with delayed coefficient adaptation
(DLMS). It can be shown that the DLMS adaptation has the same steady
state behavior as the LMS adaptation, provided the adaptation constant is
within a certain range (Long et al, 1989).

2.5.7.22.5.7.22.5.7.22.5.7.22.5.7.2 Pseudo-Random Training SequencePseudo-Random Training SequencePseudo-Random Training SequencePseudo-Random Training SequencePseudo-Random Training Sequence
The routines in this chapter have been validated with a pseudo-random
training sequence. This training sequence consists of a set of symbol
values with a repetition period that is much longer than the convergence
time of the equalizer. The benefit of using such a sequence is that the
approximation of the gradient vector ∂E/∂Ck is less noisy. Noisy estimates
of the gradient vector can cause the tap coefficients to wander a long way
from the path of the steepest descent (Bingham, 1988).

2.5.7.32.5.7.32.5.7.32.5.7.32.5.7.3 Delay Line LengthDelay Line LengthDelay Line LengthDelay Line LengthDelay Line Length
If the exact source of the channel’s distortion is known and the impulse
response can be modeled precisely, it is possible to calculate the minimum
order of the equalizer transfer function needed to reduce the MSE to an
acceptable level. In general, the only practical method of deciding the
length of the delay line is to derive a theoretical length based on several
worst-case channel characteristics. The equalizer is then designed slightly
longer than the theoretical minimum to compensate for the cumulative
effects of finite precision arithmetic in the ADSP-2100 family processor.
For a discussion of quantization effects in the LMS algorithm, see Bershad,
1989.
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2.62.62.62.62.6 CONTINUOUS PHASE FREQUENCY-SHIFT KEYED MODULATIONCONTINUOUS PHASE FREQUENCY-SHIFT KEYED MODULATIONCONTINUOUS PHASE FREQUENCY-SHIFT KEYED MODULATIONCONTINUOUS PHASE FREQUENCY-SHIFT KEYED MODULATIONCONTINUOUS PHASE FREQUENCY-SHIFT KEYED MODULATION
Constant phase modulation (CPM) techniques find applications in satellite
communications. Because of power amplifier considerations, satellite
communications require a modulation technique with a constant or nearly
constant envelope versus time (no amplitude modulation). Technological
and regulatory limitations also require low error probability for a given
signal-to-noise ratio and high bits per second of transmitted information
for a given bandwidth. The technique of multi-h CPM, which combines
encoding and modulation, achieves all of these goals.

This chapter describes an implementation of continuous phase frequency-
shift keying (CPFSK), a sub-class of multi-h CPM, on the ADSP-2100
family of processors. Only modulation is described here; demodulation is
usually performed with the Viterbi algorithm.

Fast frequency-shift keying (FFSK) is a special case of CPFSK with h=1/2.

2.6.12.6.12.6.12.6.12.6.1 CPFSK MethodologyCPFSK MethodologyCPFSK MethodologyCPFSK MethodologyCPFSK Methodology
The general form for a multi-h CPM signal is:

s(t; α) = √(2Es/Ts) cos [2πf0t + ϕ(t; α) + ϕ0]

Es = symbol energy
Ts = symbol duration
f0 = carrier frequency (Hz)
ϕ0 = carrier phase (arbitrary)
ϕ(t; α) = information-carrying phase function, expressed as:

t ∞
2π ∫ ∑ hiai g(τ – iTs) dτ –∞ < t < ∞

–∞ i=–∞
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where:

α = (. . ., a–2, a–1, a0, a1, a2, . . .), representing the data sequence
hi = set of K modulation indices cycled through periodically,

i.e., hi+K = hi
g(t) = frequency pulse-shape function

For CPFSK, all hi are equal and the pulse-shape function is:

g(t) = Ts/2 for 0 ≤ t ≤ Ts, otherwise 0

2.6.22.6.22.6.22.6.22.6.2 ADSP-2100 ADSP-2100 ADSP-2100 ADSP-2100 ADSP-2100 Family ImplementationFamily ImplementationFamily ImplementationFamily ImplementationFamily Implementation
Figure 2.33 shows a flowchart of the CPFSK program implemented on the
ADSP-2100 family of processors. This particular implementation uses the
ADSP-2101 to take advantage of its on-chip serial ports and timer. The
timer generates a clock at the symbol rate (2400 baud) for reading input
data. The ADSP-2101 outputs CPFSK modulated data to a digital-to-
analog converter (DAC) at the rate of 8 kHz.

The CPFSK program is shown in Listing 2.21. This program sets up a
buffer of dummy data for demonstrations; in actual use, the data would
come from an input device and could be read from the FI (Flag In) input
of the ADSP-2101.

The CPFSK routine calls two external routines not shown here. The
cntlreg_inits routine initializes the ADSP-2101’s control registers. The
boot_sin routine computes the sine of the input in AX0, returning the
output in AR.

After setup (initializing variables, etc.) the processor waits for one of two
interrupts. The SPORT0 interrupt causes the processor to calculate the
next output sample by adding the current phase increment to the phase
accumulator and computing the sine of the result. The output samples are
transmitted from SPORT0 and are also sent to a DAC for display (for
demonstration).

The timer interrupt causes the processor to select a new phase increment
based on the value of the input data. Because the data is binary (1 or 0) it
could be input through the flag input (FI) pin instead of data memory as
shown. The code would have to be modified to use the state of the input
flag as a condition for selecting the phase increment.
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INITIALIZE

SPORT
INTERRUPT
(at sampling rate, 8 kHz)

TIMER
INTERRUPT
(at symbol rate, 2400 baud)

ϕ = ϕ + ∆ϕ

output = sin ϕ

check input data value

∆ϕ = ∆ϕ ∆ϕ = ∆ϕ
a b

1 0

IDLE--WAIT FOR 
INTERRUPT

∆ϕ
∆ϕ
∆ϕ

a

b

ϕ = current phase value (stored in "phase accumulator")

= current phase increment

= phase increment for tone a

= phase increment for tone b

Figure 2.33  CPFSK Flow DiagramFigure 2.33  CPFSK Flow DiagramFigure 2.33  CPFSK Flow DiagramFigure 2.33  CPFSK Flow DiagramFigure 2.33  CPFSK Flow Diagram
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.MODULE/BOOT=0/ABS=0 cpfsk_modulator;

{ CPFSK - Continuous Phase Frequency Shift Keying modulator

input: data stream stored in DM circ buffer (for demo)
in actual use, data could be state of FLAG_IN pin

output: dac0 - CPFSK output waveform
dac1 - input data stream (echoed for demo display)
spkr - CPFSK “sound”

}

.EXTERNAL boot_sin;

.EXTERNAL cntlreg_inits;

.PORT write_dac0;

.PORT write_dac1;

.PORT load_dac;

.CONST lo_tone=220;{Hertz}

.CONST hi_tone=880;{Hertz}

.CONST logic_one=H#7F00;

.CONST logic_zero=0;

.VAR/CIRC demo_input_data[7];

.VAR hertz0, phase_incr_0;

.VAR hertz1, phase_incr_1;

.VAR phase_accumulator, phase_increment;

{———————————————————————————————}
JUMP start; RTI; RTI; RTI; {Reset Vector}
RTI; RTI; RTI; RTI; {irq2}
RTI; RTI; RTI; RTI; {sport0 TX}
JUMP sample; RTI; RTI; RTI; {sport0 RX} {at 8 kHz rate}
RTI; RTI; RTI; RTI; {irq0}
RTI; RTI; RTI; RTI; {irq1}
CALL symbol; RTI; RTI; RTI; {timer} {at 2400 baud}

{———————————————————————————————}
start: CALL cntlreg_inits; {set up SPORTS, TIMER, etc}

M7=1; L7=0; {used by bootsin routine}

{———————————————————————————————}
baud_clock: L0=0;

M0=1;
I0=H#3FFB; {point to DM-mapped TIMER ctrl regs}

{2400 baud=5120 cycles @ 12.288 MHz}
{H#3FFB} DM(I0,M0)=0; {TIMER - TSCALE}
{H#3FFC} DM(I0,M0)=5119; {TIMER - TPERIOD}
{H#3FFD} DM(I0,M0)=5119; {TIMER - TCOUNT}

(listing continues on next page)
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{———————————————————————————————}
make_demo_data: SI=lo_tone; DM(hertz0)=SI;

SI=hi_tone; DM(hertz1)=SI;
SI=logic_one; DM(demo_input_data)=SI;
SI=logic_zero; DM(demo_input_data+1)=SI;

DM(demo_input_data+2)=SI;
DM(demo_input_data+3)=SI;
DM(demo_input_data+4)=SI;
DM(demo_input_data+5)=SI;
DM(demo_input_data+6)=SI;

I0=^demo_input_data;
L0=%demo_input_data;

{——————————————————————————————}
{These segments convert “Hertz” to 8 kHz Phase_Increment}

load_tone1: SI=DM(hertz1);
SR=ASHIFT SI BY 3(HI);
MY0=H#4189; {mult Hz by .512*2}
MR=SR1*MY0(RND); {i.e. mult by 1.024}
SR=ASHIFT MR1 BY 1(HI);
DM(phase_incr_1)=SR1;

load_tone0: SI=DM(hertz0);
SR=ASHIFT SI BY 3(HI);
MY0=H#4189; {mult Hz by .512*2}
MR=SR1*MY0(RND); {i.e. mult by 1.024}
SR=ASHIFT MR1 BY 1(HI);
DM(phase_incr_0)=SR1;

{———————————————————————————————}
SI=0;
DM(phase_accumulator)=SI; {clear phase accumulator on startup}
CALL symbol; {start with first symbol}
ICNTL=B#01111;
IMASK=B#001001; {enable SPORT0_RX, TIMER now}
ENA TIMER; {start baud_clock now}

{———————————————————————————————}
here: JUMP here; {wait for symbol and sample interrupts}
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{=============================================================}
{========== P R O C E S S   A   N E W   S A M P L E ==========}
{=============================================================}
sample: AX0=DM(phase_accumulator);

AY0=DM(phase_increment);
AR=AX0+AY0;
DM(phase_accumulator)=AR;
AX0=AR;
CALL boot_sin;

sound: DM(write_dac0)=AR; {“display” CPFSK on oscilloscope}
DM(load_dac)=AR;
SR=ASHIFT AR BY -2(HI);
TX0=SR1; {“hear” CPFSK from speaker (PCM out)}
RTI;

{=============================================================}
{========== P R O C E S S   A   N E W   S Y M B O L ==========}
{=============================================================}
symbol: AX1=DM(I0,M0); {get input data (could be FLAG_IN)}

DM(write_dac1)=AX1; {echo input data stream for demo}
DM(load_dac)=AR;
AF=PASS AX1;
IF EQ JUMP zero;

one: SI=DM(phase_incr_1); DM(phase_increment)=SI; RTS;
zero: SI=DM(phase_incr_0); DM(phase_increment)=SI; RTS;

.ENDMOD;

Listing 2.21  CPFSK Program (ADSP-2101)Listing 2.21  CPFSK Program (ADSP-2101)Listing 2.21  CPFSK Program (ADSP-2101)Listing 2.21  CPFSK Program (ADSP-2101)Listing 2.21  CPFSK Program (ADSP-2101)
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2.72.72.72.72.7 V.27 V.27 V.27 V.27 V.27 terterterterter & V.29 MODEM TRANSMITTERS & V.29 MODEM TRANSMITTERS & V.29 MODEM TRANSMITTERS & V.29 MODEM TRANSMITTERS & V.29 MODEM TRANSMITTERS
V.27 ter and V.29 modem transmitters are often used in facsimile
transmission systems. This section contains example programs for
implementing these transmitters. The subroutines for each transmitter are
listed at the end of each subsection.

These subroutines include a V.27 ter transmitter and a V.29 transmitter
with two V.29 fallback modes. The code includes the scrambler, the IQ
encoder, pulse-shaped filter and modulator.

The V.27 ter scrambler does not implement the extra functions required to
check for repeating patterns. Both transmitters use the same pulse-shaped
filter code and random number generator code. These listing are included
only in section 2.7.1.

The code is contained in two subdirectories, V.27 and V.29. Each directory
contains the code and ancillary files necessary for that demonstration. The
file MAINXX.DSP calls a random number generator that creates data to be
transmitted. The file BUILD.BAT assembles and links the files.

The demonstration code is configured for an ADSP-2101 EZ-LAB®
Evaluation Board. To observe the encoder constellation, attach an analog
oscilloscope in X-Y configuration to the DAC0 and DAC1 pins on the EZ-
Lab board. To observe the eye pattern, attach an oscilloscope probe (in
sweep mode) to the analog output pin of the codec. A synchronization
pulse is available on DAC2 of the EZ-LAB board. The V.29 demonstration
enters the fallback modes when the IRQ2 button is pressed.

2.7.12.7.12.7.12.7.12.7.1 V.27 V.27 V.27 V.27 V.27 terterterterter Transmitter Transmitter Transmitter Transmitter Transmitter
The CCITT Recommendation is a 4800 bits/s modem standard for data
transmission over the general switched telephone network. The
recommendation defines the following characteristics:

• Data rate of 4800 bits/s with 8-phase differentially encoded
modulation

• Fallback mode of 2400 bits/s with a 4-phase differentially encoded
modulation signal

• Provision for backward channel with a modulation rate of 75 bauds
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• An adaptive equalizer in the receiver

• The carrier frequency is 1800 Hz ± 1 Hz

CCITT also specifies a raised cosine filter on the transmitter and the
receiver, a data scrambler, the phase encoding and the turn on sequence.

Figure 2.34 is a block diagram of a modem transmitter. The data stream to
be transmitted is first scrambled to randomize the data. The data
scrambler has a generating polynomial of the form:

  1 + x−6 + x−7

with additional logic to guard against repeating patterns.

Figure 2.34  Modem Transmitter Block DiagramFigure 2.34  Modem Transmitter Block DiagramFigure 2.34  Modem Transmitter Block DiagramFigure 2.34  Modem Transmitter Block DiagramFigure 2.34  Modem Transmitter Block Diagram

The scrambled data stream is divided into groups of three bits (tribits) and
is encoded as a phase change relative to the phase of the preceding word
transmitted. The phase change for each tribit combination is shown in
Table 2.5.

Tribit Values Phase Change
0 0 1  0°
0 0 0 45°
0 1 0 90°
0 1 1 135°
1 1 1 180°
1 1 0 225°
1 0 0 270°
1 0 1 315°

Table 2.5  8-Point V.27 Table 2.5  8-Point V.27 Table 2.5  8-Point V.27 Table 2.5  8-Point V.27 Table 2.5  8-Point V.27 terterterterter Phase Changes Phase Changes Phase Changes Phase Changes Phase Changes

SERIAL DATA
STREAM

SIN WT

COS WT

DATA OUTPUT
TO D/A

CONVERTER

DATA
SCRAMBLER

IQ
GENERATOR

PSF

PSF



22222 ModemsModemsModemsModemsModems

128128128128128

The output of the encoder is then mapped to one point in an 8-point signal
space, or constellation. The signal space mapping produces two
coordinates, one for the real part and one for the imaginary part of a
quadrature amplitude modulator. Figure 2.35 shows the 8-point
constellation.

90°

45°

0°

315°

270°

225°

180°

135°

Figure 2.35  8-Point V.27 Figure 2.35  8-Point V.27 Figure 2.35  8-Point V.27 Figure 2.35  8-Point V.27 Figure 2.35  8-Point V.27 terterterterter Constellation Constellation Constellation Constellation Constellation

The output of the signal mapping is interpolated to a 9.6 kHz sample rate
and pulse-shaped filtered to assure zero inter-symbol interference. The
signal is then modulated onto an 1800 Hz carrier and then sent to the DAC
for transmission.

The 2400 bits per second fallback mode is similar to the 4800 bits per
second mode. The scrambled data stream is divided into groups of two
bits (dibits) before they are encoded into phase information. Table 2.6 and
Figure 2.36 show the phase change table and constellation of the 4-point
signal space used in the mode.

Dibit Values Phase Change
0 0  0°
0 1 90°
1 1 180°
1 0 270°

Table 2.6  4-Point V.27 Table 2.6  4-Point V.27 Table 2.6  4-Point V.27 Table 2.6  4-Point V.27 Table 2.6  4-Point V.27 terterterterter Phase Changes Phase Changes Phase Changes Phase Changes Phase Changes
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90°

0°

270°

180°

Figure 2.36  4-Point V.27 Figure 2.36  4-Point V.27 Figure 2.36  4-Point V.27 Figure 2.36  4-Point V.27 Figure 2.36  4-Point V.27 terterterterter Constellation Constellation Constellation Constellation Constellation

{Main routine for V.27 ter Modem                                             }
{Analog Devices                                                              }
{DSP Applications                                                            }
{                                                                            }
.module/ram/boot=0/abs=0 V27_MOD;
{————————————External Function Declaration———————————————————————————————————}
.external get1;
.external scramble;
.external iq;
.external psf;
.external rand;
{————————————Global Variable Declaration—————————————————————————————————————}

{For Baud/Sample Count                   }
.var/dm sample_count; {Number of samples until next            }

{baud. Default is ? between baud         }
{For Scrambler                           }

.var/dm seed_hi; {Seeds for random number generator       }

.var/dm seed_lo;

.var/dm tri_bit; {Next bit to transmit                    }

.var/dm bit_count; {Number of bits left in current word     }

.var/dm/ram/circ buffer[12]; {Delay Buffer                            }

.var/dm buf_ptr1; {Pointer to y(n-6) buffer value          }

.var/dm buf_ptr2; {Pointer to y(n-7) buffer value          }
{For IQ Generator                        }

.var/pm/ram delta_phi[8]; {Tribit phase change table               }

.var/dm/ram phi_value; {Current phi value                       }

.var/pm/ram I_table[8]; {Tables for IQ Output Values             }

.var/pm/ram Q_table[8];

(listing continues on next page)
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{For Pulse Shaped FIlters                }
.var/dm/ram/circ  i_delay_line[5]; {Data Delay line for I channel PSF       }
.var/dm/ram i_delay_ptr; {Oldest value in delay line              }
.var/pm/ram/circ  i_coef_line[17]; {Coefficients for I challen PSF          }
.init i_coef_line : <17.dat>;
.var/dm/ram i_coef_ptr; {Last Coeff read by PSF                  }
.var/dm/ram i_psf_output; {Last output value of PSF                }

{For DAC Outputs                         }
.var/dm/ram sync; {Sync value for DAC                      }
.var/dm/ram i_output; {Pulse shaped filter output value        }
.var/dm/ram i_value; {IQ section I output                     }
.var/dm/ram q_value; {IQ section Q output                     }

.init delta_phi: 0x200, 0x000, 0x400, 0x600,
0xC00, 0xE00, 0xA00, 0x800;

.init I_table: 0x7fff00, 0x5b0000, 0x000000, 0xa40000,
0x800000, 0xa40000, 0x000000, 0x5b0000;

.init Q_table: 0x000000, 0x5b0000, 0x7fff00, 0x5b0000,
0x000000, 0xa40000, 0x800000, 0xa40000;

.port write_dac0;

.port write_dac1;

.port write_dac2;

.port write_dac3;

.port load_dac;

.global delta_phi;

.global phi_value;

.global I_table;

.global Q_table;

.global buffer;

.global buf_ptr1;

.global buf_ptr2;

.global tri_bit;

.global bit_count;

.global i_delay_line;

.global i_delay_ptr;

.global i_coef_line;

.global i_coef_ptr;

.global i_psf_output;

.global sync;

.global i_output;

.global i_value;

.global q_value;

.global seed_hi;

.global seed_lo;
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{——————————————Interrupt Vectors———————————————————————————————————————}
RESETV: jump start; {Reset Vector }

rti; rti; rti;
IRQ2V: rti; rti; rti; rti; {IRQ2 Vector                             }
HIPWV: rti; rti; rti; rti; {Hip Write Interrupt Vector              }
HIPRV: rti; rti; rti; rti; {Hip Read Interrupt Vector               }
SPRT0T: rti; rti; rti; rti; {Sport0 Transmit Interrupt Vector        }
SPRT0R: jump next_output; {Sport0 Receive Interrupt Vector         }

rti; rti; rti;
IRQ1V: rti; rti; rti; rti; {IRQ1 Interrupt Vector                   }
IRQ0V: rti; rti; rti; rti; {IRQ0 Interrupt Vector                   }
TIMERV: rti; rti; rti; rti; {Timer Interrupt Vector                  }
{—————————————Main Code Starts Here————————————————————————————————————}
start: call V27_INIT; {Initialize ADSP-2101 Dags and Sports    }

imask = 0x08; {Enable Sports and Interrupts            }
ax0 = 0x101f;
dm(0x3fff) = ax0;

fevr: idle; {Wait for Interrupt                      }
jump fevr;

{——————————————MAIN ROUTINE————————————————————————————————————————————}
next_output:

{This interrupt routine is executed every output sample rate  }
{One output sample is calculated and a new baud is calulated  }
{if interrupt occurs at baud rate                             }

{Output values to the DAC                }
ax0 = dm(i_value);
dm(write_dac0) = ax0;
ax0 = dm(q_value);
dm(write_dac1) = ax0;
ax0 = dm(sync);
dm(write_dac2) = ax0;
si = dm(i_output);
sr = ashift si by -2 (lo);
dm(write_dac3) = sr0;
dm(load_dac) = sr0;
tx0 = sr0;

{Check if new baud should be calculated                       }
ax0 = dm(sample_count);
ay0 = 1;
my1 = 0x7fff; {Set sync value for new sample           }
dm(sync) = my1;
ar = ax0 - ay0;
dm(sample_count) = ar;
if gt jump next_sample;

(listing continues on next page)
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next_baud:
i4 = ^i_coef_line; {Reset Coefficient Pointer               }
dm(i_coef_ptr) = i4;
ax0 = 4; {Reset sample counter                    }
dm(sample_count) = ax0;
si = 0; {Zero SI Register }
cntr = 3;
do scram_bit until ce;

call get1; {Get next 3 data bits to be transmitted  }
call scramble;

scram_bit:
my1 = 0x8000; {Set sync value for new baud             }
dm(sync) = my1;
call IQ; {Calculate delta phi,phase sum,I and Q   }
jump next_sample;

{Generate Next output sample to DAC }
next_sample:

call psf; {Low Pass Filter I and Q components      }
done: rti;

{———————————Initialization for V.27————————————————————————————————————}
V27_INIT:

{———————SPORT INIT—————————————————————————————}
ax0 = 0x02; {SCLKDIV = 2.048 MHz                           }

dm(0x3ff5) = ax0;
ax0 = 213; {RFSDIV = 213 for 9600                         }
dm(0x3ff4) = ax0;
ax0 = 0x6b27; {Internal SCLK, Frame Syncs                    }
dm(0x3ff6) = ax0;

{———————Wait States————————————————————————————}
ax0 = 0xffff;
dm(0x3ffe) = ax0;

{————————Data Buffer Inits—————————————————————}
I0 = ^buffer;
m0 = 1;
L0 = %buffer;
cntr = %buffer;
ax0 = 0;
do zloop until ce;

 zloop: dm(i0,m0) = ax0;

{—————Variable Initializations—————————————————}
ax0 = 0;
dm(tri_bit) = ax0;
dm(bit_count) = ax0;
dm(phi_value) = ax0;
dm(sample_count) = ax0;
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ax0 = ^buffer+5;
dm(buf_ptr1) = ax0;
ax0 = ^buffer+6;
dm(buf_ptr2) = ax0;
ax0 = 0xa5a5;
dm(seed_hi) = ax0;
ax0 = 0x1234;
dm(seed_lo) = ax0;

{——————Pulse Shaped Filter Inits———————————————}
i0 = ^i_coef_line;
dm(i_coef_ptr) = i0;
i0 = ^i_delay_line;
dm(i_delay_ptr) = i0;
l0 = %i_delay_line;
m0 = 1;
ax0 = 0;
cntr = %i_delay_line;
do dloop until ce;

dloop:
dm(i0,m0) = ax0;
ax0 = 0x7fff;
dm(sync) = ax0;

{————————DAG INIT——————————————————————————————}
m0 = 0; {Init M0,M1,M5,M5                              }
m1 = 1;
m4 = 0;
m5 = 1;
l0 = 0; {Set All L registers to zero                   }
l1 = 0;
l2 = 0;
l3 = 0;
l4 = 0;
l5 = 0;
l6 = 0;
l7 = 0;
rts;

{———————————————END INITIALIZATION—————————————————————————————————————}

.endmod;

Listing 2.22  Main V.27 Listing 2.22  Main V.27 Listing 2.22  Main V.27 Listing 2.22  Main V.27 Listing 2.22  Main V.27 terterterterter Routine (MAIN27.DSP) Routine (MAIN27.DSP) Routine (MAIN27.DSP) Routine (MAIN27.DSP) Routine (MAIN27.DSP)
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{GET2 routine for v.27 Modem                                            }
{Analog Devices                                                         }
{DSP Applications                                                       }
{                                                                       }
.module/ram/boot=0 get1mod;
{Get 1 data bit to be transmitted                                       }
{                                                                       }
{ INPUTS:                                                              }
{ dm(data_word) 16 bit words for transmission                   }
{ dm(bit_count) number of bits left in word                     }
{ m0 = 0                                                         }
{ m1 = 1                                                         }
{ m4 = 0                                                         }
{ m5 = 1                                                         }
{                                                                       }
{ OUTPUTS:                                                             }
{ dm(tri_bit): bit to transmit                                 }
{                                                                       }
{ USAGE:                                                               }
{ AX0, AY0, AR, SI, SR                                           }
{                                                                       }
{Global Variable Declaration                                            }
.external tri_bit;   {bit to transmit                               }
.external bit_count; {number of bits left in word                   }

{Local Variable Declaration                                             }
.var/dm/ram data_word; {Data word to be transmitted        }
.external rand;
{————————————————Code Start—————————————————————————————————————————————}
.entry GET1;
GET1:

ay0 = dm(bit_count); {If bit_count is zero               }
ar = pass ay0; {load new word                      }
if ne jump dec_count;
call rand; {Load new data word here            }
dm(data_word) = ay0;
ay0 = 16;

dec_count:
ar = ay0 -1; {Decrement counter                  }
dm(bit_count) = ar;

get_bit:
sr0 = dm(data_word); {Get next bit                       }
ay0 = 0x01;
ar = sr0 and ay0;
dm(tri_bit) = ar;
sr = lshift sr0 by -1 (lo);
dm(data_word) = sr0; {Write data_word for next time      }
rts;

.endmod;

Listing 2.23  Data Acquisition Routine (GET27.DSP)Listing 2.23  Data Acquisition Routine (GET27.DSP)Listing 2.23  Data Acquisition Routine (GET27.DSP)Listing 2.23  Data Acquisition Routine (GET27.DSP)Listing 2.23  Data Acquisition Routine (GET27.DSP)
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{DSP Applications                                                            }
{                                                                            }
{ 2/20/91       Start Date                                                   }
{This module performs v.27 ter scrambling on one input bit                   }
{                                                                            }
{The scrambler generating polynomial is xin + y(n-6) + y(n-7)                }
{V.27 ter specifies additional checking for certain pattarns.                }
{This has not been implemented.                                              }
{                                                                            }
{ INPUTS:                                                                   }
{ dm(tri_bit) = bit to be scrambled                                   }
{ si = partial tri bit                                                }
{                                                                            }
{ OUTPUTS:                                                                  }
{ si = scrambled output bit                                           }
{      si is left shifted by 1 and the new bit is put in b0           }
{                                                                            }
{ USAGE:                                                                    }
{ I0 = ^buffer                                                        }
{ I1 = Y(n-6)                                                         }
{ I2 = y(n-7)                                                         }
{                                                                            }
.module/ram/boot=0  SCRAMBLE_MOD;
{Local variable Declarations                                                 }
.external buffer; {Delay Buffer                      }
.external buf_ptr1; {Pointer to y(n-6) buffer value    }
.external buf_ptr2; {Pointer to y(n-7) buffer value    }
.external tri_bit;
.entry SCRAMBLE;
SCRAMBLE:

i1 = dm(buf_ptr1); {Get Pointer values                      }
i2 = dm(buf_ptr2);
m3 = -1;
L1 = %buffer; {Set circular buffer registers           }
L2 = %buffer;

ax0 = dm(tri_bit); {Get next bit to scramble                }
ay0 = dm(i1,m3); {y(n-6)                                  }
ar = ax0 xor ay0, ay0=dm(i2,m0); {y(n-7)                                  }
ar = ar xor ay0; { = y(n)                                 }
dm(i2,m3) = ax0; {Store Oldest Value                      }

sr = lshift si by 1 (lo); {Store output in sr0                     }
sr = sr or lshift ar by 0 (lo);
si = sr0;

dm(buf_ptr1) = i1; {Save buffer pointers                    }
dm(buf_ptr2) = i2;
L1 = 0; {Clear L registers                       }
L2 = 0;
rts;

.endmod;

Listing 2.24  Data Scrambler Routine (SCRAM27.DSP)Listing 2.24  Data Scrambler Routine (SCRAM27.DSP)Listing 2.24  Data Scrambler Routine (SCRAM27.DSP)Listing 2.24  Data Scrambler Routine (SCRAM27.DSP)Listing 2.24  Data Scrambler Routine (SCRAM27.DSP)
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{Analog Devices                                                        }
{DSP Applications                                                      }
{ 2/20/91      Start Date                                              }
.module/ram/boot=0 PHI_MOD;
{Calculate delta phi, phase sum, I and Q{Analog Devices                }
{                                                                      }
{ INPUTS:                                                             }
{ SI = TriBit Value                                          }
{ dm[PHI] = current Phi Value                                }
{                                                                      }
{ OUTPUTS:                                                            }
{ MX0 = I Value                                              }
{ MX1 = Q Value                                              }
{                                                                      }
{ USAGE:                                                              }
{ I3, M3, AR, AX0, AY0                                       }
{                                                                      }
.external Q_table;
.external I_table;
.external delta_phi;
.external phi_value;
.external i_coef_line;
.external i_coef_ptr;
.external i_delay_line;
.external i_delay_ptr;
.external i_value;
.external q_value;
.entry IQ;
IQ:
{Look up Delta_phi value and add to phi for new phase                  }

I7 = ^delta_phi;
m7 = si;
modify(i7, m7);
ax0 = dm(phi_value);
ay0 = pm(i7,m4);
ar = ax0 + ay0;
ay1 = 0x0f;
ar = ar and ay1;
dm(phi_value) = ar;

{Look up I and Q components                                            }
{To find I/Q values, use phi/2 as offset into table                    }

sr = lshift ar by -1 (lo);
I6 = ^I_table;
I7 = ^Q_table;
m7 = sr0;
modify(I6,M7);
modify(I7,M7);
mx0 = pm(i6,m4);
mx1 = pm(i7,m4);
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{Write new values for DAC                                      }
dm(i_value) = mx0;
dm(q_value) = mx1;

{Write new I value to PSF Delay Line                           }
I6 = dm(i_delay_ptr);
L6 = %i_delay_line;
M6 = -1;
dm(i6,m6) = mx0;
dm(i_delay_ptr) = i6;
L6 = 0;
rts;

.endmod;

Listing 2.25  IQ Generator Routine (IQ27.DSP)Listing 2.25  IQ Generator Routine (IQ27.DSP)Listing 2.25  IQ Generator Routine (IQ27.DSP)Listing 2.25  IQ Generator Routine (IQ27.DSP)Listing 2.25  IQ Generator Routine (IQ27.DSP)
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{Low Pass Filter I component only                                      }
{Analog Devices                                                        }
{DSP Applications                                                      }
{                                                                      }
{ INPUTS:                                                       }
{ MX0 = I Value                                              }
{                                                                      }
{ OUTPUTS:                                                      }
{ dm(I_LPF) = I filter output                                }
{                                                                      }
{ USAGE:                                                        }
{ MX0, MX1, MY0, MR, I3, I7, L3, L7                          }
{                                                                      }
.module/boot=0/ram PSF_MOD;
.external i_delay_line;
.external i_delay_ptr;
.external i_coef_line;
.external i_coef_ptr;
.external i_output;
.entry PSF;
PSF:

{Initialize DAGs                   }
L0 = %i_delay_line;
L4 = %i_coef_line;
I0 = dm(i_delay_ptr);
I4 = dm(i_coef_ptr);
modify(i0,m1); {Point to newest data value        }
m6 = 4; {Interpolate by factor of 4        }

{I filter                          }
mr = 0, mx0 = dm(i0,m1); {load first data word              }
my0 = pm(i4,m6); {load first coefficient            }
cntr = 3;
do i_loop until ce;

i_loop:
mr = mr+mx0*my0(SS), mx0 = dm(i0,m1), my0 = pm(i4,m6);
mr = mr+mx0*my0(RND);
if mv sat mr;
dm(I_output) = mr1;
I4 = dm(i_coef_ptr); {Point to next set of coefficients }
modify(i4,m5);
dm(i_coef_ptr) = I4;
L0 = 0;
L4 = 0;
rts;

.endmod;

Listing 2.26  Pulse Shape Filter Routine (PSF.DSP)Listing 2.26  Pulse Shape Filter Routine (PSF.DSP)Listing 2.26  Pulse Shape Filter Routine (PSF.DSP)Listing 2.26  Pulse Shape Filter Routine (PSF.DSP)Listing 2.26  Pulse Shape Filter Routine (PSF.DSP)
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.MODULE/ram/boot=0 rand_sub;
{

Linear Congruence Uniform Random Number Generator

INPUTS:
dm(Seed_hi) = MSW of seed value
dm(Seed_lo) = LSW of seed value

OUTPUTS:
ay0 = random number;
dm(Seed_hi) = MSW of updated seed value
dm(Seed_lo) = LSW of updated seed value

}

.external seed_hi;

.external seed_lo;

.ENTRY rand;
rand: MY1=25; {Upper half of a}

MY0=26125; {Lower half of a}
sr1 = dm(seed_hi);
sr0 = dm(seed_lo);
mr=sr0*my1(uu); {A(HI)*X(LO)}
mr=mr+sr1*my0(uu); {A(HI)*X(LO) + A(LO)*X(HI)}
mr2=mr1;
mr1=mr0;
{mr2=si;}
mr0=h#fffe; {C=32767, LEFT-SHIFTED BY 1}
mr=mr+sr0*my0(uu); {(ABOVE) + A(LO)*X(LO) + C}
sr=ashift mr2 by 15 (hi);
sr=sr or lshift mr1 by -1 (hi); {RIGHT-SHIFT BY 1}
sr=sr or lshift mr0 by -1 (lo);
dm(seed_hi) = sr1;
dm(seed_lo) = sr0;
ay0 = sr1;

rts;
.endmod;

Listing 2.27  Random Number Generator Routine (RAND.DSP)Listing 2.27  Random Number Generator Routine (RAND.DSP)Listing 2.27  Random Number Generator Routine (RAND.DSP)Listing 2.27  Random Number Generator Routine (RAND.DSP)Listing 2.27  Random Number Generator Routine (RAND.DSP)
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.module/ram/boot=0 MODULATE_MOD;
{Modulate and sum signals                                               }
{                                                                       }
{ INPUTS:                                                              }
{ dm(i_lpf) = I LPF output                                       }
{ dm(q_lpf) = Q LPF output                                       }
{                                                                       }
{ OUTPUTS:                                                             }
{ dm(result) = output value                                      }
{                                                                       }
{ USAGE:                                                               }
{ I4, M6, M7, MX0, MY0, MR, SR                                   }
{                                                                       }
.var/pm/ram/circ cosine[16]; {Cosine Table             }
.var/dm/ram cos_ptr; {Current Pointer to Cosine Table    }
.var/dm/ram output; {Output Value             }
.external i_lpf;
.external q_lpf;
.init cosine: <cosval.dat>;
.init cos_ptr: ^cosine;
.entry modulator;
MODULATOR:

cntr = 6;
do mod_loop until ce;

i4 = dm(cos_ptr); {Initialize DAGs      }
m6 = -4;
m7 = 7;
L4 = %cosine;
mx0 = pm(i4,m6); {Read Cosine, point to sine  }
my0 = dm(i_lpf); {Read I value                }
mr = mx0*my0(ss), mx0=pm(i4,m7); {cos(k)*I(k), get -sin       }
my0 = dm(q_lpf); {Read Q Value                }
mr = mr + mx0*my0(rnd); {-Q * Sine                   }
dm(cos_ptr) = i4; {Save cosine Pntr            }
sr = ashift mr2 by -1 (HI); { Scale output by 1/2        }
sr = sr or lshift mr1 by -1 (lo);

mod_loop:
dm(output) = sr0;
L4 = 0;

rts;
.endmod;

Listing 2.28  Signal Modulation Routine (MODULATE.DSP)Listing 2.28  Signal Modulation Routine (MODULATE.DSP)Listing 2.28  Signal Modulation Routine (MODULATE.DSP)Listing 2.28  Signal Modulation Routine (MODULATE.DSP)Listing 2.28  Signal Modulation Routine (MODULATE.DSP)
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2.7.22.7.22.7.22.7.22.7.2 V.29 TransmitterV.29 TransmitterV.29 TransmitterV.29 TransmitterV.29 Transmitter
The CCITT Recommendation V.29 is a 9600 bits per second modem
standard for data transmission over the general switched telephone
network. The specification defines the following characteristics:

• Data rate of 9600 bits/s with 8-phase differentially encoded
modulation

• Fallback rates of 7200 and 4800 bits/s

• Provision for backward channel with a modulation rate of 75 bauds

• An adaptive equalizer in the receiver

• The carrier frequency is 1700 Hz ± 1 Hz

CCITT also specifies a raised cosine filter on the transmitter and the
receiver, a data scrambler, the phase encoding and the turn on sequence.

The data stream to be transmitted is first scrambled to randomize the data.
The data scrambler has a generating polynomial of the form:

  1 + x−18 + x−23

The scrambled data is divided into for bits (quadbits). The first bit (Q1) is
used to determine the signal amplitude and the remaining three bits (Q2,
Q3, and Q4) are encoded as a phase change relative to the phase of the
preceding word transmitted. Table 2.7 and Figure 2.37 show the phase
change table and the V.29 8-point constellation.

Q2 Q3 Q4 Phase Change
0 0 1     0°
0 0 0   45°
0 1 0   90°
0 1 1 135°
1 1 1 180°
1 1 0 225°
1 0 0 270°
1 0 1 315°

Table 2.7  8-Point V.29 Phase ChangesTable 2.7  8-Point V.29 Phase ChangesTable 2.7  8-Point V.29 Phase ChangesTable 2.7  8-Point V.29 Phase ChangesTable 2.7  8-Point V.29 Phase Changes
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Figure 2.37  V.29 ConstellationFigure 2.37  V.29 ConstellationFigure 2.37  V.29 ConstellationFigure 2.37  V.29 ConstellationFigure 2.37  V.29 Constellation

The output of the signal mapping is interpolated to a 9.6 kHz sample rate
and pulse-shaped filtered to assure zero inter-symbol interference. The
signal is then modulated onto a 1700 Hz carrier and then sent to the DAC
for transmission.

The 7200 bits per second fallback mode is similar to the 9600 bits per
second mode. The scrambled data is divided into groups of three bits
(tribits). Table 2.7 can be used to determine the phase change. The first
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Figure 2.38  V.29 Constellation For 7200 bits/s Fallback ModeFigure 2.38  V.29 Constellation For 7200 bits/s Fallback ModeFigure 2.38  V.29 Constellation For 7200 bits/s Fallback ModeFigure 2.38  V.29 Constellation For 7200 bits/s Fallback ModeFigure 2.38  V.29 Constellation For 7200 bits/s Fallback Mode
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tribit represents Q2 in the Table 2.7 and the next two tribits represent Q3
and Q4 respectively. Q1 is assumed to be zero. Figure 2.38 shows the 8-
point V.29 constellation for the 7200 bits/s fallback mode.

The 4800 bits per second fallback mode is similar to the 4800 bits per
second mode. The scrambled data stream is divided into groups of two
bits (dibits). Table 2.7 can be used to determine the phase change. The
tribits represent bit Q2 and Q3 in the figure. Bit Q4 in Table 2.7 is the
inversion of the mod 2 sum of the two data bits and Q1 is assumed to be
zero. Figure 2.39 shows the constellation for this mode.

90°

270°

180° 0°

Figure 2.39  V.29 Constellation For 4800 bits/s Fallback ModeFigure 2.39  V.29 Constellation For 4800 bits/s Fallback ModeFigure 2.39  V.29 Constellation For 4800 bits/s Fallback ModeFigure 2.39  V.29 Constellation For 4800 bits/s Fallback ModeFigure 2.39  V.29 Constellation For 4800 bits/s Fallback Mode
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{Main routine for V.29 ter Modem                                       }
{Analog Devices                                                        }
{DSP Applications                                                      }
{                                                                      }
{ 2/20/91 Start Date                                                }
.module/boot=0/ram/abs=0 29_MOD;
{————————————External Function Declaration—————————————————————————————}
.external get1;
.external scramble;
.external IQ;
.external psf;
.external rand;
{————————————Global Variable Declaration———————————————————————————————}

{For baud/sample count                   }
.var/dm/ram sample_count;  {Number of samples until next baud    }

{Default is 3 samples between each baud  }
{For Scrambler                           }

.var/dm/ram seed_hi; {Seeds for random number generator       }

.var/dm/ram seed_lo;

.var/dm/ram quad_bit; {next bit to transmit                    }

.var/dm/ram bit_count; {Number of bits left in current word     }

.var/dm/ram/circ buffer[23]; {Scrambler Delay Buffer                  }

.var/dm buf_ptr2; {Pointer to y(n-18) buffer value         }

.var/dm buf_ptr3; {Pointer to y(n-23) buffer value         }
{For IQ Generator                        }

.var/pm/ram delta_phi[8];  {Quadbit phase change table           }

.var/dm/ram phi_value;    {Current phi value                    }

.var/pm/ram I_table_0[8];  {Tables for IQ Output Values          }

.var/pm/ram Q_table_0[8];

.var/pm/ram I_table_1[8];

.var/pm/ram Q_table_1[8];

.var/dm/ram fallback_mode;    {0=9600bps, 3=7200bps, 6=4800bps   }

.var/dm/ram fallback_count;   {Number of bits to scramble        }
      {For Pulse Shaped FIlters          }

.var/dm/ram/circ i_delay_line[5]; {Data Delay line for I channel PSF }

.var/dm/ram i_delay_ptr; {Oldest value in delay line        }

.var/pm/ram/circ i_coef_line[17]; {Coefficients for I challen PSF    }

.init i_coef_line: <17.dat>;

.var/dm/ram i_coef_ptr; {Last Coeff read by PSF            }

.var/dm/ram i_psf_output; {Last output value of PSF          }
{For DAC Outputs                   }

.var/dm/ram sync; {Sync value for DAC                }

.var/dm/ram i_output; {Pulse shaped filter output value  }

.var/dm/ram i_value; {IQ section I output               }

.var/dm/ram q_value; {IQ section Q output               }
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.init delta_phi: 0x000200, 0x000000, 0x000400, 0x000600,
0x000C00, 0x000E00, 0x000A00, 0x000800;

.init I_table_1: 0x7fff00, 0x5bff00, 0x000000, 0xa40000,
0x800000, 0xa40000, 0x000000, 0x5bff00;

.init Q_table_1: 0x000000, 0x5bff00, 0x7fff00, 0x5bff00,
0x000000, 0xa40000, 0x800000, 0xa40000;

.init I_table_0: 0x4c0000, 0x1e0000, 0x000000, 0xe10000,
0xb30000, 0xe10000, 0x000000, 0x1e0000;

.init Q_table_0: 0x000000, 0x1e0000, 0x4c0000, 0x1e0000,
0x000000, 0xe10000, 0xb30000, 0xe10000;

{——————————————Ports and Global ———————————————————————————————————————}
.port write_dac0;
.port write_dac1;
.port write_dac2;
.port write_dac3;
.port load_dac;
.global delta_phi;
.global phi_value;
.global I_table_1;
.global Q_table_1;
.global I_table_0;
.global Q_table_0;
.global buffer;
.global buf_ptr2;
.global buf_ptr3;
.global quad_bit;
.global bit_count;
.global fallback_mode;
.global i_delay_line;
.global i_delay_ptr;
.global i_coef_line;
.global i_coef_ptr;
.global i_psf_output;
.global sync;
.global i_output;
.global i_value;
.global q_value;
.global seed_hi;
.global seed_lo;

(listing continues on next page)
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{——————————————Interrupt Vectors———————————————————————————————————————}
RESETV: jump start; {Reset Vector                      }

rti; rti; rti;
IRQ2V: jump set_fall_back; {IRQ2 Vector                       }

rti; rti; rti;
HIPWV: rti; rti; rti; rti; {Hip Write Interrupt Vector        }
HIPRV: rti; rti; rti; rti; {Hip Read Interrupt Vector         }
SPRT0T: rti; rti; rti; rti; {Sport0 Transmit Interrupt Vector  }
SPRT0R: jump next_output; {Generate Next Sample              }

rti; rti; rti;
IRQ1V: rti; rti; rti; rti; {IRQ1 Interrupt Vector             }
IRQ0V: rti; rti; rti; rti; {IRQ0 Interrupt Vector             }
TIMERV: jump set_fall_back; {Timer Interrupt Vector            }

rti; rti; rti;
{—————————————Main Code Starts Here————————————————————————————————————}
start: call V29_INIT; {Initialize ADSP-2101 Dags and Sports    }

ena timer;
ax0 = 0x101f; {Enable SPORT0                           }
dm(0x3fff) = ax0;
imask = 0x88; {Enable Timer,Sport0,IRQ2 Interrupts     }

fevr: idle; {Wait for Interrupt                      }
jump fevr;

{——————————————MAIN ROUTINE————————————————————————————————————————————}
next_output:

{This interrupt routine is executed every 8 kHz.                    }
{One sample is output to codec and a new Baud is calculate if       }
{interrupt occurs at baud rate                                      }

{Output values to the DAC                }
ax0 = dm(i_value);
dm(write_dac0) = ax0;
ax0 = dm(q_value);
dm(write_dac1) = ax0;
ax0 = dm(sync);
dm(write_dac2) = ax0;
si = dm(i_output);
sr = ashift si by -2 (lo);
dm(write_dac3) = sr0;
dm(load_dac) = sr0;
tx0 = sr0;

{Check if new baud should be calculated                       }
ax0 = dm(sample_count);
ay0 = 1;
my1 = 0x7fff; {Set sync value for new sample           }
dm(sync) = my1;
ar = ax0 - ay0;
dm(sample_count) = ar;
if gt jump next_sample;
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next_baud:
i4 = ^i_coef_line; {Reset Coefficient Pointer               }
dm(i_coef_ptr) = i4;
ax0 = 4; {Reset sample counter                    }
dm(sample_count) = ax0;
si = 0; {Zero SI Register                        }
cntr = dm(fallback_count);
do scram_bit until ce;

call get1; {Get next N data bits to be transmitted  }
call scramble;

scram_bit:
ax0 = dm(fallback_mode);  {Test if in 4800 bps mode           }
ay0 = 0x06;
ar = ax0 - ay0;
if ne jump not48;

mode48: {Calculate Q4 = inv(Q3 + Q2)       }
sr = lshift si by -1(lo); {sr0 = Q2                          }
ay0 = si;
ar = sr0 xor ay0;
ar = not ar;
ay1 = 1;
ar = ar and ay1; {AY1 must be preset to 1           }
sr = lshift si by 1 (lo); {Store output in si                }
sr = sr or lshift ar by 0 (lo);
si = sr0;

not48:
call IQ; {Calculate delta phi,phase sum,I and Q   }
my1 = 0x8000; {Set sync value for new baud             }
dm(sync) = my1;
jump next_sample;

next_sample:
call psf; {Low Pass Filter I and Q components      }

{Output values to the DAC                }
{ call modulator; Modulate and sum signals                 }
done: rti;

{———————————Change Fallback Mode———————————————————————————————————————}
set_fall_back:

ena sec_reg;
ax0 = dm(fallback_mode);
mx0 = i4; {store i4 in temporary location    }
mx1 = m4; {store m7 in temporary location    }
my0 = L4; {store L4 in temporary location    }
l4 = 0;
m4 = ^jump_table; {CASE Statement                    }
i4 = ax0;
modify(i4,m4);
jump (i4);

(listing continues on next page)
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jump_table:
{Current fallback = 9600 bps, change to 7200bps                   }

ay0 = 0x03;
ax0 = 0x03;
jump case_end;

{Current fallback = 7200 bps, change to 4800bps                   }
ay0 = 0x06;
ax0 = 0x02;
jump case_end;

{Current fallback = 4800 bps, change to 7200bps                   }
i4 = ^buffer; {Reset Delay Buffer and Data Pointers  }
l4 = %buffer;
m4 = 1;
ax0 = 0;
dm(bit_count) = ax0;
cntr = %buffer;
do z2 until ce;

z2: dm(i4,m4) = ax0;
ay0 = 0x0;
ax0 = 0x04;
jump case_end;

case_end:
dm(fallback_count) = ax0;
dm(fallback_mode) = ay0;
ax0 = 0; {Zero Phi Value            }
dm(phi_value) = ax0;
i4 = mx0; {Restore i4                }
m4 = mx1; {Restore m7                }
L4 = my0; {Restore L4                }
rti;

{———————————Initialization for V.29——————————————————————————————————}
V29_INIT:

{———————SPORT INIT———————————————————————————}
ax0 = 0x02; {SCLKDIV = 2.048 MHz                   }
dm(0x3ff5) = ax0;
ax0 = 213; {RFSDIV = 639 for 9600                 }
dm(0x3ff4) = ax0;
ax0 = 0x6b27; {Internal SCLK, Frame Syncs            }
dm(0x3ff6) = ax0;

{———————Wait States——————————————————————————}
ax0 = 0xffff;
dm(0x3ffe) = ax0;
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{————————Data Buffer Inits———————————————————}
i0 = ^buffer;
l0 = %buffer;
m1 = 1;
ax0 = 0;
cntr = %buffer;
do zl until ce;

zl: dm(i0,m1) = ax0;
{—————Variable Initializations———————————————}

ax0 = 0;
dm(quad_bit) = ax0;
dm(bit_count) = ax0;
dm(phi_value) = ax0;
dm(sample_count) = ax0;
ax0 = 6;
dm(fallback_mode) = ax0;
ax0 = 2;
dm(fallback_count) = ax0;
ax0 = ^buffer+17;
dm(buf_ptr2) = ax0;
ax0 = ^buffer+22;
dm(buf_ptr3) = ax0;
ax0 = 0xa5a5;
dm(seed_hi) = ax0;
ax0 = 0x1234;
dm(seed_lo) = ax0;

{——————Pulse Shaped Filter Inits—————————————}
i0 = ^i_coef_line;
dm(i_coef_ptr) = i0;
i0 = ^i_delay_line;
dm(i_delay_ptr) = i0;
l0 = %i_delay_line;
m0 = 1;
ax0 = 0;
cntr = %i_delay_line;
do dloop until ce;

dloop:
dm(i0,m0) = ax0;
ax0 = 0x7fff;
dm(sync) = ax0;

{————————Timer Init——————————————————————————}
ax0 = 0xffff;

dm(0x3ffd) = ax0;
dm(0x3ffc) = ax0;
dm(0x3ffb) = ax0;

(listing continues on next page)
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{————————DAG INIT————————————————————————————}
m0 = 0; {Init M0,M1,M5,M5                            }
m1 = 1;
m4 = 0;
m5 = 1;
l0 = 0; {Set All L registers to zero                 }
l1 = 0;
l2 = 0;
l3 = 0;
l4 = 0;
l5 = 0;
l6 = 0;
l7 = 0;
rts;

{———————————————END INITIALIZATION———————————————————————————————————}
.endmod;

Listing 2.29  Main V.29 Routine (MAIN29.DSP)Listing 2.29  Main V.29 Routine (MAIN29.DSP)Listing 2.29  Main V.29 Routine (MAIN29.DSP)Listing 2.29  Main V.29 Routine (MAIN29.DSP)Listing 2.29  Main V.29 Routine (MAIN29.DSP)
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{GET2 routine for v.29  Modem                                          }
{Analog Devices                                                        }
{DSP Applications                                                      }
{                                                                      }
.module/boot=0/ram          get1mod;
{Get 1 data bit to be transmitted                                      }
{                                                                      }
{     INPUTS:                                                          }
{ dm(data_word) 16 bit words for transmission                  }
{ dm(bit_count) number of bits left in word                    }
{ m0 = 0                                                        }
{ m1 = 1                                                        }
{ m4 = 0                                                        }
{ m5 = 1                                                        }
{                                                                      }
{ OUTPUTS:                                                            }
{ dm(quad_bit): bit to transmit                                }
{                                                                      }
{     USAGE:                                                           }
{ AX0, AY0, AR, SI, SR                                          }
{                                                                      }

{Global Variable Declaration                                           }
.external quad_bit; {bit to transmit             }
.external bit_count; {number of bits left in word }
.port in_port;

{Local Variable Declaration                                            }
.var/dm/ram data_word; {Data word to be transmitted }
.external rand;
{————————————————Code Start————————————————————————————————————————————}
.entry GET1;
GET1:

ay0 = dm(bit_count); {If bit_count is zero              }
ar = pass ay0; {load new word                     }
if ne jump dec_count;
ay0 = 0xc123; {Load new data word here           }
call rand;
dm(data_word) = ay0;
ay0 = 16;
dec_count: ar = ay0 -1; {Decrement counter                 }
dm(bit_count) = ar;

get_bit:
sr0 = dm(data_word); {Get next bit                      }
ay0 = 0x01;
ar = sr0 and ay0;
dm(quad_bit) = ar;
sr = lshift sr0 by -1 (lo);
dm(data_word) = sr0; {Write data_word for next time     }
rts;

.endmod;

Listing 2.30  Data Acquisition Routine (GET29.DSP)Listing 2.30  Data Acquisition Routine (GET29.DSP)Listing 2.30  Data Acquisition Routine (GET29.DSP)Listing 2.30  Data Acquisition Routine (GET29.DSP)Listing 2.30  Data Acquisition Routine (GET29.DSP)
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.module/boot=0/ram SCRAMBLE_MOD;
{Analog Devices                                                           }
{DSP Applications                                                         }
{                                                                         }
{ 2/20/91 Start Date                                                    }
{This module performs v.29 scrambling on one input bit                    }
{                                                                         }
{The scrambler generating polynomial is xin + y(n-18) + y(n-23)           }
{v.29 specifies additional data pattarns on startup.                      }
{This has not been implemented.                                           }
{                                                                         }
{ INPUTS:                                                                }
{ dm(quad_bit) = bit to be scrambled                               }
{ si = partial quad bit                                            }
{                                                                         }
{ OUTPUTS:                                                               }
{ si = scrambled output bit                                        }
{      si  is left shifted by 1 and the new bit is put in b0       }
{                                                                         }
{ USAGE:                                                                 }
{ I0 = ^buffer                                                     }
{ I1 = Y(n-18)                                                     }
{ I2 = y(n-23)                                                     }
{Local variable Declarations                                              }
.external buffer; {Delay Buffer                         }
.external buf_ptr2; {Pointer to y(n-18) buffer value      }
.external buf_ptr3; {Pointer to y(n-23) buffer value      }
.external quad_bit;
.entry SCRAMBLE;
SCRAMBLE:

i1 = dm(buf_ptr2); {Get Pointer values                   }
i2 = dm(buf_ptr3);
m3 = -1;
L1 = %buffer; {Set circular buffer registers        }
L2 = %buffer;

ax0 = dm(quad_bit); {Get next bit to scramble       }
ay0 = dm(i1,m3); {y(n-18)                        }
ar = ax0 xor ay0, ay0=dm(i2,m0); {y(n-23)                        }
ar = ar xor ay0; { = y(n)                        }
dm(i2,m3) = ax0; {Store Oldest Value             }

sr = lshift si by 1 (lo); {Store output in sr0            }
sr = sr or lshift ar by 0 (lo);
si = sr0;

dm(buf_ptr2) = i1; {Save buffer pointers           }
dm(buf_ptr3) = i2;
L1 = 0; {Clear L registers              }
L2 = 0;
rts;

.endmod;

Listing 2.31  Data Scrambler Routine (SCRAM29.DSP)Listing 2.31  Data Scrambler Routine (SCRAM29.DSP)Listing 2.31  Data Scrambler Routine (SCRAM29.DSP)Listing 2.31  Data Scrambler Routine (SCRAM29.DSP)Listing 2.31  Data Scrambler Routine (SCRAM29.DSP)
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{Analog Devices                                                   }
{DSP Applications                                                 }
{                                                                 }
{ 2/20/91       Start Date                                        }
.module/boot=0/ram PHI_MOD;
{Calculate delta phi, phase sum, I and Q                          }
{                                                                 }
{ INPUTS:                                                  }
{ SI = QuadBit Value in four LSBs                       }
{ Q1 (Amplitude Bit) is in b3                           }
{ Q2-4 (Phase Change) is b b 2-0                        }
{ dm[PHI] = current Phi Value                           }
{                                                                 }
{ OUTPUTS:                                                 }
{ MX0 = I Value                                         }
{ MX1 = Q Value                                         }
{                                                                 }
{ USAGE:                                                   }
{ I3, M3, AR, AX0, AY0                                  }
{                                                                 }
.external Q_table_0;
.external I_table_0;
.external Q_table_1;
.external I_table_1;
.external delta_phi;
.external phi_value;
.external i_coef_line;
.external i_coef_ptr;
.external i_delay_line;
.external i_delay_ptr;
.external i_value;
.external _value;
.entry IQ;
IQ:

{Look up Delta_phi value and add to phi for new phase          }
ax1 = si;
ay0 = 0x07;
ar = ax1 and ay0;
I7 = ^delta_phi;
m7 = ar;
modify(i7, m7);
ax0 = dm(phi_value);
ay0 = pm(i7,m4);
ar = ax0 + ay0;
ay1 = 0x0f;
ar = ar and ay1;
dm(phi_value) = ar;

(listing continues on next page)
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{Look up I and Q components                                     }
{To find I/Q values, use phi/2 as offset into table             }

sr = lshift ar by -1 (lo);
{Look at Amplitude bit and chose lookup table                   }

ay0 = 0x08;
ar = ax1 and ay0;
if eq jump zamp; {if zero amplitude bit is zero }

nzamp: I6 = ^I_table_1; {amplitude bit is equal to one }
I7 = ^Q_table_1;
jump lookup;

zamp: I6 = ^I_table_0; {amplitude bit is equal to zero}
I7 = ^Q_table_0;

lookup:
m7 = sr0;
modify(I6,M7); {I6 = I Value                  }
modify(I7,M7); {I7 = Q Value                  }
mx0 = pm(i6,m4);
mx1 = pm(i7,m4);

{Write new I value to PSF Delay Line                            }
I6 = dm(i_delay_ptr);
L6 = %i_delay_line;
M6 = -1;
dm(i6,m6) = mx0;
dm(i_delay_ptr) = i6;
L6 = 0;

{Write IQ values for DAC                                  }
dm(i_value) = mx1;
dm(q_value) = mx0;
rts;

.endmod;

Listing 2.32  IQ Generator Routine (IQ29.DSP)Listing 2.32  IQ Generator Routine (IQ29.DSP)Listing 2.32  IQ Generator Routine (IQ29.DSP)Listing 2.32  IQ Generator Routine (IQ29.DSP)Listing 2.32  IQ Generator Routine (IQ29.DSP)
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