
A NUMERIC FORMATS
Figure A-0.

Table A-0.

Listing A-0.
Overview
ADSP-218x family processors support 16-bit fixed-point data in hard-
ware. Special features in the computation units allow you to support other
formats in software. This appendix describes various aspects of the 16-bit
data format. It also describes how to implement a block floating-point for-
mat in software.

Unsigned or Signed: Twos-Complement
Format

Unsigned binary numbers may be thought of as positive, having nearly
twice the magnitude of a signed number of the same length. The least sig-
nificant words of multiple precision numbers are treated as unsigned
numbers.

Signed numbers supported by the ADSP-218x family are in twos-comple-
ment format. Signed-magnitude, ones-complement, BCD or excess-n
formats are not supported.
ADSP-218x DSP Hardware Reference A-1

Integer or Fractional Format
Integer or Fractional Format
The ADSP-218x family supports both fractional and integer data formats,
with the exception that the ADSP-2100 processor does not perform inte-
ger multiplication. In an integer, the radix point is assumed to lie to the
right of the LSB, so that all magnitude bits have a weight of 1 or greater.
This format is shown in Figure A-1, which can be found on the following
page. Note that in twos-complement format, the sign bit has a negative
weight.

In a fractional format, the assumed radix point lies within the number, so
that some or all of the magnitude bits have a weight of less than 1. In the
format shown in Figure A-2, the assumed radix point lies to the left of the
3 LSBs, and the bits have the weights indicated.

15 14 13

• • •

2 1 0

–(2) 2 2 2 2 2
15 14 13 2 1 0

Sign
Bit

Weight

Bit

Signed Integer

15 14 13

• • •

2 1 0

2 2 2 2 2 2
15 14 13 2 1 0

Weight

Bit

Unsigned Integer

Radix
Point

Radix
Point

Figure A-1. Integer Format
A-2 ADSP-218x DSP Hardware Reference

Numeric Formats
The notation used to describe a format consists two numbers separated by
a period (.); the first number is the number of bits to the left of radix
point, the second is the number of bits to the right of the radix point. For
example, 16.0 format is an integer format; all bits lie to the left of the
radix point. The format shown in Figure A-2 is 13.3.

15 14 13

• • •

2 1 0

–(2) 2 2 2 2 2
12 11 10 –1 –2 –3

Sign
Bit

Weight

Bit

Signed Fractional (13.3)

15 14 13

• • •

2 1 0

2 2 2 2 2 2
12 11 10 –1 –2 –3

Weight

Bit

Unsigned Fractional (13.3)

4 3

2 2
1 0

4 3

2 2
1 0

Radix
Point

Radix
Point

Figure A-2. Fractional Format
ADSP-218x DSP Hardware Reference A-3

Integer or Fractional Format
Table A-1 shows the ranges of numbers that can be represented in the
fractional formats that are possible with 16 bits.

Table A-1. Fractional Formats and Their Ranges

Format # of
Integer
Bits

of
Fractional
Bits

Max Positive Value
(0x7FFF) In Decimal

Max Negative
Value (0x8000)
In Decimal

Value of 1 LSB
(0x0001) In Decimal

1.15 1 15 0.999969482421875 –1.0 0.000030517578125

2.14 2 14 1.999938964843750 –2.0 0.000061035156250

3.13 3 13 3.999877929687500 –4.0 0.000122070312500

4.12 4 12 7.999755859375000 –8.0 0.000244140625000

5.11 5 11 15.999511718750000 –16.0 0.000488281250000

6.10 6 10 31.999023437500000 –32.0 0.000976562500000

7.9 7 9 63.998046875000000 –64.0 0.001953125000000

8.8 8 8 127.996093750000000 –128.0 0.003906250000000

9.7 9 7 255.992187500000000 –256.0 0.007812500000000

10.6 10 6 511.984375000000000 –512.0 0.015625000000000

11.5 11 5 1023.968750000000000 –1024.0 0.031250000000000

12.4 12 4 2047.937500000000000 –2048.0 0.062500000000000

13.3 13 3 4095.875000000000000 –4096.0 0.125000000000000

14.2 14 2 8191.750000000000000 –8192.0 0.250000000000000

15.1 15 1 16383.500000000000000 –16384.0 0.500000000000000

16.0 16 0 32767.000000000000000 –32768.0 1.000000000000000
A-4 ADSP-218x DSP Hardware Reference

Numeric Formats
Binary Multiplication
In addition and subtraction, both operands must be in the same format
(signed or unsigned, radix point in the same location) and the result for-
mat is the same as the input format. Addition and subtraction are
performed the same way whether the inputs are signed or unsigned.

In multiplication, however, the inputs can have different formats, and the
result depends on their formats. The ADSP-218x family assembly lan-
guage allows you to specify whether the inputs are both signed, both
unsigned, or one of each (mixed-mode). The location of the radix point in
the result can be derived from its location in each of the inputs. This is
shown in Figure A-3. The product of two 16-bit numbers is a 32-bit num-
ber. If the inputs’ formats are M.N and P.Q, the product has the format
(M+P).(N+Q). For example, the product of two 13.3 numbers is a 26.6
number. The product of two 1.15 numbers is a 2.30 number.

16-Bit Examples:

5.3
5.3

10.6

1.15

1.15

2.30

1.111

11.11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0 1001

1.3 format

2.2 format

3.5 format = (1+2) . (2+3)

4-Bit Example:

M.N

P.Q

(M+P) . (N+Q)

General Rule:

011.

Figure A-3. Format of Multiplier Result
ADSP-218x DSP Hardware Reference A-5

Binary Multiplication
Fractional Mode and Integer Mode
A product of 2 twos-complement numbers has two sign bits. Since one of
these bits is redundant, you can shift the entire result left one bit. Addi-
tionally, if one of the inputs was a 1.15 number, the left shift causes the
result to have the same format as the other input (with 16 bits of addi-
tional precision). For example, multiplying a 1.15 number by a 5.11
number yields a 6.26 number. When shifted left one bit, the result is a
5.27 number, or a 5.11 number plus 16 LSBs.

The ADSP-218x family provides a mode (called the fractional mode) in
which the multiplier result is always shifted left one bit before being writ-
ten to the result register. This left shift eliminates the extra sign bit when
both operands are signed, yielding a correctly formatted result.

When both operands are in 1.15 format, the result is 2.30 (30 fractional
bits). A left shift causes the multiplier result to be 1.31 which can be
rounded to 1.15. Thus, if you use a fractional data format, it is most con-
venient to use the 1.15 format.

In the integer mode, the left shift does not occur. This is the mode to use
if both operands are integers (in the 16.0 format). The 32-bit multiplier
result is in 32.0 format, also an integer.

In all ADSP-218x DSPs, fractional and integer modes are controlled by a
bit in the MSTAT register. At reset, these processors default to the fractional
mode.
A-6 ADSP-218x DSP Hardware Reference

Numeric Formats
Block Floating-Point Format
A block floating-point format enables a fixed-point processor to gain some
of the increased dynamic range of a floating-point format without the
overhead needed to do floating-point arithmetic. However, some addi-
tional programming is required to maintain a block floating-point format.

A floating-point number has an exponent that indicates the position of the
radix point in the actual value. In block floating-point format, a set
(block) of data values share a common exponent. To convert a block of
fixed-point values to block floating-point format, you would shift each
value left by the same amount and store the shift value as the block
exponent.

 Typically, block floating-point format allows you to shift out non-signifi-
cant MSBs, increasing the precision available in each value. You can also
use block floating-point format to eliminate the possibility of a data value
overflowing. Figure A-4 shows an example.

0x0FFF

0x1FFF

0x07FF

=

=

=

0000

0001

0000

1111

1111

0111

1111

1111

1111

1111

1111

1111

2 Guard Bits

Sign Bit

To detect bit growth into 2 guard bits, set SB=–2

Figure A-4. Data With Guard Bits
ADSP-218x DSP Hardware Reference A-7

Block Floating-Point Format
The three data samples each have at least 2 non-significant, redundant
sign bits. Each data value can grow by these two bits (two orders of magni-
tude) before overflowing; thus, these bits are called guard bits. If it is
known that a process will not cause any value to grow by more than these
two bits, then the process can be run without loss of data. Afterward, how-
ever, the block must be adjusted to replace the guard bits before the next
process.

Figure A-5 shows the data after processing but before adjustment.

0x1FFF

0x3FFF

0x07FF

=

=

=

0001

0011

0000

1111

1111

0111

1111

1111

1111

1111

1111

1111

1 Guard Bit

Sign Bit

EXPADJ instruction checks
exponent, adjusts SB

Exponent = –2

Exponent = –1

Exponent = –4

SB = –2

SB = –1

SB = –1

0x0FFF

0x1FFF

0x03FF

=

=

=

0000

0001

0000

1111

1111

0011

1111

1111

1111

1111

1111

1111

2 Guard Bits

Sign Bit

1. Check for Bit Growth

2. Shift Right to Restore Guard Bits

Figure A-5. Block Floating-Point Adjustment
A-8 ADSP-218x DSP Hardware Reference

Numeric Formats
The block floating-point adjustment is performed as follows. Initially, the
value of SB is –2, corresponding to the 2 guard bits. During processing,
each resulting data value is inspected by the EXPADJ instruction, which
counts the number of redundant sign bits and adjusts SB is if the number
of redundant sign bits is less than 2. In this example, SB=–1 after process-
ing, indicating that the block of data must be shifted right one bit to
maintain the 2 guard bits. If SB were 0 after processing, the block would
have to be shifted two bits right. In either case, the block exponent is
updated to reflect the shift.
ADSP-218x DSP Hardware Reference A-9

Block Floating-Point Format
A-10 ADSP-218x DSP Hardware Reference

	Contents
	A Numeric Formats
	Overview
	Unsigned or Signed: Twos-Complement Format
	Integer or Fractional Format
	Figure A-1. Integer Format
	Figure A-2. Fractional Format
	Table A-1. Fractional Formats and Their Ranges�

	Binary Multiplication
	Figure A-3. Format of Multiplier Result
	Fractional Mode and Integer Mode

	Block Floating-Point Format
	Figure A-4. Data With Guard Bits
	Figure A-5. Block Floating-Point Adjustment

	Index

