Instruction Set Reference E1 15

15.1 QUICK LIST OF INSTRUCTIONS

This chapter is a complete reference for the instruction set of the
ADSP-2100 family. The instruction set is organized by instruction group
and, within each group, by individual instruction. The list below shows all
of the instructions and the reference page for each.

ALU MOVE
Add / Add with Carry (p. 15-21) Register Move (p. 15-63)
Subtract X-Y / Subtract X-Y with Borrow (p. 15-23) Load Register Immediate (p. 15-65)
Subtract Y-X / Subtract Y-X with Borrow (p. 15-25) Data Memory Read (Direct Address) (p. 15-67)
AND, OR, XOR (p. 15-27) Data Memory Read (Indirect Address) (p. 15-68)
Test Bit, Set Bit, Clear Bit, Toggle Bit (p. 15-29) Program Memory Read (Indirect Address) (p. 15-69)

Pass / Clear (p. 15-31)

Negate (p. 15-33)

NOT (p. 15-34)

Absolute Value (p. 15-35)
Increment (p. 15-36)
Decrement (p. 15-37)

Divide (p. 15-38)

Generate ALU Status (p. 15-40)

MAC

Multiply (p. 15-41)

Multiply / Accumulate (p. 15-43)
Multiply / Subtract (p. 15-45)

Clear (p.15-47)

Transfer MR (p. 15-48)

Conditional MR Saturation (p. 15-49)

SHIFTER

Arithmetic Shift (p. 15-50)

Logical Shift (p. 15-52)

Normalize (p. 15-54)

Derive Exponent (p. 15-56)

Block Exponent Adjust (p. 15-58)
Arithmetic Shift Immediate (p. 15-60)
Logical Shift Immediate (p. 15-62)

Data Memory Write (Direct Address) (p. 15-70)

Data Memory Write (Indirect Address) (p. 15-71)
Program Memory Write (Indirect Address) (p. 15-73)
I/0 Space Read /Write (p. 15-74)

PROGRAM FLOW

JUMP (p. 15-75)

CALL (p. 15-76)

JUMP or CALL on Flag In Pin (p. 15-77)
Modify Flag Out Pin (p. 15-78)

Return from Subroutine (p. 15-79)
Return from Interrupt (p. 15-80)

Do Until (p. 15-81)

IDLE (p. 15-83)

MISC

Stack Control (p. 15-84)

Mode Control (p. 15-87)

Modify Address Register (p. 15-89)
NOP (p. 15-90)

Interrupt Enable & Disable (p. 15-91)

MULTIFUNCTION

ALU/MAC/SHIFT with Memory Read (p. 15-92)
ALU/MAC/SHIFT with Data Register Move (p. 15-96)
ALU/MAC/SHIFT with Memory Write (p. 15-99)

Data & Program Memory Read (p. 15-103)

ALU/MAC with Data & Program Memory Read (p. 15-104)

15-1

15-2

152 OVERVIEW

This chapter provides an overview and detailed reference for the
instruction set of the ADSP-2100 family of DSP microprocessors.

For information regarding the ADSP-2100 Family Development Software,
refer to the ADSP-2100 Family Assembler Tools & Simulator Manual,
ADSP-2100 Family C Tools Manual, and ADSP-2100 Family C Runtime
Library Manual. These manuals provide a complete guide to the
development software. The handbooks Digital Signal Processing
Applications Using The ADSP-2100 Family, Volume 1 and Volume 2 present
DSP applications programs with source code and discussion.

The instruction set is tailored to the computation-intensive algorithms
common in DSP applications. For example, sustained single-cycle
multiplication/accumulation operations are possible. The instruction set
provides full control of the processors’ three computational units: the
ALU, MAC and Shifter. Arithmetic instructions can process single-
precision 16-bit operands directly; provisions for multiprecision
operations are available.

The high-level syntax of ADSP-2100 family source code is both readable
and efficient. Unlike many assembly languages, the ADSP-2100 family
instruction set uses an algebraic notation for arithmetic operations and for
data moves, resulting in highly readable source code. There is no
performance penalty for this; each program statement assembles into one
24-bit instruction which executes in a single cycle. There are no multicycle
instructions in the instruction set. (If memory access times require, or
contention for off-chip memory occurs, overhead cycles will be required,
but all instructions can otherwise execute in a single cycle.)

In addition to JUMP and CALL, the instruction set’s control instructions
support conditional execution of most calculations and a DO UNTIL
looping instruction. Return from interrupt (RTI) and return from
subroutine (RTS) are also provided.

The IDLE instruction is provided for idling the processor until an
interrupt occurs. IDLE puts the processor into a low-power state while
waiting for interrupts.

Two addressing modes are supported for memory fetches. Direct
addressing uses immediate address values; indirect addressing uses the I
registers of the two data address generators (DAGs).

Instruction Set Reference

The 24-bit instruction word allows a high degree of parallelism in
performing operations. The instruction set allows for single-cycle
execution of any of the following combinations:

any ALU, MAC or Shifter operation (conditional or non-conditional)
any register-to-register move

any data memory read or write

a computation with any data register to data register move

a computation with any memory read or write

a computation with a read from two memories.

The instruction set allows maximum flexibility. It provides moves from
any register to any other register, and from most registers to/from
memory. In addition, almost any ALU, MAC or Shifter operation may be
combined with any register-to-register move or with a register move to or
from either internal or external memory.

15.3 INSTRUCTION TYPES & NOTATION CONVENTIONS

The ADSP-2100 family instruction set is grouped into the following
categories:

Computational: ALU, MAC, Shifter
Move

Program Flow

Multifunction

Miscellaneous

Because the multifunction instructions best illustrate the power of the
processors” architecture, in the next section we begin with a discussion of
this group of instructions.

Throughout this chapter you will find tables summarizing the syntax of
the instruction groups. The following notation conventions are used in
these tables and in the reference page for each instruction.

Square Brackets [] Anything within square brackets is an optional
part of the instruction statement.

Parallel Lines | | Lists of operands are enclosed by vertical parallel
bars. One of the operands listed must be chosen.
If the parallel bars are within square brackets,
then the operand is optional for that instruction.

15-3

15-4

CAPITAL LETTERS Capital letters denote a literal in the instruction.
Literals are the instruction name (e.g. ADD),
register names, or operand selections. Literals
must be typed exactly as shown.

operands Some instruction operands are shown in
lowercase letters. These operands may take
different values in assembly code. For example,
the operand yop may be one of several registers:

AY0, AY1, or AF.

<exp> Denotes exponent (shift value) in Shift Immediate
instructions; must be an 8-bit signed integer
constant.

<data> Denotes an immediate data value. Can also be a

symbol (address label or variable /buffer name)
dereferenced by the ‘%’ or ‘" operators.

<addr> Denotes an immediate address value to be
encoded in the instruction. The <addr> may be
either an immediate value (a constant) or a
program label.

<reg> Refers to any accessible register; see Table 15.7.
<dreg> Refers to any data register; see Table 15.7.

Immediate values, <exp>, <data>, or <addr>, may be a constant in
decimal, hexadecimal, octal or binary format. Default is to decimal.

154 MULTIFUNCTION INSTRUCTIONS

Multifunction operations take advantage of the inherent parallelism of the
ADSP-2100 family architecture by providing combinations of data moves,
memory reads/memory writes, and computation, all in a single cycle.

15.4.1 ALU/MAC With Data & Program Memory Read

Perhaps the single most common operation in DSP algorithms is the sum
of products, performed as follows:

¢ Fetch two operands (such as a coefficient and data point)
e Multiply the operands and sum the result with previous products

Instruction Set Reference

The ADSP-2100 family processors can execute both data fetches and the
multiplication/accumulation in a single-cycle. Typically, a loop of
multiply /accumulates can be expressed in ADSP-21xx source code in just
two program lines. Since the on-chip program memory of the ADSP-21xx
processors is fast enough to provide an operand and the next instruction
in a single cycle, loops of this type can execute with sustained single-cycle
throughput. An example of such an instruction is:

MR=MR+MX0*MYO(SS), MX0=DM(I0,M0), MYO=PM(14,M5);

The first clause of this instruction (up to the first comma) says that MR, the
MAC result register, gets the sum of its previous value plus the product of
the (current) X and Y input registers of the MAC (MX0 and MYO0) both
treated as signed (SS).

In the second and third clauses of this multifunction instruction two new
operands are fetched. One is fetched from the data memory (DM) pointed
to by index register zero (I0, post modified by the value in M0) and the
other is fetched from the program memory location (PM) pointed to by 14
(post-modified by M5 in this instance). Note that indirect memory
addressing uses a syntax similar to array indexing, with DAG registers
providing the index values. Any I register may be paired with any M
register within the same DAG.

As discussed in Chapter 2, “Computational Units,” registers are read at
the beginning of the cycle and written at the end of the cycle. The
operands present in the MX0 and MYO0 registers at the beginning of the
instruction cycle are multiplied and added to the MAC result register, MR.
The new operands fetched at the end of this same instruction overwrite
the old operands after the multiplication has taken place and are available
for computation on the following cycle. You may, of course, load any data
registers in conjunction with the computation, not just MAC registers with
a MAC operation as in our example.

The computational part of this multifunction instruction may be any
unconditional ALU instruction except division or any MAC instruction
except saturation. Certain other restrictions apply: the next X operand
must be loaded into MX0 from data memory and the new Y operand must
be loaded into MYO0 from program memory (internal and external memory
are identical at the level of the instruction set). The result of the
computation must go to the result register (MR or AR) not to the feedback
register (MF or AF).

15-5

15-6

15.4.2 Data & Program Memory Read

This variation of a multifunction instruction is a special case of the
multifunction instruction described above in which the computation is
omitted. It executes only the dual operand fetch, as shown below:

AX0=DM(I2,M0), AYO=PM(I4,M6);

In this example we have used the ALU input registers as the destination.
As with the previous multifunction instruction, X operands must come
from data memory and Y operands from program memory (internal or
external memory in either case, for the processors with on-chip memory).

15.4.3 Computation With Memory Read

If a single memory read is performed instead of the dual memory read of
the previous two multifunction instructions, a wider range of
computations can be executed. The legal computations include all ALU
operations except division, all MAC operations and all Shifter operations
except SHIFT IMMEDIATE. Computation must be unconditional. An
example of this kind of multifunction instruction is:

AR=AX0+AY0, AX0O=DM(I0,M3);

Here an addition is performed in the ALU while a single operand is
fetched from data memory. The restrictions are similar to those for
previous multifunction instructions. The value of AXO0, used as a source
for the computation, is the value at the beginning of the cycle. The data
read operation loads a new value into AX0 by the end of the cycle. For this
same reason, the destination register (AR in the example above) cannot be
the destination for the memory read.

15.4.4 Computation With Memory Write

The computation with memory write instruction is similar in structure to
the computation with memory read: the order of the clauses in the
instruction line, however, is reversed. First the memory write is
performed, then the computation, as shown below:

DM(I0,M0)=AR, AR=AX0+AYO0;

Again the value of the source register for the memory write (AR in this
example) is the value at the beginning of the instruction. The computation
loads a new value into the same register; this is the value in AR at the end
of this instruction. Reversing the order of the clauses of the instruction is
illegal and causes the assembler to generate a warning; it would imply

Instruction Set Reference

that the result of the computation is written to memory when, in fact, the
previous value of the register is what is written. There is no requirement
that the same register be used in this way although this will usually be the
case in order to pipeline operands to the computation.

The restrictions on computation operations are identical to those given
above. All ALU operations except division, all MAC operations, and all
Shifter operations except SHIFT IMMEDIATE are legal. Computations
must be unconditional.

15.4.5 Computation With Data Register Move

This final type of multifunction instruction performs a data register to
data register move in parallel with a computation. Most of the restrictions
applying to the previous two instructions also apply to this instruction.

AR=AX0+AYO0, AX0O=MR2;

Here an ALU addition operation occurs while a new value is loaded into
AXO from MR2. As before, the value of AX0 at the beginning of the
instruction is the value used in the computation. The move may be from
or to all ALU, MAC and Shifter input and output registers except the
teedback registers (AF and MF) and SB.

In the example, the data register move loads the AX0 register with the
new value at the end of the cycle. All ALU operations except division, all

MAC operations and all Shifter operations except SHIFT IMMEDIATE are
legal. Computation must be unconditional.

A complete list of data registers is given in Table 15.7. A complete list of
the permissible xops and yops for computational operations is given in the
reference page for each instruction. Table 15.1 shows the legal
combinations for multifunction instructions: you may combine operations
on the same row with each other.

Data Move Data Move
Unconditional Computations (DM=DAG1) (PM=DAG2)
None or any ALU (except Division) or MAC DM read PM read
Any ALU except Division DM read —
Any MAC — PM read
Any Shift except Immediate DM write —
— PM write

Register-To-Register

Table 15.1 Summary Of Valid Combinations For Multifunction Instructions

15-7

	Table of Contents
	Index
	15 Instruction Set Reference
	15.1 QUICK LIST OF INSTRUCTIONS
	15.2 OVERVIEW
	15.3 INSTRUCTION TYPES & NOTATION CONVENTIONS
	15.4 MULTIFUNCTION INSTRUCTIONS
	15.4.1 ALU/MAC With Data & Program Memory Read
	15.4.2 Data & Program Memory Read
	15.4.3 Computation With Memory Read
	15.4.4 Computation With Memory Write
	15.4.5 Computation With Data Register Move

	15.5 ALU, MAC & SHIFTER INSTRUCTIONS
	15.5.1 ALU Group
	15.5.2 MAC Group
	15.5.3 Shifter Group

	15.6 MOVE: READ & WRITE
	15.7 PROGRAM FLOW CONTROL
	15.8 MISCELLANEOUS INSTRUCTIONS
	15.9 EXTRA CYCLE CONDITIONS
	15.9.1 Multiple Off-Chip Memory Accesses
	15.9.2 Wait States
	15.9.3 SPORT Autobuffering & DMA

	15.10 INSTRUCTION SET SYNTAX
	15.10.1 Punctuation & Multifunction Instructions
	15.10.2 Syntax Notation Example
	15.10.3 Status Register Notation

	ALU Instructions
	MAC Instructions
	SHIFTER Instructions
	MOVE Instructions
	PROGRAM FLOW Instructions
	MISC. Instructions
	MULTIFUNCTION Instructions

