
2 COMPUTATIONAL UNITS
Figure 2-0. 

Table 2-0. 

Listing 2-0. 
Overview
This chapter describes the architecture and function of the ADSP-218x 
processors’ three computational units: the arithmetic/logic unit, the mul-
tiplier/accumulator and the barrel shifter. 

Every device in the ADSP-218x family is a 16-bit, fixed-point processor. 
Most operations assume a twos-complement number representation, while 
others assume unsigned numbers or simple binary strings. Special features 
support multiword arithmetic and block floating-point. Details concern-
ing the various number formats supported by the ADSP-218x family are 
given in  Appendix A, “Numeric Formats”. 

In ADSP-218x family arithmetic, signed numbers are always in twos-com-
plement format. The processors do not use signed-magnitude, 
ones-complement, BCD or excess-n formats. 

Binary String
This is the simplest binary notation; sixteen bits are treated as a bit pat-
tern. Examples of computation using this format are the logical 
operations: NOT, AND, OR, XOR. These ALU operations treat their 
operands as binary strings with no provision for sign bit or binary point 
placement.
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Overview
Unsigned Binary Numbers
Unsigned binary numbers may be thought of as positive, having nearly 
twice the magnitude of a signed number of the same length. The least sig-
nificant words of multiple precision numbers are treated as unsigned 
numbers.

Signed Numbers: Twos-Complement
In discussions of ADSP-218x family arithmetic, “signed” refers to 
twos-complement. Most ADSP-218x family operations presume or sup-
port twos-complement arithmetic. The ADSP-218x family does not use 
signed-magnitude, ones-complement, BCD, or excess-n formats.

Fractional Representation: 1.15
ADSP-218x family arithmetic is optimized for numerical values in a frac-
tional binary format denoted by 1.15 (“one dot fifteen”). In the 1.15 
format, there is one sign bit (the MSB) and fifteen fractional bits repre-
senting values from –1 up to one LSB less than +1.

Figure 2-1 shows the bit weighting for 1.15 numbers.
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Figure 2-1. Bit Weighting for 1.15 Numbers
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Computational Units
Table 2-1 gives examples of 1.15 numbers and their decimal equivalents:

ALU Arithmetic
All operations on the ALU treat operands and results as simple 16-bit 
binary strings, except the signed division primitive (DIVS). Various status 
bits treat the results as signed: the overflow (AV) condition code, and the 
negative (AN) flag. 

The logic of the overflow bit (AV) is based on twos-complement arith-
metic. It is set if the MSB changes in a manner not predicted by the signs 
of the operands and the nature of the operation. For example, adding two 
positive numbers must generate a positive result; a change in the sign bit 
signifies an overflow and sets AV. Adding a negative and a positive may 
result in either a negative or positive result, but cannot overflow.

The logic of the carry bit (AC) is based on unsigned-magnitude arithmetic. 
It is set if a carry is generated from bit 16 (the MSB). The (AC) bit is most 
useful for the lower word portions of a multiword operation.

Table 2-1. Examples of 1.15 Number Format

1.15 Number Decimal Equivalent

0x0001 0.000031

0x7FFF 0.999969

0xFFFF -0.000031

0x8000 -1.000000
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Overview
MAC Arithmetic
The multiplier produces results that are binary strings. The inputs are 
“interpreted” according to the information given in the instruction itself 
(signed times signed, unsigned times unsigned, a mixture, or a rounding 
operation). The 32-bit result from the multiplier is assumed to be signed, 
in that it is sign-extended across the full 40-bit width of the MR register set.

The ADSP-218x family supports two modes of format adjustment: the 
fractional mode for fractional operands, 1.15 format (1 signed bit, 15 frac-
tional bits), and the integer mode for integer operands, 16.0 format.

When the processor multiplies two 1.15 operands, the result is a 2.30        
(2 sign bits, 30 fractional bits) number. In the fractional mode, the MAC 
automatically shifts the multiplier product (P) left one bit before transfer-
ring the result to the multiplier result register (MR). This shift causes the 
multiplier result to be in 1.31 format, which can be rounded to 1.15 for-
mat. Figure 2-7 on page 2-26 shows this.

In the integer mode, the left shift does not occur. For example, if the oper-
ands are in the 16.0 format, the 32-bit multiplier result would be in 32.0 
format. A left shift is not needed; it would change the numerical represen-
tation. Figure 2-8 on page 2-26 shows this.

Shifter Arithmetic
Many operations in the shifter are explicitly geared to signed (twos-com-
plement) or unsigned values: logical shifts assume unsigned-magnitude or 
binary string values and arithmetic shifts assume twos-complement. 

The exponent logic assumes twos-complement numbers. The exponent 
logic supports block floating-point, which is also based on twos-comple-
ment fractions.
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Arithmetic Formats Summary
Table 2-2 summarizes some of the arithmetic characteristics of 
ADSP-218x family operations. In addition to the numeric types described 
in this section, the ADSP-218x Family C Compiler supports a form of 
32-bit floating-point in which one 16-bit word is the exponent and the 
other 16-bit word is the mantissa. See the C Compiler & Library Manual 
for ADSP-218x & ADSP-219x Family DSPs for more information.

Table 2-2. Arithmetic Formats

Operation
(by Computational Unit)

Arithmetic Formats

Operands Result

ALU

Addition Signed or unsigned Interpret flags

Subtraction Signed or unsigned Interpret flags

Logical Operations Binary string Same as operands

Division Explicitly signed/unsigned Same as operands 

ALU Overflow Signed Same as operands

ALU Carry Bit 16-bit unsigned Same as operands

ALU Saturation Signed Same as operands
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Overview
MAC, Fractional

Multiplication (P) 1.15 Explicitly 
signed/unsigned

32 bits (2.30)

Multiplication (MR) 1.15 Explicitly 
signed/unsigned

2.30 shifted to 1.31

Mult /Add 1.15 Explicitly 
signed/unsigned

2.30 shifted to 1.31

Mult /Subtract 1.15 Explicitly 
signed/unsigned

2.30 shifted to 1.31

MAC Saturation Signed same as operands

MAC, Integer Mode

Multiplication (P) 1.15 Explicitly 
signed/unsigned

32 bits (2.30)

Multiplication (MR) 16.0 Explicitly 
signed/unsigned

32.0 no shift

Mult /Add 16.0 Explicitly 
signed/unsigned

32.0 no shift

Mult /Subtract 16.0 Explicitly 
signed/unsigned

32.0 no shift

MAC Saturation Signed same as operands

Table 2-2. Arithmetic Formats (Cont’d)

Operation
(by Computational Unit)

Arithmetic Formats

Operands Result
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Computational Units
Arithmetic Logic Unit (ALU)
The Arithmetic Logic Unit (ALU) provides a standard set of arithmetic 
and logical functions. The arithmetic functions are add, subtract, negate, 
increment, decrement and absolute value. These are supplemented by two 
division primitives with which multiple cycle division can be constructed. 
The logic functions are AND, OR, XOR (exclusive OR) and NOT.

Shifter

Logical Shift Unsigned / binary string same as operands

Arithmetic Shift Signed same as operands

Exponent Detection Signed same as operands

Table 2-2. Arithmetic Formats (Cont’d)

Operation
(by Computational Unit)

Arithmetic Formats

Operands Result
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Arithmetic Logic Unit (ALU)
ALU Structure
Figure 2-2 shows a block diagram of the ALU.

Figure 2-2. ALU Block Diagram
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Computational Units
The ALU is 16 bits wide with two 16-bit input ports, X and Y, and one 
output port, R. The ALU accepts a carry-in signal (CI) which is the carry 
bit from the processor arithmetic status register (ASTAT). The ALU gener-
ates six status signals: the zero (AZ) status, the negative (AN) status, the 
carry (AC) status, the overflow (AV) status, the X-input sign (AS) status, and 
the quotient (AQ) status. All arithmetic status signals are latched into the 
arithmetic status register (ASTAT) at the end of the cycle. Please see the 
ADSP-218x DSP Instruction Set Reference for information on how each 
instruction affects the ALU flags.

The X input port of the ALU can accept data from two sources: the AX reg-
ister file or the result (R) bus. The R bus connects the output registers of 
all the computational units, permitting them to be used as input operands 
directly. The AX register file is dedicated to the X input port and consists 
of two registers, AX0 and AX1. These AX registers are readable and writable 
from the DMD bus. The instruction set also provides for reading these 
registers over the PMD bus, but there is no direct connection; this opera-
tion uses the PMD-DMD bus exchange unit. The AX register file outputs 
are dual-ported so that one register can provide input to the ALU while 
either one simultaneously drives the DMD bus.

The Y input port of the ALU can also accept data from two sources: the AY 
register file and the ALU feedback (AF) register. The AY register file is ded-
icated to the Y input port and consists of two registers, AY0 andAY1. These 
registers are readable and writable from the DMD bus and writable from 
the PMD bus. The instruction set also provides for reading these registers 
over the PMD bus, but there is no direct connection; this operation uses 
the PMD-DMD bus exchange unit. The AY register file outputs are also 
dual-ported: one AY register can provide input to the ALU while either one 
simultaneously drives the DMD bus. 
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Arithmetic Logic Unit (ALU)
The output of the ALU is loaded into either the ALU feedback (AF) regis-
ter or the ALU result (AR) register or it is discarded. The AF register is an 
ALU internal register that allows the ALU result to be used directly as the 
ALU Y input. The AR register can drive both the DMD bus and the R bus. 
It is also loadable directly from the DMD bus. The ADSP-218x processor 
instruction set also provides for reading AR over the PMD bus, but there is 
no direct connection; this operation uses the PMD-DMD bus exchange 
unit. 

Any of the registers associated with the ALU can be both read and written 
in the same cycle. Registers are read at the beginning of a processor clock 
cycle and written at the end of a processor clock cycle. A register read, 
therefore, reads the value loaded at the end of a previous cycle. A new 
value written to a register cannot be read out until a subsequent cycle. 
This allows an input register to provide an operand to the ALU at the 
beginning of the cycle and be updated with the next operand from mem-
ory at the end of the same cycle. It also allows a result register to be stored 
in memory and updated with a new result in the same cycle. See “Multi-
function Instructions” in the ADSP-218x DSP Instruction Set Reference for 
an illustration of this same-cycle read and write.

The ALU contains a duplicate bank of registers (shown in Figure 2-2 on 
page 2-8) behind the primary registers. There are actually two sets of AR, 
AF, AX, and AY register files. Only one bank is accessible at a time. The 
additional bank of registers can be activated (such as during an interrupt 
service routine) for extremely fast context switching. A new task, like an 
interrupt service routine, can be executed without transferring current 
states to storage.

The selection of the primary or alternate bank of registers is controlled by 
bit 0 in the processor mode status register (MSTAT). If this bit is a 0, the 
primary bank is selected; if it is a 1, the secondary bank is selected.
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Standard Functions
Table 2-3 lists the standard ALU functions.

Table 2-3. Standard ALU Functions

Function Description

R = X + Y Add X and Y operands

R = X + Y + CI Add X and Y operands and carry-in bit

R = X – Y Subtract Y from X operand

R = X – Y + CI - 1 Subtract Y from X operand with “borrow”

R = Y – X Subtract X from Y operand

R = Y – X + CI - 1 Subtract X from Y operand with “borrow”

R = – X Negate X operand (twos-complement)

R = – Y Negate Y operand (twos-complement)

R = Y + 1 Increment Y operand

R = Y – 1 Decrement Y operand

R = PASS X Pass X operand to result unchanged

R = PASS Y Pass Y operand to result unchanged

R = 0 (PASS 0) Clear result to zero

R = ABS X Absolute value of X operand

R = X AND Y Logical AND of X and Y operands

R = X OR Y Logical OR of X and Y operands
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Arithmetic Logic Unit (ALU)
ALU Input/Output Registers
Table 2-4 lists the sources for ALU input and output registers.

R = X XOR Y Logical Exclusive OR of X and Y operands

R = NOT X Logical NOT of X operand (ones-complement)

R = NOT Y Logical NOT of Y operand (ones-complement)

Table 2-4. Sources for ALU Input and Output Registers 

Source for X Input Port Source for Y Input Port Destination for R 
Output Port

AX0, AX1 AY0, AY1 AR

AR AF AF

MR0, MR1, MR21

1   MR0, MR1 and MR2 are multiplier/accumulator result registers.

NONE

SR0, SR12

2   SR0 and SR1 are shifter result registers.

Table 2-3. Standard ALU Functions (Cont’d)

Function Description
2-12        ADSP-218x DSP Hardware Reference



Computational Units
Multiprecision Capability
Multiprecision operations are supported in the ALU with the carry-in sig-
nal and ALU carry (AC) status bit. The carry-in signal is the AC status bit 
that was generated by a previous ALU operation. The “add with carry” 
(+ C) operation is intended for adding the upper portions of multipreci-
sion numbers. The “subtract with borrow” (C – 1 is effectively a 
“borrow”) operation is intended for subtracting the upper portions of 
multiprecision numbers. 

ALU Saturation Mode
The AR register has a twos-complement saturation mode of operation that 
automatically sets it to the maximum negative or positive value if an ALU 
result overflows or underflows. This feature is enabled or disabled execut-
ing the ena ar_sat and dis ar_sat assembly instructions, respectively, or 
by setting or clearing bit 3 of MSTAT. The ALU saturation mode is disabled 
by default upon reset. When enabled, the value loaded into AR during an 
ALU operation depends on the state of the overflow and carry status gen-
erated by the ALU on that cycle. The following table summarizes the 
loading of AR when saturation mode is enabled.

Table 2-5. Saturation Mode

Overflow (AV) Carry (AC) AR Contents

0 0 ALU Output

0 1 ALU Output

1 0 0111111111111111 full-scale positive

1 1 1000000000000000 full-scale negative
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Arithmetic Logic Unit (ALU)
The operation of the ALU saturation mode is different from the Multi-
plier/Accumulator saturation ability, which is enabled only on an 
instruction by instruction basis. For the ALU, enabling saturation means 
that all subsequent operations are processed this way.

When the ALU saturation mode is used, only the AR register saturates; if 
the AF register is the destination, wrap-around will occur but the flags will 
reflect the saturated result.

ALU Overflow Latch Mode 

The ALU overflow latch mode, causes the AV bit to “stick” once it is set. 
This feature is enabled or disabled by executing the ena av_latch and dis 
av_latch instructions, respectively, or by setting or clearing bit 2 in the 
MSTAT register. The ALU overflow latch mode is disabled by default upon 
reset. When an ALU overflow occurs and the overflow latch mode is 
enabled, the AV bit of the ASTAT register is set and remains set, even if sub-
sequent ALU operations do not generate overflows. In the overflow latch 
mode, AV can only be cleared by directly writing a zero to bit 2 of the 
ASTAT register via the internal DMD bus.

Division
The ALU supports division. The divide function is achieved with addi-
tional shift circuitry not shown in Figure 2-2 on page 2-8. Division is 
accomplished with two special divide primitives. These are used to imple-
ment a non-restoring conditional add-subtract division algorithm. The 
division can be either signed or unsigned; however, the dividend and divi-
sor must both be of the same type. Appendix A details various exceptions 
to the normal division operation as described in this section.
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A single-precision divide, with a 32-bit dividend (numerator) and a 16-bit 
divisor (denominator), yielding a 16-bit quotient, executes in 16 cycles. 
Higher and lower precision quotients can also be calculated. The divisor 
can be stored in AX0, AX1, or any of the R registers. The upper half of a 
signed dividend can start in either AY1 or AF. The upper half of an 
unsigned dividend must be in AF. The lower half of any dividend must be 
in AY0. At the end of the divide operation, the quotient will be in AY0.

The first of the two primitive instructions “divide-sign” (DIVS) is executed 
at the beginning of the division when dividing signed numbers. This oper-
ation computes the sign bit of the quotient by performing an 
exclusive-OR of the sign bits of the divisor and the dividend. The AY0 reg-
ister is shifted one place so that the computed sign bit is moved into the 
LSB position. The computed sign bit is also loaded into the AQ bit of the 
arithmetic status register. The MSB of AY0 shifts into the LSB position of 
AF, and the upper 15 bits of AF are loaded with the lower 15 R bits from 
the ALU, which simply passes the Y input value straight through to the R 
output. The net effect is to left shift the AF-AY0 register pair and move the 
quotient sign bit into the LSB position. The operation of DIVS is illus-
trated in Figure 2-3.
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When dividing unsigned numbers, the DIVS operation is not used. Instead, 
the AQ bit in the arithmetic status register (ASTAT) should be initialized to 
zero by manually clearing it. The AQ bit indicates to the following opera-
tions that the quotient should be assumed positive.

The second division primitive is the “divide-quotient” (DIVQ) instruction 
which generates one bit of quotient at a time and is executed repeatedly to 
compute the remaining quotient bits. For unsigned single precision 
divides, the DIVQ instruction is executed 16 times to produce 16 quotient 
bits. For signed single precision divides, the DIVQ instruction is executed 
15 times after the sign bit is computed by the DIVS operation. 

DIVQ instruction shifts the AY0 register left by one bit so that the new quo-
tient bit can be moved into the LSB position. The status of the AQ bit 
generated from the previous operation determines the ALU operation to 
calculate the partial remainder. If AQ = 1, the ALU adds the divisor to the 
partial remainder in AF. If AQ = 0, the ALU subtracts the divisor from the 
partial remainder in AF. The ALU output R is offset loaded into AF just as 
with the DIVS operation. The AQ bit is computed as the exclusive-OR of 
the divisor MSB and the ALU output MSB, and the quotient bit is this 
value inverted. The quotient bit is loaded into the LSB of the AY0 register 
which is also shifted left by one bit. The DIVQ operation is illustrated in 
Figure 2-4.
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The format of the quotient for any numeric representation can be deter-
mined by the format of the dividend and divisor. For example, let NL 
represent the number of bits to the left of the binary point and NR repre-
sent the number of bits to the right of the binary point of the dividend. 
Let DL represent the number of bits to the left of the binary point and DR 
represent the number of bits to the right of the binary point of the divisor. 
Then, the quotient has NL–DL+1 bits to the left of the binary point and 
NR–DR–1 bits to the right of the binary point.

Some format manipulation may be necessary to guarantee the validity of 
the quotient. For example, if both operands are signed and fully fractional 
(dividend in 1.31 format and divisor in 1.15 format) the result is fully 
fractional (in 1.15 format) and therefore the dividend must be smaller 
than the divisor for a valid result.

To divide two integers (dividend in 32.0 format and divisor in 16.0 for-
mat) and produce an integer quotient (in 16.0 format), you must shift the 
dividend one bit to the left (into 31.1 format) before dividing. Additional 
discussion and code examples can be found in the ADSP-218x Instruction 
Set Reference.

D IV ID E N D

N L  B IT S N R  B IT S

D IV IS O R B B . B B B B B B B B B B B B B B

D L  B IT S D R  B IT S

Q U O T IE N T B B B B .B B B B B B B B B B B B

(N L – D L + 1 ) B IT S (N R – D R – 1 ) B IT S

B B B B B . B B B B B B B B B B B B B B B B B B B B B B B B B B B

Figure 2-5. Quotient Format
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Multiplier Accumulator (MAC)
The algorithm overflows if the result cannot be represented in the format 
of the quotient, as calculated above, or if the divisor is zero or less than the 
dividend in magnitude.

ALU Status
The ALU status bits in the ASTAT register are defined below. Complete 
information about the ASTAT register and specific bit mnemonics and posi-
tions is provided in the Program Control chapter.

Multiplier Accumulator (MAC)
The multiplier/accumulator (MAC) provides high-speed multiplication, 
multiplication with cumulative addition, multiplication with cumulative 
subtraction, saturation and clear-to-zero functions. A feedback function 
allows part of the accumulator output to be directly used as one of the 
multiplicands on the next cycle.

Table 2-6. ALU Status Bits in the ASTAT Register

Flag Name Definition

AZ Zero Logical NOR of all the bits in the ALU result register. True if ALU out-
put equals zero.

AN Negative Sign bit of the ALU result. True if the ALU output is negative. 

AV Overflow Exclusive-OR of the carry outputs of the two most significant adder 
stages. True if the ALU overflows.

AC Carry Carry output from the most significant adder stage.

AS Sign Sign bit of the ALU X input port. Affected only by the ABS instruc-
tion.

AQ Quotient Quotient bit generated only by the DIVS and DIVQ instructions.
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MAC Structure
Figure 2-6 shows a block diagram of the multiplier/accumulator. 

NOTE: T he MR2 registe r
is  8 bits  aligned on the
lower 8 bits  of both the R
and DM D bus es

Figure 2-6. MAC Block Diagram
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Multiplier Accumulator (MAC)
The multiplier has two 16-bit input ports, X and Y, and a 32-bit product 
output port, P. The 32-bit product is passed to a 40-bit adder/subtracter, 
which adds or subtracts the new product from the content of the multi-
plier result (MR) register or passes the new product directly to MR. The MR 
register is 40 bits wide. In this manual, we refer to the entire register as MR. 
The register actually consists of three smaller registers: MR0 and MR1 which 
are 16 bits wide and MR2 which is 8 bits wide.

The adder/subtracter is greater than 32 bits to allow for intermediate over-
flow in a series of multiply/accumulate operations. The multiply overflow 
(MV) status bit is set when the accumulator has overflowed beyond the 
32-bit boundary; that is, when there are significant (non-sign) bits in the 
top nine bits of the MR register (based on twos-complement arithmetic).

The input/output registers of the MAC are similar to the ALU. The X 
input port can accept data from either the MX register file or from any reg-
ister on the result (R) bus. The R bus connects the output registers of all 
the computational units, permitting them to be used as input operands 
directly. There are two registers in the MX register file, MX0 and MX1. These 
registers can be read and written from the DMD bus. The MX register file 
outputs are dual-ported so that one register can provide input to the mul-
tiplier while either one simultaneously drives the DMD bus.

The Y input port can accept data from either the MY register file or the MF 
register. The MY register file has two registers, MY0 and MY1; these registers 
can be read and written from the DMD bus and written from the PMD 
bus. The instruction set also provides for reading these registers over the 
PMD bus, but there is no direct connection; this operation uses the 
PMD-DMD bus exchange unit. The MY register file outputs are also 
dual-ported so that one register can provide input to the multiplier while 
either one simultaneously drives the DMD bus.
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The output of the adder/subtracter goes to either the MF register or the MR 
register. The MF register is a feedback register which allows bits 16–31 of 
the result to be used directly as the multiplier Y input on a subsequent 
cycle. The 40-bit adder/subtracter register (MR) is divided into three sec-
tions: MR2, MR1, and MR0. Each of these registers can be loaded directly 
from the DMD bus and output to either the DMD bus or the R bus. 

Any of the registers associated with the MAC can be both read and written 
in the same cycle. Registers are read at the beginning of the cycle and writ-
ten at the end of the cycle. A register read, therefore, reads the value 
loaded at the end of a previous cycle. A new value written to a register can-
not be read out until a subsequent cycle. This allows an input register to 
provide an operand to the MAC at the beginning of the cycle and be 
updated with the next operand from memory at the end of the same cycle. 
It also allows a result register to be stored in memory and updated with a 
new result in the same cycle. See “Multifunction Instructions” in the 
ADSP-218x DSP Instruction Set Reference for an illustration of this 
same-cycle read and write.

The MAC contains a duplicate bank of registers, shown in Figure 2-6 
behind the primary registers. There are actually two sets of MR, MF, MX, and 
MY register files. Only one bank is accessible at a time. The additional bank 
of registers can be activated for extremely fast context switching. A new 
task, such as an interrupt service routine, can be executed without trans-
ferring current states to storage.

The selection of the primary or alternate bank of registers is controlled by 
the ena sec_reg and dis sec_reg assembly instructions or by bit zero in 
the MSTAT register. The alternate bank of registers is activated by the 
ena sec_reg instruction or by setting bit zero of MSTAT to a 1. The primary 
bank of registers is activated by executing the dis sec_reg instruction or 
by clearing bit zero of MSTAT. Upon reset, the primary bank of registers is 
active by default.
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Multiplier Accumulator (MAC)
The ADSP-218x processors also offer an xop * xop squaring operation. 
Both xops must be in the same register. This option allows single-cycle X2 
and ∑X2 instructions. 

The data format selection field following the two operands specifies 
whether each respective operand is in Signed (S) or Unsigned (U) format. 
The data format selection field must be (UU), (SS), or (RND) only. There 
is no default; one of the data formats must be specified.

If RND (Round) is specified, the MAC multiplies the two source oper-
ands, rounds the result to the most significant 24 bits (or rounds bits 
31-16 to 16 bits if there is no overflow from the multiply), and stores the 
result in the destination register. The two multiplication operands xop and 
xop are considered to be in twos complement format. Rounding can be 
biased or unbiased. For more information, see “Rounding Mode” on page 
2-30.

MAC Operations
This section explains the functions of the MAC, its input formats and its 
handling of overflow and saturation.

Standard Functions

Table 2-7 lists the functions performed by the MAC.

Table 2-7. Standard MAC Functions 

Function Description

MR = xop * yop Multiply X and Y operands.

MR = xop * xop Multiply X and X operands.

MR = MR + xop * yop Multiply X and Y operands and add result to MR.
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The ADSP-218x family provides two modes for the standard multi-
ply/accumulate function: fractional mode for fractional numbers (1.15), 
and integer mode for integers (16.0).

Fractional mode is selected by default upon reset or by the DIS M_MODE 
instruction. Integer mode is selected by the ENA M_MODE instruction. These 
instructions set or clear bit 4 of MSTAT. This bit is set to 0 for fractional 
mode and 1 for integer mode. In either mode, the multiplier output P is 
fed into a 40-bit adder/subtracter, which adds or subtracts the new prod-
uct with the current contents of the MR register to form the final 40-bit 
result R.

In the fractional mode, the 32-bit P output is format adjusted, that is, 
sign-extended and shifted one bit to the left before being added to MR. For 
example, bit 31 of P lines up with bit 32 of MR (which is bit 0 of MR2) and 
bit 0 of P lines up with bit 1 of MR (which is bit 1 of MR0). The LSB is 
zero-filled. The fractional multiplier result format is shown in Figure 2-7.

MR = MR – xop * yop Multiply X and Y operands and subtract result from MR.

MR = 0 Clear result (MR) to zero.

Table 2-7. Standard MAC Functions 

Function Description
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In the integer mode, the 32-bit P register is not shifted before being added 
to MR. Figure 2-8 shows the integer-mode result placement. 

31 31 31 31 31 31 31 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 015 14 13 12 11 10 9 8 7 6 5 4 3 2 1 07 6 5 4 3 2 1 0

MR2 MR1 MR0

P SIGN M U LTIPLIER  P  OUTPU T

Figure 2-7. Fractional Multiplier Result Format

31

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 015 14 13 12 11 10 9 8 7 6 5 4 3 2 1 07 6 5 4 3 2 1 0

MR2 MR1 MR0

31 31 31 31 31 31 31 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P SIGN MULTIPLIER P OUTPUT

Figure 2-8. Integer Multiplier Results Format
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Input Formats

To facilitate multiprecision multiplications, the multiplier accepts X and 
Y inputs represented in any combination of signed twos-complement for-
mat and unsigned format, as shown in Table 2-8:

The input formats are specified as part of the instruction. These are 
dynamically selectable each time the multiplier is used. 

The (signed x signed) mode is used when multiplying two signed single 
precision numbers or the two upper portions of two signed multiprecision 
numbers. 

The (unsigned x signed) and (signed x unsigned) modes are used when 
multiplying the upper portion of a signed multiprecision number with the 
lower portion of another or when multiplying a signed single precision 
number by an unsigned single precision number. 

The (unsigned x unsigned) mode is used when multiplying unsigned sin-
gle precision numbers or the non-upper portions of two signed 
multiprecision numbers. 

Table 2-8. X and Y Inputs

X Input Y Input Code Example

Signed x  Signed MR=MX0*MY0(SS)

Unsigned x Signed MR=MX0*MY0(US)

Signed x Unsigned MR=MX0*MY0(SU)

Unsigned x Unsigned MR=MX0*MY0(UU)
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MAC Input/Output Registers

Table 2-9 lists the sources for MAC input and output registers.

MR Register Operation

As described, and shown on the block diagram, the MR register is divided 
into three sections: MR0 (bits 0-15), MR1 (bits 16-31), and MR2 (bits 32-39). 
Each of these registers can be loaded from the DMD bus and output to 
the R bus or the DMD bus. 

The 8-bit MR2 register is tied to the lower 8 bits of these buses. When MR2 
is output onto the DMD bus or the R bus, it is sign extended to form a 
16-bit value. MR1 also has an automatic sign-extend capability. When MR1 
is loaded from the DMD bus, every bit in MR2 will be set to the sign bit 
(MSB) of MR1, so that MR2 appears as an extension of MR1. To load the MR2 
register with a value other than MR1’s sign extension, you must load MR2 
after MR1 has been loaded. Loading MR0 affects neither MR1 nor MR2; no sign 
extension occurs in MR0 loads. 

Table 2-9. Sources for MAC Input and Output Registers 

Source for X Input Port Source for Y Input Port Destination for R 
Output Port

MX0, MX1 MY0, MY1 MR (MR2, MR1, MR0)

AR MF MF

MR0, MR1, MR2

SR0, SR1
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MAC Overflow And Saturation

The adder/subtracter generates an overflow status signal (MV), which is 
loaded into the processor arithmetic status (ASTAT) every time a MAC 
operation is executed. The MV bit is set when the accumulator result, inter-
preted as a twos-complement number, crosses the 32-bit (MR1/MR2) 
boundary. That is, MV is set if the upper nine bits of MR are not all ones or 
all zeros.

The MR register has a saturation capability that sets MR to the maximum 
positive or negative value if an overflow or underflow has occurred. The 
saturation operation depends on the overflow status bit (MV) in the proces-
sor arithmetic status (ASTAT) and the MSB of the MR2 register. 

! The MF register cannot be saturated.

The MV flag is set/cleared after MAC operations only. When the MR0, 
MR1, or MR2 registers are loaded by Move instructions, the instruc-
tion MR = MR can be used to update the MV flag.

Table 2-10 summarizes the MR saturation operation.

Saturation in the MAC is an instruction rather than a mode as in the 
ALU. The saturation instruction is intended to be used at the completion 
of a string of multiplication/accumulations so that intermediate overflows 
do not cause the accumulator to saturate.

Table 2-10. Effect of MAC Saturation Instruction

MV  MSB of 
MR2

MR contents after saturation 

0 0 or 1 no change

1 0 00000000 0111111111111111 1111111111111111  full-scale positive

1 1 11111111 1000000000000000 0000000000000000  full-scale negative
ADSP-218x DSP Hardware Reference        2-29 



Multiplier Accumulator (MAC)
Overflowing beyond the MSB of MR2 should never be allowed. The true 
sign bit of the result is then irretrievably lost and saturation may not pro-
duce a correct value. It takes more than 255 overflows (MV type) to reach 
this state, however.

Rounding Mode

The accumulator has the capability for rounding the 40-bit result R at the 
boundary between bit 15 and bit 16. Rounding can be specified as part of 
the instruction code. The rounded output is directed to either MR or MF. 
When rounding is invoked with MF as the output register, register contents 
in MF represent the rounded 16-bit result. Similarly, when MR is selected as 
the output, MR1 contains the rounded 16-bit result; the rounding effect in 
MR1 affects MR2 as well and MR2 and MR1 represent the rounded 24-bit 
result.

The accumulator uses an unbiased rounding scheme. The conventional 
method of biased rounding is to add a 1 into bit position 15 of the adder 
chain. This method causes a net positive bias since the midway value 
(when MR0=0x8000) is always rounded upward. The accumulator elimi-
nates this bias by forcing bit 16 in the result output to zero when it detects 
this midway point. This has the effect of rounding odd MR1 values upward 
and even MR1 values downward, yielding a zero large-sample bias assuming 
uniformly distributed values.

Using x to represent any bit pattern (not all zeros), here are two examples 
of rounding. The example in Figure 2-9 shows a typical rounding opera-
tion for MR; these also apply for SR. 

...MR2..|.......MR1......|.......MR0......
xxxxxxxx|xxxxxxxx00100101|1xxxxxxxxxxxxxxx
........|................|1...............
xxxxxxxx|xxxxxxxx00100110|0xxxxxxxxxxxxxxx

Unrounded value:
Add 1 and carry:
Rounded value:

Figure 2-9. Typical Unbiased Multiplier Rounding Operation
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The compensation to avoid net bias becomes visible when the lower 15 
bits are all zero and bit 15 is one (the midpoint value) as shown in 
Figure 2-10. 

Biased Rounding

The BIASRND bit in the SPORT0 autobuffer control register enables biased 
rounding. When the BIASRND bit is cleared (=0), the RND option in mul-
tiplier instructions uses the normal unbiased rounding operation (as 
discussed in “Rounding Mode” on page 2-30). When the BIASRND bit is 
set to 1, the DSP uses biased rounding instead of unbiased rounding. 
When operating in biased rounding mode, all rounding operations with 
MR0 set to 0x8000 round up, rather than only rounding odd MR1 values up. 
For an example, see Figure 2-11.

This mode only has an effect when the MR0 register contains 0x8000; all 
other rounding operations work normally. This mode allows more effi-
cient implementation of bit-specified algorithms that use biased rounding, 
for example the GSM speech compression routines. Unbiased rounding is 
preferred for most algorithms.

...MR2..|.......MR1......|.......MR0......
xxxxxxxx|xxxxxxxx01100110|1000000000000000
........|................|1...............
xxxxxxxx|xxxxxxxx01100111|0000000000000000

Unrounded value:
Add 1 and carry:
MR bit 16=1:

xxxxxxxx|xxxxxxxx01100110|0000000000000000Rounded value:

Figure 2-10. Avoiding Net Bias in Unbiased Multiplier Rounding 
Operation
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Barrel Shifter
The barrel shifter (shifter) provides a complete set of shifting functions for 
16-bit inputs, yielding a 32-bit output. These include arithmetic shift, 
logical shift and normalization. The shifter also performs derivation of 
exponent and derivation of common exponent for an entire block of num-
bers. These basic functions can be combined to efficiently implement any 
degree of numerical format control, including full floating-point 
representation.

Shifter Structure
Figure 2-12 shows a block diagram of the shifter. The shifter can be 
divided into the following components: the shifter array, the OR/PASS 
logic, the exponent detector, and the exponent compare logic.

0x00 0000 8000 0x00 0001 0000 0x00 0000  0000
0x00 0001 8000 0x00 0002 0000 0x00 0002  0000
0x00 0000 8001 0x00 0001 0001 0x00 0001  0001
0x00 0001 8001 0x00 0002 0001 0x00 0002  0001
0x00 0000 7FFF 0x00 0000 FFFF 0x00 0000  FFFF
0x00 0001 7FFF 0x00 0001 FFFF 0x00 0001  FFFF

MR before RND

Biased RND result

Unbiased RND result

Figure 2-11. Bias Rounding in Multiplier Operation
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The shifter array is a 16x32 barrel shifter. It accepts a 16-bit input and can 
place it anywhere in the 32-bit output field, from off-scale right to 
off-scale left, in a single cycle. This gives 49 possible placements within 
the 32-bit field. The placement of the 16 input bits is determined by a 
control code (C) and a HI/LO reference signal.

The shifter array and its associated logic are surrounded by a set of regis-
ters. The shifter input (SI) register provides input to the shifter array and 
the exponent detector. The SI register is 16 bits wide and is readable and 
writable from the DMD bus. The shifter array and the exponent detector 
also take as inputs AR, SR or MR via the R bus. The shifter result (SR) regis-
ter is 32 bits wide and is divided into two 16-bit sections, SR0 and SR1. 
The SR0 and SR1 registers can be loaded from the DMD bus and output to 
either the DMD bus or the R bus. The SR register is also fed back to the 
OR/PASS logic to allow double-precision shift operations.

The SE register (“shifter exponent”) is 8 bits wide and holds the exponent 
during the normalize and denormalize operations. The SE register is load-
able and readable from the lower 8 bits of the DMD bus. It is a 
twos-complement, 8.0 value.

The SB register (“shifter block”) is important in block floating-point oper-
ations where it holds the block exponent value, that is, the value by which 
the block values must be shifted to normalize the largest value. The SB reg-
ister is 5 bits wide and holds the most recent block exponent value. The SB 
register is loadable and readable from the lower 5 bits of the DMD bus. It 
is a twos-complement, 5.0 value.

Whenever the SE or SB registers are output onto the DMD bus, they are 
sign-extended to form a 16-bit value. 
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Figure 2-12. Shifter Block Diagram
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Any of the SI, SE or SR registers can be read and written in the same cycle. 
Registers are read at the beginning of the cycle and written at the end of 
the cycle. All register reads, therefore, read values loaded at the end of a 
previous cycle. A new value written to a register cannot be read out until a 
subsequent cycle. This allows an input register to provide an operand to 
the shifter at the beginning of the cycle and be updated with the next 
operand at the end of the same cycle. It also allows a result register to be 
stored in memory and updated with a new result in the same cycle. See 
“Multifunction Instructions” in the ADSP-218x DSP Instruction Set Refer-
ence for an illustration of this same-cycle read and write.

The shifter contains a duplicate bank of registers behind the primary regis-
ters (see Figure 2-12). There are actually two sets of SE, SB, SI, SR1, and 
SR0 registers. Only one bank is accessible at a time. The additional bank of 
registers can be activated for extremely fast context switching. A new task, 
such as an interrupt service routine, can then be executed without trans-
ferring current states to storage.

The selection of the primary or alternate bank of registers is controlled by 
the ena sec_reg and dis sec_reg assembly instructions or by bit zero in 
the MSTAT register. The alternate bank of registers is activated by the 
ena sec_reg instruction or by setting bit zero of MSTAT to a 1. The primary 
bank of registers is activated by executing the dis sec_reg instruction or 
by clearing bit zero of MSTAT. Upon reset, the primary bank of registers is 
active by default.

The shifting of the input is determined by a control code (C) and a HI/LO 
reference signal. The control code is an 8-bit signed value which indicates 
the direction and number of places the input is to be shifted. Positive 
codes indicate a left shift (upshift) and negative codes indicate a right shift 
(downshift). The control code can come from three sources: the content 
of the shifter exponent (SE) register, the negated content of the SE register 
or an immediate value from the instruction. 
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The HI/LO signal determines the reference point for the shifting. In the HI 
state, all shifts are referenced to SR1 (the upper half of the output field), 
and in the LO state, all shifts are referenced to SR0 (the lower half). The 
HI/LO reference feature is useful when shifting 32-bit values since it allows 
both halves of the number to be shifted with the same control code. The 
HI/LO reference signal is selectable each time the shifter is used.

The shifter fills any bits to the right of the input value in the output field 
with zeros, and bits to the left are filled with the extension bit (X). The 
extension bit can be fed by three possible sources depending on the 
instruction being performed. The three sources are the MSB of the input, 
the AC bit from the arithmetic status register (ASTAT) or a zero.

Figure 2-13 on page 2-37 shows the shifter array output as a function of 
the control code and HI/LO signal.

The OR/PASS logic allows the shifted sections of a multiprecision num-
ber to be combined into a single quantity. In some shifter instructions, the 
shifted output may be logically ORed with the contents of the SR register; 
the shifter array is bitwise ORed with the current contents of the SR regis-
ter before being loaded there. When the [SR OR] option is not used in the 
instruction, the shifter array output is passed through and loaded into the 
shifter result (SR) register unmodified. 

The exponent detector derives an exponent for the shifter input value. 
The exponent detector operates in one of three ways, which determine 
how the input value is interpreted. In the HI state, the input is interpreted 
as a single precision number or the upper half of a double precision num-
ber. The exponent detector determines the number of leading sign bits 
and produces a code that indicates how many places the input must be 
up-shifted to eliminate all but one of the sign bits. The code is negative so 
that it can become the effective exponent for the mantissa formed by 
removing the redundant sign bits. 
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Control Code Shifter Array Output 
HI Reference 

+16 to +127 +32 to +127 00000000 00000000 00000000 00000000
+15 +31 R0000000 00000000 00000000 00000000
+14 +30 PR000000 00000000 00000000 00000000
+13 +29 NPR00000 00000000 00000000 00000000
+12 +28 MNPR0000 00000000 00000000 00000000
+11 +27 LMNPR000 00000000 00000000 00000000
+10 +26 KLMNPR00 00000000 00000000 00000000
+9 +25 JKLMNPR0 00000000 00000000 00000000
+8 +24 IJKLMNPR 00000000 00000000 00000000
+7 +23 HIJKLMNP R0000000 00000000 00000000
+6 +22 GHIJKLMN PR000000 00000000 00000000
+5 +21 FGHIJKLM NPR00000 00000000 00000000
+4 +20 EFGHIJKL MNPR0000 00000000 00000000
+3 +19 DEFGHIJK LMNPR000 00000000 00000000
+2 +18 CDEFGHIJ KLMNPR00 00000000 00000000
+1 +17 BCDEFGHI JKLMNPR0 00000000 00000000
0 +16 ABCDEFGH IJKLMNPR 00000000 00000000

-1 +15 XABCDEFG HIJKLMNP R0000000 00000000
-2 +14 XXABCDEF GHIJKLMN PR000000 00000000
-3 +13 XXXABCDE FGHIJKLM NPR00000 00000000
-4 +12 XXXXABCD EFGHIJKL MNPR0000 00000000
-5 +11 XXXXXABC DEFGHIJK LMNPR000 00000000
-6 +10 XXXXXXAB CDEFGHIJ KLMNPR00 00000000
-7 +9 XXXXXXXA BCDEFGHI JKLMNPR0 00000000
-8 +8 XXXXXXXX ABCDEFGH IJKLMNPR 00000000
-9 +7 XXXXXXXX XABCDEFG HIJKLMNP R0000000
-10 +6 XXXXXXXX XXABCDEF GHIJKLMN PR000000
-11 +5 XXXXXXXX XXXABCDE FGHIJKLM NPR00000
-12 +4 XXXXXXXX XXXXABCD EFGHIJKL MNPR0000
-13 +3 XXXXXXXX XXXXXABC DEFGHIJK LMNPR000
-14 +2 XXXXXXXX XXXXXXAB CDEFGHIJ KLMNPR00
-15 +1 XXXXXXXX XXXXXXXA BCDEFGHI JKLMNPR0
-16 0 XXXXXXXX XXXXXXXX ABCDEFGH IJKLMNPR
-17 -1 XXXXXXXX XXXXXXXX XABCDEFG HIJKLMNP
-18 -2 XXXXXXXX XXXXXXXX XXABCDEF GHIJKLMN
-19 -3 XXXXXXXX XXXXXXXX XXXABCDE FGHIJKLM
-20 -4 XXXXXXXX XXXXXXXX XXXXABCD EFGHIJKL
-21 -5 XXXXXXXX XXXXXXXX XXXXXABC DEFGHIJK
-22 -6 XXXXXXXX XXXXXXXX XXXXXXAB CDEFGHIJ
-23 -7 XXXXXXXX XXXXXXXX XXXXXXXA BCDEFGHI
-24 -8 XXXXXXXX XXXXXXXX XXXXXXXX ABCDEFGH
-25 -9 XXXXXXXX XXXXXXXX XXXXXXXX XABCDEFG
-26 -10 XXXXXXXX XXXXXXXX XXXXXXXX XXABCDEF
-27 -11 XXXXXXXX XXXXXXXX XXXXXXXX XXXABCDE
-28 -12 XXXXXXXX XXXXXXXX XXXXXXXX XXXXABCD
-29 -13 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXABC
-30 -14 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXAB
-31 -15 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXA
-32 to -128 -16 to -128 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX

LEGEND:
ABCDEFGHIJKLMNPR represents
the 16-bit input pattern

X stands for the extension bit 
LO Reference 

Figure 2-13. Shifter Array Output
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In the HI-extend state (HIX), the input is interpreted as the result of an add 
or subtract performed in the ALU which may have overflowed. Therefore 
the exponent detector takes the arithmetic overflow (AV) status into con-
sideration. If AV is set, then a +1 exponent is output to indicate an extra bit 
is needed in the normalized mantissa (the ALU Carry bit); if AV is not set, 
then HI-extend functions exactly like the HI state. When performing a 
derive exponent function in HI or HI-extend modes, the exponent detector 
also outputs a shifter sign (SS) bit which is loaded into the arithmetic sta-
tus register (ASTAT). The sign bit is the same as the MSB of the shifter 
input except when AV is set; when AV is set in HI-extend state, the MSB is 
inverted to restore the sign bit of the overflowed value. 

In the LO state, the input is interpreted as the lower half of a double preci-
sion number. In the LO state, the exponent detector interprets the SS bit in 
the arithmetic status register (ASTAT) as the sign bit of the number. The SE 
register is loaded with the output of the exponent detector only if SE con-
tains –15. This occurs only when the upper half–which must be processed 
first–contained all sign bits. The exponent detector output is also offset by 
–16 to account for the fact that the input is actually the lower half of a 
32-bit value. Figure 2-14 gives the exponent detector characteristics for all 
three modes.

The exponent compare logic is used to find the largest exponent value in 
an array of shifter input values. The exponent compare logic in conjunc-
tion with the exponent detector derives a block exponent. The comparator 
compares the exponent value derived by the exponent detector with the 
value stored in the shifter block exponent (SB) register and updates the SB 
register only when the derived exponent value is larger than the value in SB 
register. See the examples shown in the following sections.
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S = Sign bit

N = Non-sign bit

LEGEND

HI Mode HIX Mode 

Shifter Array Input Output AV Output

1 DDDDDDDD DDDDDDDD +1
SNDDDDDD DDDDDDDD  0 0 SNDDDDDD DDDDDDDD  0
SSNDDDDD DDDDDDDD -1 0 SSNDDDDD DDDDDDDD -1
SSSNDDDD DDDDDDDD -2 0 SSSNDDDD DDDDDDDD -2
SSSSNDDD DDDDDDDD -3 0 SSSSNDDD DDDDDDDD -3
SSSSSNDD DDDDDDDD -4 0 SSSSSNDD DDDDDDDD -4
SSSSSSND DDDDDDDD -5 0 SSSSSSND DDDDDDDD -5
SSSSSSSN DDDDDDDD -6 0 SSSSSSSN DDDDDDDD -6
SSSSSSSS NDDDDDDD -7 0 SSSSSSSS NDDDDDDD -7
SSSSSSSS SNDDDDDD -8 0 SSSSSSSS SNDDDDDD -8
SSSSSSSS SSNDDDDD -9 0 SSSSSSSS SSNDDDDD -9
SSSSSSSS SSSNDDDD -10 0 SSSSSSSS SSSNDDDD -10
SSSSSSSS SSSSNDDD -11 0 SSSSSSSS SSSSNDDD -11
SSSSSSSS SSSSSNDD -12 0 SSSSSSSS SSSSSNDD -12
SSSSSSSS SSSSSSND -13 0 SSSSSSSS SSSSSSND -13
SSSSSSSS SSSSSSSN -14 0 SSSSSSSS SSSSSSSN -14
SSSSSSSS SSSSSSSS -15 0 SSSSSSSS SSSSSSSS -15

LO Mode

SS Output

S NDDDDDDD DDDDDDDD -15
S SNDDDDDD DDDDDDDD -16
S SSNDDDDD DDDDDDDD -17
S SSSNDDDD DDDDDDDD -18
S SSSSNDDD DDDDDDDD -19
S SSSSSNDD DDDDDDDD -20
S SSSSSSND DDDDDDDD -21
S SSSSSSSN DDDDDDDD -22
S SSSSSSSS NDDDDDDD -23
S SSSSSSSS SNDDDDDD -24
S SSSSSSSS SSNDDDDD -25
S SSSSSSSS SSSNDDDD -26
S SSSSSSSS SSSSNDDD -27
S SSSSSSSS SSSSSNDD -28
S SSSSSSSS SSSSSSND -29
S SSSSSSSS SSSSSSSN -30
S SSSSSSSS SSSSSSSS -31

Shifter Array Input

Shifter Array Input

D = Don't care bit

Figure 2-14. Exponent Detector Characteristics
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Shifter Operations
The shifter performs the following functions (instruction mnemonics 
shown in parentheses):

• Arithmetic Shift (ASHIFT)

• Logical Shift (LSHIFT)

• Normalize (NORM)

• Derive Exponent (EXP)

• Block Exponent Adjust (EXPADJ)

These basic shifter instructions can be used in a variety of ways, depending 
on the underlying arithmetic requirements. The following sections present 
single and multiple precision examples for these functions:

• Derivation of a Block Exponent

• Immediate Shifts

• Denormalization

• Normalization

The shift functions (arithmetic shift, logical shift, and normalize) can be 
optionally specified with [SR OR] and HI/LO modes to facilitate multipreci-
sion operations. [SR OR] logically ORs the shift result with the current 
contents of SR. This option is used to join two 16-bit quantities into a 
32-bit value in SR. When [SR OR] is not used, the shift value is passed 
through to SR directly. The HI and LO modifiers reference the shift to the 
upper or lower half of the 32-bit SR register. These shift functions take 
inputs from either the SI register or any other result register and load the 
32-bit shifted result into the SR register. 
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Shifter Input/Output Registers

Table 2-11 shows the sources of shifter input and output.

Derive Block Exponent

The EXPADJ instruction detects the exponent of the number largest in 
magnitude in an array of numbers. The steps for a typical block exponent 
derivation are as follows:

1. Load SB with –16. The SB register contains the exponent for the 
entire block. The possible values at the conclusion of a series of 
EXPADJ operations range from –15 to 0. The exponent compare 
logic updates the SB register if the new value is greater than the cur-
rent value. Loading the register with –16 initializes it to a value 
certain to be less than any actual exponents detected.

2. Process the first array element, as follows:

Array(1) = 11110101 10110001
Exponent = –3

–3 > SB (–16)
SB gets –3

Table 2-11. Shifter Input and Output

Source for Shifter Input Destination for Shifter Output

SI SR (SR0, SR1)

AR

MR0, MR1, MR2

SR0, SR1
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3. Process next array element, as follows:

Array(2)= 00000001 01110110
Exponent = –6

–6 < –3
SB remains –3

4. Continue processing array elements.

When and if an array element is found whose exponent is greater than SB, 
that value is loaded into SB. When all array elements have been processed, 
the SB register contains the exponent of the largest number in the entire 
block. No normalization is performed. EXPADJ is purely an inspection 
operation. The value in SB could be transferred to SE and used to normal-
ize the block on the next pass through the shifter. Or, SB could be 
associated with that data for subsequent interpretation.

Immediate Shifts

An immediate shift simply shifts the input bit pattern to the right (down-
shift) or left (upshift) by a given number of bits. Immediate shift 
instructions use the data value in the instruction itself to control the 
amount and direction of the shifting operation. (See the ADSP-218x DSP 
Instruction Set Reference for examples of this instruction.) The data value 
controlling the shift is an 8-bit signed number. The SE register is not used 
or changed by an immediate shift.

The following example shows the input value downshifted relative to the 
upper half of SR (SR1). This is the (HI) version of the shift:

SI=0xB6A3;
SR=LSHIFT SI BY –5 (HI);

Input: 10110110 10100011

Shift value: –5

SR: 00000101 10110101 00011000 000000
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Here is the same input value shifted in the other direction, referenced to 
the lower half (LO) of SR:

SI=0xB6A3;
SR=LSHIFT SI BY 5 (LO);

Input: 10110110 10100011

Shift value: +5

SR: 00000000 00010110 11010100 01100000

In addition to the direction of the shifting operation, the shift may be 
either arithmetic (ASHIFT) or logical (LSHIFT). For example, the following 
shows a logical shift, relative to the upper half of SR (HI):

SI=0xB6A3;
SR=LSHIFT SI BY –5 (HI);

Input:  10110110 10100011
Shift value: -5

SR: 00000101 10110101 00011000 00000000

This example shows an arithmetic shift of the same input and shift code:

SI=0xB6A3;
SR=ASHIFT SI BY –5 (HI);

Input: 10110110 10100011

Shift value: -5

SR: 11111101 10110101 00011000 00000000
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Denormalize

Denormalizing refers to shifting a number according to a predefined expo-
nent. The operation is effectively a floating-point to fixed-point 
conversion.

Denormalizing requires a sequence of operations. First, the SE register 
must contain the exponent value. This value may be explicitly loaded or 
may be the result of some previous operation. Next the shift itself is per-
formed, taking its shift value from the SE register, not from an immediate 
data value.

Two examples of denormalizing a double-precision number are given 
below. The first shows a denormalization in which the upper half of the 
number is shifted first, followed by the lower half. Since computations 
may produce output in either order, the second example shows the same 
operation in the other order, i.e. lower half first.

Always select the arithmetic shift for the higher half (HI) of the twos-com-
plement input (or logical for unsigned). Likewise, the first half processed 
does not use the [SR OR] option.

Modifier = HI,  No [SR OR],  Shift operation = Arithmetic,  SE = –3

First Input: 10110110 10100011 (upper half of desired result)

SR: 11110110 11010100 01100000 00000000

Now the lower half is processed. Always select a logical shift for the lower 
half of the input. Likewise, the second half processed must use the [SR OR] 
option to avoid overwriting the previous half of the output value.

Modifier = LO,  [SR OR],   Shift operation = Logical, SE =  –3

Second Input: 01110110 01011101 (lower half of desired result)

SR: 11110110 11010100 01101110 11001011
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Here is the same input processed in the reverse order. The higher half is 
always arithmetically shifted and the lower half is logically shifted. The 
first input is passed straight through to SR, but the second half is ORed to 
create a double-precision value in SR.

Modifier = LO,  No [SR OR],  Shift operation = Logical,  SE =  –3

First Input: 01110110 01011101 (lower half of desired result)

SR: 00000000 00000000 00001110 11001011

Modifier = HI,  [SR OR],  Shift operation = Arithmetic,  SE =  –3

Second Input: 10110110 10100011 (upper half of desired result)

SR: 11110110 11010100 01101110 11001011

Normalize

Numbers with redundant sign bits require normalizing. Normalizing a 
number is the process of shifting a twos-complement number within a 
field so that the rightmost sign bit lines up with the MSB position of the 
field and recording how many places the number was shifted. The opera-
tion can be thought of as a fixed-point to floating-point conversion, 
generating an exponent and a mantissa.

Normalizing is a two-stage process. The first stage derives the exponent. 
The second stage does the actual shifting. The first stage uses the EXP 
instruction which detects the exponent value and loads it into the SE regis-
ter. This instruction (EXP) recognizes a (HI) and (LO) modifier. The second 
stage uses the NORM instruction. The NORM instruction recognizes (HI) and 
(LO) and also has the [SR OR] option. The NORM instruction uses the 
negated value of the SE register as its shift control code. The negated value 
is used so that the shift is made in the correct direction.
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Here is a normalization example for a single precision input:

SE=EXP AR (HI);

Detects Exponent With Modifier = HI

Input: 11110110 11010100

SE set to: –3

Normalize, with modifier = HI  Shift driven by value in SE

Input: 11110110 11010100

SR: 10110110 10100000 00000000 00000000

For a single precision input, the normalize operation can use either the 
(HI) or (LO) modifier, depending on whether you want the result in SR1 or 
SR0, respectively.

Double precision values follow the same general scheme. The first stage 
detects the exponent and the second stage normalizes the two halves of the 
input. For double precision, however, there are two operations in each 
stage.

For the first stage, the upper half of the input must be operated on first. 
This first exponent derivation loads the exponent value into SE. The sec-
ond exponent derivation, operating on the lower half of the number will 
not alter the SE register unless SE = –15. This happens only when the first 
half contained all sign bits. In this case, the second operation will load a 
value into SE. (See Figure 2-14 on page 2-39) This value is used to control 
both parts of the normalization that follows.

For the second stage, now that SE contains the correct exponent value, the 
order of operations is immaterial. The first half (whether HI or LO) is nor-
malized without the [SR OR] and the second half is normalized with [SR 
OR] to create one double-precision value in SR. The (HI) and (LO) modifiers 
identify which half is being processed.
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Here is a complete example of a typical double precision normalization.

1. Detect Exponent, Modifier = HI

First Input: 11110110 11010100 (Must be upper half)

SE set to: -3

2. Detect Exponent, Modifier = LO

Second Input: 01101110 11001011

SE unchanged, still -3

3. Normalize, Modifier = HI, No [SR OR], SE = –3

First Input: 11110110 11010100

SR: 10110110 10100000 00000000 00000000

4. Normalize, Modifier = LO, [SR OR], SE = –3

Second Input: 01101110 11001011

SR: 10110110 10100011 01110110 01011000

If the upper half of the input contains all sign bits, the SE register value is 
determined by the second derive exponent operation as shown in the fol-
lowing example.

1. Detect Exponent, Modifier = HI

First Input: 11111111 11111111 (Must be upper half)

SE set to: -15

2. Detect Exponent, Modifier = LO

Second Input: 11110110 11010100

SE now set to: -19
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3. Normalize, Modifier = HI, No [SR OR], SE = –19 (negated)

First Input: 11111111 11111111

SR: 00000000 00000000 00000000 00000000

All values of SE less than –15 (resulting in a shift of +16 or more) upshift 
the input completely off scale.

4. Normalize, Modifier = LO, [SR OR], SE = –19 (negated)

Second Input: 11110110 11010100

SR: 10110110 10100000 00000000 00000000

There is one additional normalization situation, requiring the HI-extended 
(HIX) state. This is specifically when normalizing ALU results (AR) that 
may have overflowed. This operation reads the arithmetic status word 
(ASTAT) overflow bit (AV) and the carry bit (AC) in conjunction with the 
value in AR. AV is set (1) if an overflow has occurred. AC contains the true 
sign of the twos-complement value.

For example, given these conditions:

AR  = 11111010 00110010

AV  = 1, indicating overflow
AC  = 0, the true sign bit of this value

1. Detect Exponent, Modifier = HIX

SE gets set to +1

2. Normalize, Modifier = HI, SE = 1

AR = 11111010 00110010

SR = 01111101 00011001

The AC bit is supplied as the sign bit, shown in bold above.
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The HIX operation executes properly whether or not there has actually 
been an overflow. Consider this example:

AR  = 11100011 01011011

AV  = 0, indicating no overflow
AC  = 0, not meaningful if AV = 0

1. Detect Exponent, Modifier = HIX

SE set to –2

2. Normalize, Modifier = HI, SE = –2

AR = 11100011 01011011

SR = 10001101 01101000 00000000 00000000

The AC bit is not used as the sign bit. 

A brief examination of Figure 2-13 on page 2-37 shows that the HIX mode 
is identical to the HI mode when AV is not set. When the NORM, LO opera-
tion is done, the extension bit is zero; when the NORM, HI operation is done, 
the extension bit is AC.
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