
W4.5
User’s Guide

 Revision 2.0, April 2006

Part Number:
82-000420-02

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106

Copyright Information
©2006 Analog Devices, Inc., ALL RIGHTS RESERVED. This document
may not be reproduced in any form without prior, express written consent
from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, the CROSSCORE logo, VisualDSP++,
SHARC, TigerSHARC, Blackfin, and EZ-KIT Lite are registered trade-
marks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

CONTENTS

PREFACE

Purpose of This Manual .. xxiii

Intended Audience .. xxiii

Manual Contents ... xxiv

What’s New in This Manual .. xxv

Technical or Customer Support .. xxvi

Supported Processors ... xxvii

Product Information .. xxviii

MyAnalog.com ... xxviii

Processor Product Information .. xxix

Related Documents .. xxix

Online Technical Documentation .. xxx

Accessing Documentation From VisualDSP++ xxxi

Accessing Documentation From Windows xxxi

Accessing Documentation From the Web xxxii

Embedded Processing & DSP Knowledge Base xxxii

Printed Manuals ... xxxiii
VisualDSP++ 4.5 User’s Guide iii

VisualDSP++ Documentation Set xxxiii

Hardware Tools Manuals ... xxxiii

Processor Manuals ... xxxiii

Data Sheets ... xxxiii

Notation Conventions .. xxxiv

INTRODUCTION TO VISUALDSP++

VisualDSP++ Features .. 1-2

Integrated Development and Debugging 1-2

Code Development Tools .. 1-2

Source File Editing Features .. 1-3

Project Management Features .. 1-4

Debugging Features ... 1-5

VDK Features ... 1-6

VisualDSP++ 4.5 Features ... 1-7

License Management .. 1-10

Licensing Options ... 1-11

License Status ... 1-12

Temporary Licenses .. 1-12

Valid Versus Expired Licenses .. 1-12

Client Licenses ... 1-12

License Installation ... 1-13

VisualDSP++ Product Upgrades .. 1-14

Product Serial Numbers .. 1-14

Project Development .. 1-15
iv VisualDSP++ 4.5 User’s Guide

Overview of Programming With VisualDSP++ 1-15

Project Development Stages ... 1-17

Targets .. 1-19

Simulation Targets .. 1-19

EZ-KIT Lite Targets ... 1-20

Emulator Targets ... 1-20

Platforms .. 1-20

Debugging Overview ... 1-23

VisualDSP++ Kernel .. 1-25

Program Development Steps .. 1-25

Step 1: Create a Project ... 1-26

Step 2: Configure Project Options 1-26

Step 3: Add and Edit Project Source Files 1-26

Adding Files to Your Project .. 1-26

Creating Files to Add to Your Project 1-27

Editing Files .. 1-27

Managing Project Dependencies 1-27

Step 4: Specifying Project Build Options 1-27

Configuration ... 1-28

Project-Wide File and Tool Options 1-28

Individual File and Tool Options 1-28

Step 5: Build a Debug Version of the Project 1-29

Step 6: Create a Debug Session and Load the Executable 1-29

Step 7: Run and Debug the Program 1-29
VisualDSP++ 4.5 User’s Guide v

Step 8: Build a Release Version of the Project 1-29

Code Development Tools .. 1-30

Compiler .. 1-31

C++ Run-Time Libraries ... 1-32

Dinkum Abridged C++ Library ... 1-32

Assembler ... 1-33

Linker ... 1-34

Expert Linker .. 1-37

Expert Linker Window ... 1-38

Memory Map Pane Right-Click Menu 1-39

Stack and Heap Usage ... 1-42

Archiver .. 1-44

Splitter ... 1-44

Loader .. 1-45

Processor Projects ... 1-47

Project Options ... 1-48

Project Groups .. 1-49

Project Group Files ... 1-50

Source Code Control (SCC) .. 1-51

Makefiles .. 1-52

Rules .. 1-53

Output Window ... 1-54

Example Makefile ... 1-54

Project Configurations .. 1-56
vi VisualDSP++ 4.5 User’s Guide

Customized Project Configurations .. 1-57

Project Build ... 1-57

Build Options ... 1-58

File Building ... 1-59

Batch Builds .. 1-59

Pre-Build and Post-Build Options .. 1-59

Command Syntax .. 1-60

Project Dependencies .. 1-60

Project Window Rules ... 1-60

VisualDSP++ Help System .. 1-62

ENVIRONMENT

Project Window .. 2-2

Project View .. 2-3

Project Dependencies .. 2-3

Project Nodes .. 2-4

Project Folders .. 2-4

Project Files .. 2-6

Project Window Icons for Source Code Control (SCC) 2-7

Project Page Right-Click Menus ... 2-8

Project Group Icon Right-Click Menu 2-8

Project Icon Right-Click Menu .. 2-9

Folder Icon Right-Click Menu .. 2-10

File Icon Right-Click Menu ... 2-10

File Associations .. 2-11
VisualDSP++ 4.5 User’s Guide vii

Automatic File Placement .. 2-12

File Placement Rules ... 2-12

Example ... 2-13

Kernel Page ... 2-13

Editor Windows ... 2-13

Editor Window Symbols ... 2-16

Bookmarks .. 2-17

Syntax Coloring .. 2-17

Viewing Modes: Source Mode vs. Mixed Mode 2-18

Source Mode .. 2-18

Mixed Mode ... 2-18

Editor Tab Mode .. 2-19

Context-Sensitive Expression Evaluation 2-21

Viewing an Expression .. 2-22

Highlighting an Expression ... 2-22

Right-Click Menu ... 2-23

Output Window ... 2-24

Viewing Error Message Details .. 2-24

Output Window Tabs ... 2-26

Build Page .. 2-26

Console Page .. 2-26

Code Development Tools Batch Processing Messages 2-27

Message Severity Hierarchy ... 2-28

Syntax of Help for Error Messages 2-28
viii VisualDSP++ 4.5 User’s Guide

Promoting, Demoting, and Suppressing Error Messages 2-29

Suppressing Compiler Warnings and Remarks 2-33

Log File ... 2-34

Output Window Customization ... 2-34

Right-Click Menu ... 2-35

Script Command Output ... 2-36

Debugging Windows ... 2-39

Disassembly Windows ... 2-40

Other Disassembly Window Features 2-43

Right-Click Menu ... 2-43

Disassembly Window Symbols .. 2-45

Expressions Window .. 2-46

Expressions Permitted in an Expression Window 2-47

Trace Windows .. 2-48

Locals Window .. 2-50

Statistical/Linear Profiling Window .. 2-51

Window Components ... 2-51

Left Pane .. 2-51

Right Pane .. 2-53

Status Bar ... 2-53

Right-Click Menu ... 2-53

Window Operations .. 2-54

Changing the Window View ... 2-54

Displaying a Source File .. 2-55
VisualDSP++ 4.5 User’s Guide ix

Displaying Functions in Libraries 2-55

Working With Ranges ... 2-56

Switching Display Modes .. 2-56

Filtering PC Samples With No Debug Information 2-56

Call Stack Window ... 2-59

Memory Windows .. 2-59

Number Formats in Memory Windows 2-60

Memory Window Right-Click Menu 2-62

Expression Tracking in a Memory Window 2-63

Memory Window Display Customization 2-65

Background Telemetry Channels (BTCs) 2-65

BTC Definitions in Your Program 2-66

Enabling BTC on ADSP-2126x and ADSP-BF36x Processors 2-67

BTC Priority .. 2-68

BTC Memory Window ... 2-68

BTC Memory Window Right-Click Menu 2-70

Register Windows ... 2-71

Stack Windows ... 2-74

Custom Registers Windows ... 2-74

Multiprocessor Window .. 2-75

Multiprocessor Window Pages ... 2-76

Status Page ... 2-76

Groups Page ... 2-77

Operating on Multiprocessor Groups 2-77
x VisualDSP++ 4.5 User’s Guide

Focus .. 2-78

Right-Click Menu ... 2-78

Pipeline Viewer Window ... 2-79

Right-Click Menu ... 2-80

Pipeline Viewer Properties Dialog Box 2-81

Pipeline Viewer Window Event Icons 2-82

Pipeline Instruction Event Details 2-83

Cache Viewer Window .. 2-84

Configuration Page ... 2-87

Detailed View Page ... 2-88

History Page ... 2-89

Performance Page .. 2-91

Histogram Page ... 2-92

Address View Page .. 2-93

VDK Status Window ... 2-94

VDK State History Window .. 2-96

Thread Status and Event Colors .. 2-97

Window Operations .. 2-98

Right-Click Menu ... 2-98

Target Load Window ... 2-99

Plot Windows ... 2-100

Plot Window Features ... 2-101

Status Bar ... 2-101

Tool Bar .. 2-102
VisualDSP++ 4.5 User’s Guide xi

Right-Click Menu .. 2-103

Plot Window Statistics .. 2-105

Plot Configuration ... 2-106

Plot Window Presentation .. 2-107

Plot Presentation Options ... 2-109

Image Viewer .. 2-109

Automation Interface .. 2-111

Toolbar .. 2-111

Status Bar ... 2-112

Right-Click Menu .. 2-112

DEBUGGING

Debug Sessions ... 3-2

Debug Session Management .. 3-3

Simulation vs. Emulation .. 3-3

Breakpoints .. 3-3

Watchpoints ... 3-4

Multiprocessor (MP) System Debugging 3-4

Setting Up a Multiprocessor Debug Session 3-4

Debugging a Multiprocessor System 3-5

Focus and Pinning .. 3-6

Window Title Bar Information .. 3-6

Additional Focus Indication .. 3-7

Code Analysis Tools .. 3-7

Statistical Profiles and Linear Profiles 3-8
xii VisualDSP++ 4.5 User’s Guide

Simulation: Linear Profiling .. 3-8

Emulation: Statistical Profiling .. 3-8

Traces .. 3-9

Program Execution Operations .. 3-10

Selecting a New Debug Session at Startup 3-10

Loading the Executable Program .. 3-11

Program Execution Commands .. 3-11

Restarting the Program .. 3-12

Performing a Restart During Simulation 3-12

Performing a Restart During Emulation 3-13

Breakpoints ... 3-13

Unconditional and Conditional Breakpoints 3-14

Automatic Breakpoints .. 3-14

Watchpoints .. 3-15

Hardware Breakpoints ... 3-16

Latency ... 3-16

Restrictions ... 3-16

Simulation Tools ... 3-16

Interrupts .. 3-17

Input/Output Simulation (Data Streams) 3-17

Plots ... 3-19

Plot Types ... 3-20

Line Plots .. 3-21

X-Y Plots ... 3-22
VisualDSP++ 4.5 User’s Guide xiii

Constellation Plots .. 3-23

Eye Diagrams .. 3-24

Waterfall Plots .. 3-25

Spectrogram Plots ... 3-27

Flash Programmer ... 3-28

Flash Devices .. 3-29

Flash Programmer Functions ... 3-29

Flash Driver .. 3-30

Flash Programmer Window ... 3-30

Energy-Aware Programming .. 3-31

Ranking .. 3-31

Example ... 3-31

REFERENCE INFORMATION

Support Information ... A-2

IDDE Command-Line Parameters .. A-7

Extensive Scripting ... A-8

File Types ... A-12

Parts of the User Interface ... A-15

Title Bar ... A-16

Additional Information in Title Bars A-17

Title Bar Right-Click Menu .. A-17

Control Menu ... A-18

Program Icons .. A-18

Editor Windows ... A-18
xiv VisualDSP++ 4.5 User’s Guide

Debugging Windows .. A-19

Menu Bar ... A-19

Toolbars and User Tools .. A-19

Built-In Toolbars ... A-20

Toolbar Customization ... A-21

User Tools ... A-22

Toolbar Buttons ... A-22

Toolbar Operation ... A-22

Toolbar Button Appearance .. A-27

Toolbar Shape .. A-27

Toolbars: Docked vs. Floating .. A-28

Toolbar Rules ... A-29

Status Bar ... A-30

Keyboard Shortcuts .. A-32

Working With Files .. A-32

Moving Within a File ... A-33

Cutting, Copying, Pasting, Moving Text A-34

Selecting Text Within a File .. A-34

Working With Bookmarks in an Editor Window A-35

Building Projects .. A-36

Using Keyboard Shortcuts for Program Execution A-36

Working With Breakpoints ... A-37

Obtaining VisualDSP++ Help ... A-37

Miscellaneous ... A-37
VisualDSP++ 4.5 User’s Guide xv

Window Operations ... A-39

Window Manipulation .. A-39

Right-Click Menu Options ... A-40

Scroll Bars and Resize Pull-Tab .. A-40

Windows: Docked vs. Floating .. A-41

Docked Windows ... A-41

Floating Windows .. A-43

Window Position Rules ... A-43

Standard Windows Buttons ... A-45

Text Operations .. A-46

Regular Expressions vs. Normal Searches A-46

Specific Special Characters .. A-47

Special Rules for Sequences ... A-48

Repetition and Combination Characters A-48

Match Rules ... A-49

Tagged Expressions in Replace Operations A-49

Comment Start and Stop Strings ... A-50

Online Documentation ... A-51

Printing Online Documentation .. A-52

Viewing Online Help .. A-53

Online Help ... A-54

Help Window ... A-54

Context-Sensitive Help ... A-55

Viewing Menu, Toolbar, or Window Help A-57
xvi VisualDSP++ 4.5 User’s Guide

Viewing Dialog Box Help ... A-57

Viewing Window Help ... A-58

Copying Example Code From Help A-58

Printing Help ... A-58

Bookmarking Frequently Used Help Topics A-59

Navigating in Online Help ... A-60

Searching Help ... A-61

Full-Text Searches .. A-61

Rules for Full-Text Searches .. A-63

Advanced Search Techniques .. A-64

Wildcard Expressions ... A-64

Boolean Operators ... A-65

Nested Expressions ... A-66

Rules for Advanced Searches ... A-66

Glossary ... A-67

SIMULATION OF SHARC PROCESSORS

Anomaly Options ... B-2

ADSP-21x6x Processor Anomalies ... B-2

Shadow Write FIFO Anomaly (ADSP-2116x Only) B-2

SIMD Read from Internal Memory With Shadow Write FIFO Hit
Anomaly (ADSP-2116x Only) ... B-3

Event Options .. B-4

FP Denorm .. B-4

Short Word Anomaly .. B-4
VisualDSP++ 4.5 User’s Guide xvii

Access to ADSP-21065L Short-Word Internal Memory 9th Column at
Even Addresses ... B-7

Recording a Simulator Anomaly or Event B-7

Select Processor ID Options .. B-9

Simulator Options .. B-10

No Boot Mode .. B-10

Load Sim Loader Options ... B-11

SPI Simulation in Slave Mode ... B-13

SIMULATION OF TIGERSHARC PROCESSORS

ADSP-TS101 Processors ... C-1

Simulator Timing Analysis Overview C-2

Pipeline Stages .. C-2

Stalls ... C-3

Stalls Due to IALU Dependency ... C-4

Stalls Due to Compute Block Dependency C-5

Aborts .. C-6

Aborts Due to an Unpredicted Change of Flow C-6

Abort Due to Mispredicted Change of Flow C-7

Branch Target Buffer Hits ... C-8

Pipeline Viewer and Disassembly Window Operations C-8

Current Program Counter Value ... C-9

Stepping ... C-11

Simulator Options .. C-12

ADSP-TS20x Processors ... C-13
xviii VisualDSP++ 4.5 User’s Guide

Simulator Timing Analysis Overview C-13

Pipeline Stages .. C-14

Stalls .. C-15

Stalls Due to IALU Dependency C-15

Stalls Due to Compute Block Dependency C-16

Stalls Due to a Cache Miss ... C-17

Aborts .. C-17

Aborts Due to an Unpredicted Change of Flow C-18

Abort Due to Mispredicted Change of Flow C-19

Branch Target Buffer Hits .. C-20

Pipeline Viewer and Disassembly Window Operations C-20

Current Program Counter Value C-21

Stepping .. C-23

Simulator Options ... C-23

SIMULATION OF BLACKFIN PROCESSORS

Peripheral Support in Simulators .. D-2

Special Considerations for Peripherals ... D-7

Universal Asynchronous Receiver/Transmitter Peripheral D-7

Timer (TMR) Peripheral ... D-7

Simulator Instruction Timing Analysis for ADSP-BF535 Processors D-9

Stall Reasons .. D-9

Kill Reasons ... D-10

Pipeline Viewer Window Examples D-11

Pipeline Viewer Window Messages .. D-12
VisualDSP++ 4.5 User’s Guide xix

Pipeline Viewer Detail View Stall Event Messages D-12

Kills Detected Messages ... D-16

Multicycle Instructions .. D-17

Abbreviations in Pipeline Viewer Messages D-17

Simulator Instruction Timing Analysis for ADSP-BF531, ADSP-BF532,
ADSP-BF533, and ADSP-BF561 Processors D-19

Stall Reasons .. D-19

Kill Reasons ... D-20

Pipeline Viewer Window Examples D-20

Multicycle Instructions and Latencies ... D-22

Multicycle Instructions ... D-22

Push Multiple or Pop Multiple ... D-22

32-Bit Multiply (modulo 232) ... D-23

Call and Jump ... D-23

Conditional Branch ... D-23

Return ... D-24

Core and System Synchronization D-24

Linkage ... D-25

Interrupts and Emulation .. D-25

TESTSET ... D-25

Instruction Latencies .. D-26

Accumulator to Data Register Latencies D-27

Register Move Latencies ... D-28

Move Conditional and Move CC Latencies D-30

Loop Setup Latencies ... D-31
xx VisualDSP++ 4.5 User’s Guide

Latencies Due to Instructions Within Hardware Loops D-32

Instruction Alignment Unit Empty Latencies D-33

L1 Data Memory Stalls ... D-34

Minibank Access Collision ... D-35

SRAM Access (1-Cycle Stall) .. D-35

Cache Access (1-Cycle Stall) ... D-36

Memory-Mapped Register (MMR) Access D-39

System Minibank Access Collision D-39

Store Buffer Overflow .. D-39

Store Buffer Load Collision .. D-40

Load/Store Size Mismatch .. D-40

Store Data Not Ready .. D-41

Instruction Groups ... D-41

Register Groups .. D-42

Compiled Simulation ... D-44

Specifying a Session for Compiled Simulation D-44

INDEX
VisualDSP++ 4.5 User’s Guide xxi

xxii VisualDSP++ 4.5 User’s Guide

PREFACE

Thank you for purchasing Analog Devices, Inc. development software for

digital signal processing (DSP) applications.

Purpose of This Manual
The VisualDSP++ 4.5 User’s Guide describes the features, components,
and functions of VisualDSP++. Use this guide as a reference for develop-

ing programs for SHARC®, TigerSHARC®, and Blackfin® processors.

This manual does not include detailed procedures for building and debug-
ging projects. For how-to information, refer to VisualDSP++ online Help
and the VisualDSP++ 4.5 Getting Started Guide.

Intended Audience
The primary audience for this manual is a programmer who is familiar
with Analog Devices processors. This manual assumes that the audience
has a working knowledge of the appropriate processor architecture and
instruction set. Programmers who are unfamiliar with Analog Devices
processors can use this manual, but should supplement it with other texts
(such as the appropriate hardware reference and programming reference
manuals) that describe your target architecture.
VisualDSP++ 4.5 User’s Guide xxiii

Manual Contents
Manual Contents
The manual consists of:

• Chapter 1, “Introduction to VisualDSP++”
Describes VisualDSP++ features, license management, project
development, code development tools, VCSE, and DSP projects

• Chapter 2, “Environment”
Focuses on window features, operations, and customization for the
main window and debugging windows.

• Chapter 3, “Debugging”
Describes debug sessions, code analysis tools, program execution
operations, simulation tools, and utilities.

• Appendix A, “Reference Information”
Describes file types, keyboard shortcuts, command-line parameters,
scripting, toolbar buttons, and text operations; also provides a
glossary and describes online Help features and operations.

• Appendix B, “Simulation of SHARC Processors”
Describes the simulator options available on the Anomalies,
Events, Simulator, Load Sim Loader, and Select Processor ID
submenus under Settings; also explains how to record simulator
anomalies and events, and describes SPI simulation in slave mode.

• Appendix C, “Simulation of TigerSHARC Processors”
Describes simulator instruction timing analysis, pipeline stages, the
Pipeline Viewer, stalls, aborts, the current program counter value,
stepping, and the Select Loader Program command on the Simu-
lator submenu under Settings.

• Appendix D, “Simulation of Blackfin Processors”
Provides an overview of peripheral support for Blackfin simulators
and describes limitations of the simulation software models, simu-
lator instruction timing analysis, and compiled simulation.
xxiv VisualDSP++ 4.5 User’s Guide

Preface
What’s New in This Manual
The VisualDSP++ 4.5 User’s Guide supports all Analog Devices, Inc.
processor families listed in “Supported Processors” on page -xxvii.

Refer to the list of new VisualDSP++ 4.5 user interface features in
“VisualDSP++ 4.5 Features” on page 1-7. Refer to the VisualDSP++ 4.5
Product Release Bulletin for information on new and updated
VisualDSP++ 4.5 features and other release information. Also refer to
VisualDSP++ Help for details.
VisualDSP++ 4.5 User’s Guide xxv

Technical or Customer Support
Technical or Customer Support
You can reach Analog Devices, Inc. Customer Support in the following
ways:

• Visit the Embedded Processing and DSP products Web site at:
http://www.analog.com/processors/technicalSupport

• E-mail tools questions to:
processor.tools.support@analog.com

• E-mail processor questions to:
processor.support@analog.com

• Phone questions to 1-800-ANALOGD

• Contact your Analog Devices, Inc. local sales office or authorized
distributor

• Send questions by mail to:

Analog Devices, Inc.
One Technology Way
P.O. Box 9106
Norwood, MA 02062-9106
USA
xxvi VisualDSP++ 4.5 User’s Guide

Preface
Supported Processors
The following is the list of Analog Devices, Inc. processors supported in
VisualDSP++ 4.5.

TigerSHARC (ADSP-TSxxx) Processors
The name “TigerSHARC” refers to a family of floating-point and
fixed-point [8-bit, 16-bit, and 32-bit] processors. VisualDSP++ currently
supports the following TigerSHARC processors:

SHARC (ADSP-21xxx) Processors
The name “SHARC” refers to a family of high-performance, 32-bit,
floating-point processors that can be used in speech, sound, graphics, and
imaging applications. VisualDSP++ currently supports the following
SHARC processors:

Blackfin (ADSP-BFxxx) Processors
The name “Blackfin” refers to a family of 16-bit, embedded processors.
VisualDSP++ currently supports the following Blackfin processors:

ADSP-TS101 ADSP-TS201 ADSP-TS202 ADSP-TS203

ADSP-21020 ADSP-21060 ADSP-21061 ADSP-21062

ADSP-21065L ADSP-21160 ADSP-21161 ADSP-21261

ADSP-21262 ADSP-21266 ADSP-21267 ADSP-21362

ADSP-21363 ADSP-21364 ADSP-21365 ADSP-21366

ADSP-21367 ADSP-21368 ADSP-21369 ADSP-21371

ADSP-21375
VisualDSP++ 4.5 User’s Guide xxvii

Product Information
Product Information
You can obtain product information from the Analog Devices Web site,
from the product CD-ROM, or from the printed publications (manuals).

Analog Devices is online at www.analog.com. Our Web site provides infor-
mation about a broad range of products—analog integrated circuits,
amplifiers, converters, and digital signal processors.

MyAnalog.com
MyAnalog.com is a free feature of the Analog Devices Web site that allows
customization of a Web page to display only the latest information on
products you are interested in. You can also choose to receive weekly
e-mail notifications containing updates to the Web pages that meet your
interests. MyAnalog.com provides access to books, application notes, data
sheets, code examples, and more.

Registration

Visit www.myanalog.com to sign up. Click Register to use MyAnalog.com.
Registration takes about five minutes and serves as a means to select the
information you want to receive.

ADSP-BF531 ADSP-BF532

ADSP-BF533 ADSP-BF535

ADSP-BF561 AD6531, AD6532, AD6900, AD6901,
AD6902, and AD6903

ADSP-BF534 ADSP-BF536

ADSP-BF537 ADSP-BF566

ADSP-BF538 ADSP-BF539
xxviii VisualDSP++ 4.5 User’s Guide

Preface
If you are already a registered user, just log on. Your user name is your
e-mail address.

Processor Product Information
For information on embedded processors and DSPs, visit our Web site at
www.analog.com/processors, which provides access to technical publica-
tions, data sheets, application notes, product overviews, and product
announcements.

You may also obtain additional information about Analog Devices and its
products in any of the following ways.

• E-mail questions or requests for information to
processor.support@analog.com (World-wide support)
processor.europe@analog.com (Europe support)
processor.china@analog.com (China support)

• Fax questions or requests for information to
1-781-461-3010 (North America)
+49-89-76903-157 (Europe)

• Access the FTP Web site at
ftp ftp.analog.com or ftp 137.71.25.69
ftp://ftp.analog.com

Related Documents
For information on product related development software, see these
publications:

• VisualDSP++ 4.5 Getting Started Guide

• VisualDSP++ 4.5 Assembler and Preprocessor Manual

• VisualDSP++ 4.5 C/C++ Compiler and Library Manual for SHARC
Processors
VisualDSP++ 4.5 User’s Guide xxix

Product Information
• VisualDSP++ 4.5 C/C++ Compiler and Library Manual for
TigerSHARC Processors

• VisualDSP++ 4.5 C/C++ Compiler and Library Manual for Blackfin
Processors

• VisualDSP++ 4.5 Linker and Utilities Manual

• VisualDSP++ 4.5 Loader and Utilities Manual

• VisualDSP++ 4.5 Product Release Bulletin

• VisualDSP++ 4.5 Kernel (VDK) User’s Guide

• VisualDSP++ 4.5 Installation Quick Reference Card

Throughout this manual and online Help, tools manuals are often
identified by their titles, but without their software version (that is,
the 4.5 is not shown).

For hardware information, refer to your processors’s hardware reference,
instruction set reference (or programming reference), and data sheet. All
documentation is available online. Most documentation is available in
printed form.

Visit the Technical Library Web site to access all processor and tools man-
uals and data sheets:

http://www.analog.com/processors/resources/technicalLibrary

Online Technical Documentation
Online documentation comprises the VisualDSP++ Help system, software
tools manuals, hardware tools manuals, processor manuals, the Dinkum
Abridged C++ library, and Flexible License Manager (FlexLM) network
license manager software documentation. You can easily search across the
entire VisualDSP++ documentation set for any topic of interest. For easy
printing, supplementary .PDF files of most manuals are also provided.
xxx VisualDSP++ 4.5 User’s Guide

Preface
Each documentation file type is described as follows.

If documentation is not installed on your system as part of the software
installation, you can add it from the VisualDSP++ CD-ROM at any time
by running the Tools installation. Access the online documentation from
the VisualDSP++ environment, Windows® Explorer, or the Analog
Devices Web site.

Accessing Documentation From VisualDSP++

From the VisualDSP++ environment:

• Access VisualDSP++ online Help from the Help menu’s Contents,
Search, and Index commands.

• Open online Help from context-sensitive user interface items (tool-
bar buttons, menu commands, and windows).

Accessing Documentation From Windows

In addition to any shortcuts you may have constructed, there are many
ways to open VisualDSP++ online Help or the supplementary documenta-
tion from Windows.

File Description

.CHM Help system files and manuals in Help format

.HTM
 or
.HTML

Dinkum Abridged C++ library and FlexLM network license manager software doc-
umentation. Viewing and printing the .HTML files requires a browser, such as
Internet Explorer 5.01 (or higher).

.PDF VisualDSP++ and processor manuals in Portable Documentation Format (PDF).
Viewing and printing the .PDF files requires a PDF reader, such as Adobe Acrobat
Reader (4.0 or higher).
VisualDSP++ 4.5 User’s Guide xxxi

Product Information
Help system files (.CHM) are located in the VisualDSP++ software installa-
tion’s Help folder, and .PDF files are located in the Docs folder of your
VisualDSP++ installation CD-ROM. The Docs folder also contains the
Dinkum Abridged C++ library and the FlexLM network license manager
software documentation.

Using Windows Explorer

• Double-click the vdsp-help.chm file, which is the master Help sys-
tem, to access all the other .CHM files.

• Double-click any file that is part of the VisualDSP++ documenta-
tion set.

Using the Windows Start Button

• Access VisualDSP++ online Help by clicking the Start button and
choosing Programs, Analog Devices, VisualDSP++, and
VisualDSP++ Documentation.

Accessing Documentation From the Web

Download manuals at the following Web site:
http://www.analog.com/processors/resources/technicalLibrary/manuals

Select a processor family and book title. Download archive (.ZIP) files, one
for each manual. Use any archive management software, such as WinZip,
to decompress downloaded files.

Embedded Processing & DSP Knowledge Base

Search all our technical documents—everything from application notes,
data sheets, questions and answers, to code examples, manuals and more.

Point your browser to the following Analog Devices Web site:
http://search.analog.com/DSPKB/home.aspx
xxxii VisualDSP++ 4.5 User’s Guide

Preface
Printed Manuals
For general questions regarding literature ordering, call the Literature
Center at 1-800-ANALOGD (1-800-262-5643) and follow the prompts.

VisualDSP++ Documentation Set

To purchase VisualDSP++ manuals, call 1-603-883-2430. The manuals
may be purchased only as a kit.

If you do not have an account with Analog Devices, you are referred to
Analog Devices distributors. For information on our distributors, log onto
http://www.analog.com/salesdir/continent.asp.

Hardware Tools Manuals

To purchase EZ-KIT Lite™ and In-Circuit Emulator (ICE) manuals, call
1-603-883-2430. The manuals may be ordered by title or by product
number located on the back cover of each manual.

Processor Manuals

Hardware reference and instruction set reference manuals may be ordered
through the Literature Center at 1-800-ANALOGD (1-800-262-5643),
or downloaded from the Analog Devices Web site. Manuals may be
ordered by title or by product number located on the back cover of each
manual.

Data Sheets

All data sheets (preliminary and production) may be downloaded from the
Analog Devices Web site. Only production (final) data sheets (Rev. 0, A,
B, C, and so on) can be obtained from the Literature Center at
1-800-ANALOGD (1-800-262-5643); they also can be downloaded from
the Web site.
VisualDSP++ 4.5 User’s Guide xxxiii

Notation Conventions
To have a data sheet faxed to you, call the Analog Devices Faxback System
at 1-800-446-6212. Follow the prompts and a list of data sheet code
numbers will be faxed to you. If the data sheet you want is not listed,
check for it on the Web site.

Notation Conventions
Text conventions in this manual are identified and described as follows.

Example Description

Close command
(File menu)

Titles in reference sections indicate the location of an item within the
VisualDSP++ environment’s menu system (for example, the Close
command appears on the File menu).

{this | that} Alternative required items in syntax descriptions appear within curly
brackets and separated by vertical bars; read the example as this or
that. One or the other is required.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets
delimited by commas and terminated with an ellipse; read the example
as an optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.
xxxiv VisualDSP++ 4.5 User’s Guide

Preface
Note: For correct operation, ... A Note provides supplementary infor-
mation on a related topic. In the online version of this book, the word

Note appears instead of this symbol.

Caution: Incorrect device operation may result if ...
Caution: Device damage may result if ...
A Caution identifies conditions or inappropriate usage of the product
that could lead to undesirable results or product damage. In the online
version of this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ...
A Warning identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for devices
users. In the online version of this book, the word Warning appears
instead of this symbol.

Example Description
VisualDSP++ 4.5 User’s Guide xxxv

Notation Conventions
xxxvi VisualDSP++ 4.5 User’s Guide

1 INTRODUCTION TO
VISUALDSP++

This manual describes VisualDSP++, a flexible management system that

provides a suite of tools for developing processor applications and
projects.

VisualDSP++ includes:

• Integrated Development and Debugging Environment (IDDE)
with VisualDSP++ Kernel (VDK) integration

• C/C++ optimizing compiler with run-time library

• Assembler and linker

• Simulator software

• Example programs

This chapter contains the following topics:

• “VisualDSP++ Features” on page 1-2

• “License Management” on page 1-10

• “Project Development” on page 1-15

• “Code Development Tools” on page 1-30

• “Processor Projects” on page 1-47

• “VisualDSP++ Help System” on page 1-62
VisualDSP++ 4.5 User’s Guide 1-1

VisualDSP++ Features
VisualDSP++ Features
VisualDSP++ includes all the tools needed to build and manage processor
projects.

Integrated Development and Debugging
The VisualDSP++ IDDE provides complete graphical control of the edit,
build, and debug process. In this integrated environment, you can move
easily between editing, building, and debugging activities.

Code Development Tools
Depending on the code development tools purchased, VisualDSP++
includes one or more of the following components.

• C/C++ compiler with run-time library

• Assembler, linker, preprocessor, and archiver

• Loader and splitter

• Simulator

• EZ-KIT Lite™ evaluation system (must be purchased separately)

• Emulator (must be purchased separately)

VisualDSP++ supports ELF/DWARF-2 executable files. VisualDSP++
supports all executable file formats produced by the linker.

If your system is configured with third-party development tools,
you can select the compiler, assembler, linker, or loader to use for a
particular target build.
1-2 VisualDSP++ 4.5 User’s Guide

Introduction to VisualDSP++
Source File Editing Features
VisualDSP++ simplifies tasks involving source files. All the activities
necessary to create, view, print, move within, and locate information are
easy to perform.

• Edit text files. Create and modify source files and view listing or
map files generated by the code development tools.

Source files are the C/C++ language or assembly language files that
make up your project. Processor projects can include additional
files such as data files and a Linker Description File (.LDF), which
contains command input for the linker. For more information
about .LDF files, see “Linker” on page 1-34.

• Editor windows. Open multiple editor windows (source windows)
to view and edit related files, or open multiple editor windows for a
single file. The VisualDSP++ editor is an integrated code-writing
tool that enables you to focus on code development.

• Specify syntax coloring. Configure options that specify the color of
text objects viewed in an editor window.

This feature enhances the view and helps locate portions of the
text, because keywords, quotes, and comments appear in distinct
colors.

• Context-sensitive expression evaluation. Move the mouse pointer
over a variable that is in the scope to view the variable’s value.

• Status icons. View icons that indicate breakpoints, bookmarks, and
the current PC position.

• View error details and offending code. From the Output window’s
Build view, display error details by highlighting the error code
(such as cc0251) and pressing the F1 key. Double-click an error
line to jump to the offending code in an editor window.
VisualDSP++ 4.5 User’s Guide 1-3

VisualDSP++ Features
Project Management Features
VisualDSP++ provides flexible project management for the development
of processor applications, including access to all the activities necessary to
create, define, and build processor projects.

• Define and manage projects. Identify files that the code develop-
ment tools process to build your project. Create this project
definition once, or modify it to meet changing development needs.

• Access and manage code development tools. Configure options to
specify how the code development tools process inputs and gener-
ate outputs. Tool settings correspond to command-line switches
for code development tools. Define these options once, or modify
them to meet your needs.

• View and respond to project build results. View project status
while a build progresses and, if necessary, halt the build.

Double-click on an error message in the Output window to view
the source code causing the error, or iterate through error messages.

• Manage source files. Manage source files and track file dependen-
cies in your project from the Project window to provide a display
of software file relationships. VisualDSP++ uses code development
tools to process your project and to produce a processor program.
It also provides a source code control (SCC) interface, which
enables you to access SCC applications without leaving the IDDE.
1-4 VisualDSP++ 4.5 User’s Guide

Introduction to VisualDSP++
Debugging Features
While debugging your project, you can:

• View and debug mixed C/C++ and assembly code. View C/C++
source code interspersed with assembly code. Line number and
symbol information help you to source-level debug assembly files.

• Run command-line scripts. Use scripts to customize key debug-
ging features.

• Use memory expressions. Use expressions that refer to memory.

• Use breakpoints to view registers and memory. Quickly add and
remove, and enable and disable breakpoints.

• Set simulated watchpoints. Set watchpoints on stacks, registers,
memory, or symbols to halt program execution.

• Statistically profile the target processor’s PC (JTAG emulator
debug targets only). Take random samples and display them graph-
ically to see where the program uses most of its time.

• Linearly profile the target processor’s PC (Simulation only).
Sample every executed PC and provide an accurate and complete
graphical display of what was executed in your program.

• Generate interrupts using streaming I/O. Set up serial port
(SPORT) or memory-mapped I/O.

• Create customized register windows. Configure a custom register
window to display a specified set of registers.

• Plot values from processor memory. Choose from multiple plot
styles, data processing options, and presentation options.
VisualDSP++ 4.5 User’s Guide 1-5

VisualDSP++ Features
• Trace program execution history. Trace how your program arrives
at a certain point and show reads, writes, and symbolic names.

• View pipeline depth of assembly instructions. Display the pipeline
stage by querying the target processor(s) through the pipeline
interface.

For details, refer to the VisualDSP++ Getting Started Guide and
VisualDSP++ Help.

VDK Features
The VisualDSP++ Kernel (VDK) is a scalable software executive specially
developed for effective operations on Analog Devices processors. The
VDK is tightly integrated with VisualDSP++.

The kernel enables you to abstract the details of the hardware implemen-
tation from the software design. As a result, you can concentrate on the
processing algorithms.

The kernel provides all the basic building blocks required for application
development. Properties of the kernel can be characterized as follows.

• Automatic. VisualDSP++ automatically generates source code
framework for each user-requested object in the user-specified
language.

• Deterministic. VisualDSP++ specifies whether the execution time
of a VDK API is deterministic.

• Multitasking. Kernel tasks (threads) are independent of one
another. Each thread has its own stack.

• Modular. The kernel comprises various components. Future
releases may offer additional functionality.
1-6 VisualDSP++ 4.5 User’s Guide

Introduction to VisualDSP++
• Portable. Most of the kernel components can be written in ANSI
Standard C or C++ and are portable to other Analog Devices
processors.

• Pre-emptive. The kernel’s priority-based scheduler enables the
highest-priority thread not waiting for a signal to be run at any
time.

• Prototypical. The kernel and VisualDSP++ create an initial file set
based on a series of template files. The entire application is proto-
typed and ready to be tested.

• Reliable. The kernel provides run-time error checking.

• Scalable. If a project does not include a kernel feature, the support
code is not included in the target system.

VisualDSP++ 4.5 Features
VisualDSP++ 4.5 includes the following new features and enhancements.

• New Processor Support. Refer to the processors listed in
“Supported Processors” on page -xxvii.

• Session Wizard. A new “wizard” has been added. The Session Wizard
simplifies the task of creating a new debug session. You first select a
processor family and the processor, then a connection type (EZ-KIT
Lite, Emulator, Simulator) and then a platform.

• LDF Generator. For Blackfin processor projects, the Project Wizard
allows you to add a customized .LDF file. Available options include the
user heap, system stack, system heap, external memory, and so on. At a
later time, you can modify the .LDF file via the Project Options dia-
log box. There are special sections in the .LDF file in which you can
insert your own LDF commands, comments, and so on. These sec-
tions are preserved each time the .LDF is re-generated; this information
is stored in the basiccrt.s file.
VisualDSP++ 4.5 User’s Guide 1-7

VisualDSP++ Features
• Compiler Annotations. The compiler optimizer’s feedback is pro-
vided as annotations made to the assembly file generated by the
compiler. You can view compiler annotations in C/C++ files in editor
windows.

• Disconnect/connect from/to a Debug Target without Exiting
VisualDSP++. A new toolbar button (and menu command) allow you
to disconnect from a debug target and connect to another debug target
without exiting out of VisualDSP++. Use this when you change the
debug target (EZ-KIT Lite board or custom board) to a similar model
board or when you change to an entirely different board.

• Hardware Breakpoints. In an emulator session, type Shift+F9 to
insert hardware breakpoints in code in editor windows or the Dis-
assembly window. New icons indicate whether a hardware
breakpoint is enabled or disabled.

• Control over Automatic Breakpoints. You can configure whether
automatic breakpoints are set after a program is loaded. You can
specify additional breakpoints to be set after a load and you can
specify each additional breakpoint as being a software breakpoint
or a hardware breakpoint.

• Enhancements to Expressions Window and Locals Window.
From these two windows, you can now set the display format on a
per-expression basis. Additional columns are available to display
the expression’s type, address, size, and format.

• Power Estimation Analysis. For ADSP-BF531, ADSP-BF532, and
ADSP-BF533 Blackfin processor projects, you can profile code in
simulation to decrease power consumption. Energy-aware program-
ming involves viewing feedback in the Linear Profiling window and
specifying project options that enable the processor’s Power Manage-
ment facilities.
1-8 VisualDSP++ 4.5 User’s Guide

Introduction to VisualDSP++
• Loader Compression. (ADSP-2126x and ADSP-2136x SHARC
processors and ADSP-BF531/2/3/4/6/7 Blackfin processors) You can
use zLib compression via the Load : Compression page of the
Project Options dialog box.

• Enhancements to Flash Programmer Window. The Flash Pro-
grammer window was changed into a tabbed window to improve
usability. The revised window has a Message center to display
status messages.

• Project Options Dialog Box Enhancements. The Project Options
dialog box provides additional pages for various processors. Some
pages have undergone a re-layout.

• Enhancements to the About VisualDSP++ Dialog Box. Now the
Components page includes information about processor library,
platform, and silicon revision. The Tools page of previous releases
was replaced with a Versions page, which lists system binaries.

• Profile Data in .XML Format. Now you can save and load profile
data in .XML format, which is ideal for profile-guided optimization.

Consult VisualDSP++ Help for procedures relating to these new features.
VisualDSP++ 4.5 User’s Guide 1-9

License Management
License Management
VisualDSP++ is a licensed software product. This section describes licens-
ing options, license status, license installation, software registration,
validation codes, product updates, and product serial numbers.

VisualDSP++ and EZ-KIT Lite evaluation systems are licensed products.
They do not run unless a software license is installed. Three types of
licenses are available: TST (evaluation), KIT (evaluation), and ADI
(permanent).

• A “TST” (test drive) license provides unlimited (unrestricted)
access to VisualDSP++ for emulation and simulation. You must
register the software to receive a “TST” serial number, which
expires 90 days after installation. After the 90 days, the software is
inoperable.

• A “KIT” license grants 10 (ten) days to register and validate the
installation. Once validated, the KIT licence extends to 90 (ninety)
days of a full evaluation in total. At the end of the evaluation
period, unless you have upgraded the KIT license to permanent,
simulator and emulator connections become prohibited and the
size of the user program is limited.

• An “ADI” license grants 30 (thirty) days to register and validate the
installation for a permanent use. If you fail to register and validate
your installation during the 30-day evaluation period, your copy of
VisualDSP++ becomes inoperable.

“KIT” serial numbers impose restrictions on VisualDSP++. These
limitations do not prevent processor evaluation on the EZ-KIT
Lite evaluation board, but encourage the purchase of a full (unre-
stricted) VisualDSP++ license.
1-10 VisualDSP++ 4.5 User’s Guide

Introduction to VisualDSP++
Licensing Options
Two licensing options are available: single-user and client. A server license
is required before you can install a client license (see Table 1-1).

Server-based floating licenses consist of two parts: server and client. The
server manages the license pool that is stored on the server. The clients
“check out” licenses when the software is started and return licenses to the
server when developers exit VisualDSP++.

Table 1-1. VisualDSP++ Licenses

License Description

Single-User Also called node-locked or per-user licenses, single-user licenses are locked to
the machine ID of the host computer. Once installed, tools run only on that
one machine. You may install and register the software up to three times
(for example, at work, at home, and on a laptop computer). Use, however, is
restricted to one installed software at a time.

Client Client licenses are a client/server-based application. The server manages a
pool of licenses installed on the server. One license is installed on the server
for each purchased copy of VisualDSP++. In this model, you can have as
many client installations as desired. When a client starts the software, it
checks out a license from the server. When the software exits, the license is
returned to the server. As long as licenses are available on the server, clients
can access VisualDSP++.

Example: Assume a license server has been set up with 10 licenses, and 20 cli-
ent machines are installed in three labs. Ten simultaneous developers (any
combination) can use the software. When the 11th client tries to use Visu-
alDSP++, a message appears, stating that no more licenses are available. This
allows sharing of the software resources in an environment that needs more
locations than developers.

Server Allows multiple users to access VisualDSP++ on computers sharing client
licenses across a network. A server license must be installed prior to installing
client licenses.
VisualDSP++ 4.5 User’s Guide 1-11

License Management
License Status
The Licenses page (“Support Information” on page A-2) of the About
VisualDSP++ dialog box displays the status of all recognized licenses.

For complete details about licenses, refer to VisualDSP++ Help.

Temporary Licenses

A temporary license indicates the number of days remaining before the
product can no longer be used. Test drive versions of VisualDSP++
(serial number beginning with “TST”) carry temporary licenses.

An unrestricted version of VisualDSP++ includes its permanent license.
If you do not install the validation code after purchasing a full
(unrestricted) license, the status of the license is marked “Not Validated
(Expiring in X days)”. Install the validation code to change the status to
“Permanent.”

Valid Versus Expired Licenses

An expired license is indicated by “Expired”. A valid license is indicated
by “Permanent” unless it is for an EZ-KIT Lite evaluation system. A valid
license for an EZ-KIT Lite is indicated by “Permanent, Restricted”.

Client Licenses

When a client license is installed, the “server_name” appears under Serial
Number, “client” appears under Family, and “use_server” appears
under Status.
1-12 VisualDSP++ 4.5 User’s Guide

Introduction to VisualDSP++
License Installation
After installing VisualDSP++, you must license the software. Licensing
involves these three tasks:

1. Installing a single-user or client serial number

Note that a server license must be installed before client licenses
can be installed.

2. Registering product(s)

3. Entering validation code(s)

Perform license management activities (except server licensing) within
VisualDSP++ by using the About VisualDSP++ dialog box. See the online
Help for detailed installation, registration, and validation procedures.

Test drives require online registration to receive a “TST” serial number,
which expires 90 days after installation. Test drives do not require a
validation code.

Installing a License Shipped With an EZ-KIT Lite Evaluation System

Versions of VisualDSP++ used on EZ-KIT Lite evaluation systems
require online registration and a validation code. The EZ-KIT Lite
evaluation system’s “KIT” serial number is located on the label
attached to the back of the CD wallet.

“KIT” serial numbers impose these restrictions on VisualDSP++:

• The size of a user program is limited.

• No connections to simulator or emulator sessions are allowed.
VisualDSP++ 4.5 User’s Guide 1-13

License Management
• Only one EZ-KIT Lite board can be connected to the host PC and
debugged at a time.

• The EZ-KIT Lite hardware must be connected and powered up to
use VisualDSP++ with a “KIT” license.

These limitations do not prevent processor evaluation on the EZ-KIT Lite
evaluation board, but they encourage the purchase of a full (unrestricted)
VisualDSP++ license.

VisualDSP++ Product Upgrades
From time to time, Analog Devices releases new software versions.

The upgrade procedure does not change the previous version’s folder
structure or license file. The new installation process uses the previous
version’s path and license.

Check the Analog Devices Web site to ensure that you have the
latest software version.

Product Serial Numbers
Product serial numbers are located on product CD sleeves. A product’s
serial number can also be viewed from within VisualDSP++.

If you cannot locate a serial number, contact your local sales representative
or Analog Devices sales by:

• Sending e-mail to: processor.tools.support@analog.com

• Phoning 1-800-ANALOGD (1-800-262-5643)

Provide details about the exact products, versions, and operating system
being used.

Within VisualDSP++, view product serial numbers from the Licenses page
of the About VisualDSP++ dialog box, accessible from the Help menu.
1-14 VisualDSP++ 4.5 User’s Guide

Introduction to VisualDSP++
Project Development
During project development, VisualDSP++ helps you interactively observe
and alter the data in the processor and in memory.

Overview of Programming With VisualDSP++
Programming effectively with VisualDSP++ depends on how well you
master a four-step process. You must learn how to:

1. Work with VisualDSP++

2. Implement structured software design with VisualDSP++

3. Optimize performance with VisualDSP++

4. Test and debug your programs with VisualDSP++

Working With VisualDSP++:
You should have a working knowledge of VisualDSP++, the front end for
all available targets and platforms. You should know how and when to use
its various features and have a firm foundation in these project basics:

• Work with “property pages”. These pages of the Project Options
dialog box provide options analogous to command-line switches.

• Set up debug sessions. Know the distinctions between the three
development stages: simulation, evaluation (via an EZ-KIT Lite
evaluation system), and emulation.

• Understand how program sections and memory segments relate to
physical processor memory. Become familiar with Expert Linker.

• Access peripherals. This task includes setting up and handling
interrupts in both C and assembly.
VisualDSP++ 4.5 User’s Guide 1-15

Project Development
Designing Structured Software With VisualDSP++:
Consider elements of software design, code reuse, and interoperability. If
you are new to embedded systems, try to acquire a clear understanding of:

• The role of and motivation behind component software

• The role of an RTOS

• How to use VDK to manage multiple threads of execution and the
communication between those threads

Optimizing Performance With VisualDSP++:
At this stage, you should understand how to access the features of the pro-
cessor and how to use a structured approach to develop software. Next,
optimize your software to take full advantage of the processor’s computa-
tional power. This entails:

• Understanding the compiler optimizer

• Writing mixed C and assembly programs

• Accessing C/C++ data structures in assembly

• Harnessing the power of C++

• Setting up and using overlays

• Configuring emulation L1 memory for cache versus SRAM with
cache visualization

• Using statistical profiling
1-16 VisualDSP++ 4.5 User’s Guide

Introduction to VisualDSP++
Testing and Debugging With VisualDSP++:
At this stage, you should have a good understanding of the various facili-
ties available for producing optimal software. The last step, applying
software testing and debugging techniques, includes:

• Collecting and viewing data using the advanced plot windows

• Using compiled simulation

• Using ActiveX and COM Automation to create regression test
environments and taking advantage of interoperability with other
applications

Project Development Stages
The typical project includes three phases: simulation, evaluation, and
emulation. These phases are shown in Figure 1-1.

VisualDSP++ provides debugging tools for each of these phases; refer to
Table 1-3 on page 1-23.

Figure 1-1. Project Development Stages
VisualDSP++ 4.5 User’s Guide 1-17

Project Development
Simulation

Project development typically begins in a simulation environment while
hardware engineers are developing the new hardware (cell phone, com-
puter, and so on). Simulation mimics system memory and I/O, which
allows portions of the target system hardware behavior to be viewed. A
simulator is software that mimics the behavior of a processor. Running
VisualDSP++ with a simulation target (without a physical processor)
enables you to build, edit, and debug your program, even before a proces-
sor is manufactured.

Evaluation

Use an EZ-KIT Lite evaluation system in your project’s early planning
stage to determine the processor that best fits your needs. Your PC con-
nects to the EZ-KIT Lite board via a cable, enabling you to monitor
processor behavior.

Emulation

Once the hardware is ready, move directly to a JTAG emulator, which
connects your PC to the actual processor target board. Emulators provide
fast communications between the board and your PC. An emulator
enables application software to be downloaded and debugged from within
VisualDSP++. Emulator software performs the communications that
enable you to see how your code affects processor performance.
1-18 VisualDSP++ 4.5 User’s Guide

Introduction to VisualDSP++
Targets
A target (or debug target) refers to the communication channel between
VisualDSP++ and a processor (or group of processors). A target can be a
simulator, EZ-KIT Lite evaluation board, or an emulator. Your system
can include multiple targets.

For example, the JTAG emulator communicates with one or more
physical devices over the host PC’s PCI bus, and the HPUSB-ICE
emulator communicates with a device via the PC’s USB port.

Simulation Targets

A simulation target, such as the ADSP-2106x Family Simulator, is a pure
software module and does not require the presence of a processor or any
related hardware for debugging.

During simulation, VisualDSP++ reads an executable (.DXE) file and exe-
cutes it in software, similar to the way a processor executes a processor
image in hardware. VisualDSP++ simulates the memory and I/O devices
specified in an .LDF file. Some processors permit you to run a compiled
simulation. Refer to “Compiled Simulation” on page D-44.

Hardware Simulation

When connected to a simulation target in VisualDSP++, you can simulate
the following hardware conditions.

• Random interrupts that can occur during program execution

• Data transfer through the processor’s I/O pins

• Processor booting from a PROM or host processor

Setting up VisualDSP++ to generate random interrupts during program
execution enables you to exercise interrupt service routines (ISR) in your
code.
VisualDSP++ 4.5 User’s Guide 1-19

Project Development
EZ-KIT Lite Targets

An EZ-KIT Lite target is a development board used to evaluate a particular
processor. Analog Devices provides EZ-KIT Lite evaluation systems (for each
processor family) and demonstration programs.

Emulator Targets

An emulator target is a module that controls a physical processor con-
nected to a JTAG emulator system. For example, the USB-ICE emulator
communicates with one or more physical devices through the host USB
port.

Platforms
A platform refers to the configuration of processors with which a target
communicates. Several platforms may exist for a given debug target. For
example, if three emulators are installed on your system, you might select
emulator 2 as the platform that you want to use. The platform that you
use depends on your project development stage. (See Table 1-2.)

VisualDSP++ Configurator

Use the VisualDSP++ Configurator (Figure 1-2) to align the external
hardware target with an emulator so that the appropriate IDDE debug ses-
sion can be established.

Table 1-2. Development Stages and Supported Platforms

Stage Platform

Simulation Typically one or more processors of the same type. By default, the plat-
form name is the identical simulator. Some processors support compiled
simulation; refer to “Compiled Simulation” on page D-44.

Evaluation An EZ-KIT Lite evaluation system

Emulation Any combination of devices. You configure the platform for a particular
target with the VisualDSP++ Configurator. When the debug target is a
JTAG emulator, “platform” refers to a JTAG chain of specific device types.
1-20 VisualDSP++ 4.5 User’s Guide

Introduction to VisualDSP++
After the EZ-KIT Lite evaluation system or emulator has been connected,
powered up, and recognized in the Windows Device Manager, you can
select or create the appropriate platform needed for configuring a debug
session. If the appropriate platform is not shown, you can create or config-
ure one by specifying its name, type and JTAG chain (scan path).

You can also use the VisualDSP++ Configurator to run ICE Test, a utility
that checks the functionality of your emulator; refer to Figure 1-3.

Refer to VisualDSP++ Help for details about using the VisualDSP++
Configurator and the ICE Test utility.

Figure 1-2. VisualDSP++ Configurator
VisualDSP++ 4.5 User’s Guide 1-21

Project Development
Figure 1-3. ICE Test Utility
1-22 VisualDSP++ 4.5 User’s Guide

Introduction to VisualDSP++
Debugging Overview
Once you have successfully built a processor project and generated an
executable file, you can debug the project. Projects developed in
VisualDSP++ are run as hardware and software debug sessions.

In Table 1-3, check marks () indicate the debugging tools that are
available during the process of building and debugging a program.

Table 1-3. Tools Available During Simulation, Evaluation, and Emulation

Tool Simulation Evaluation Emulation

Linear profiles on page 3-8

Interrupts on page 3-17

Streams on page 3-17

Traces (SHARC processors only)
on page 3-9

Pipeline Viewer (not SHARC processors)
on page C-2

Cache Viewer on page 2-84

Breakpoints on page 3-13

Watchpoints on page 3-15

Hardware breakpoints on page 3-16

Plotting on page 3-20

Statistical profiles on page 3-8
VisualDSP++ 4.5 User’s Guide 1-23

Project Development
You can attach to and control the operation of any Analog Devices
processors or simulator. Download your application code to the processor
and use VisualDSP++’s debugging facilities to ensure that your application
functions as desired.

VisualDSP++ is a window into the inner workings of the target processor
or simulator. From this user interface, you can:

• Run, step, and halt the program and set breakpoints and
watchpoints

• View the state of the processor’s memory, registers, and stacks

• Perform a cycle-accurate statistical profile or linear profile

• Perform integrated multiprocessor debugging (emulator sessions
only)
1-24 VisualDSP++ 4.5 User’s Guide

Introduction to VisualDSP++
VisualDSP++ Kernel
A project can optionally include the VisualDSP++ Kernel (VDK), which is
a software executive between algorithms, peripherals, and control logic.

The Project window’s Kernel tab accesses a tree control for structuring
and scaling application development. From this tree control, you can add,
modify, and delete Kernel elements such as thread types, boot threads,
round-robin priorities, semaphores, events, event bits, interrupts, and
device drivers.

Two VDK-specific windows, VDK State History and Target Load, pro-
vide views of VDK information. Another VDK window, VDK Status,
provides thread status data when a VDK-enabled program is halted. Refer
to the VisualDSP++ Kernel (VDK) User’s Guide for details.

Program Development Steps
In the VisualDSP++ environment, program development consists of the
following steps.

1. Create a project.

2. Configure project options.

3. Add and edit project source files.

4. Specify project build options.

5. Build a debug version (executable file) of the project.

6. Create a debug session and load the executable.

7. Run and debug the program.

8. Build a release version of the project.
VisualDSP++ 4.5 User’s Guide 1-25

Project Development
By following these steps, you can build projects consistently and accu-
rately with minimal project management. This process reduces
development time and lets you concentrate on code development.

These steps, described below, are covered in detail in VisualDSP++ Help
and in the “Basic Tutorial” chapter of the VisualDSP++ Getting Started
Guide.

Step 1: Create a Project

All development in VisualDSP++ occurs within a project. The project
(.DPJ) file stores your program’s build information: source files list and
development tools option settings.

VisualDSP++ includes a Project wizard that simplifies the creation of a
new project. Refer to the VisualDSP++ Getting Started Guide for a tutorial
or to VisualDSP++ Help.

Step 2: Configure Project Options

Define the target processor and set up your project options (or accept
default settings) before adding files to the project. The Project Options
dialog box provides access to project options (also called property pages),
which enable the corresponding build tools to process the project’s files
correctly.

Step 3: Add and Edit Project Source Files

A project normally contains one or more C, C++, or assembly language
source files. After creating a project and defining its target processor, add
new or existing files to the project by importing or writing them. Use the
VisualDSP++ editor to create new files or edit any existing text files.

Adding Files to Your Project

You can add any type of file to the project. The development tools selec-
tively process only recognized file types when you build the project.
1-26 VisualDSP++ 4.5 User’s Guide

Introduction to VisualDSP++
Creating Files to Add to Your Project

You can create new text files. The editor can read or write text files with
arbitrary names. Adding files to your project updates the project’s file tree
in the Project window.

Editing Files

You can edit the file(s) that you add to the project. To open a file for
editing, double-click on the file icon in the Project window.

The editor has a standard Windows-style user interface and supports
normal editing operations and multiple open windows. You can customize
language- and processor-specific syntax coloring, and create and search for
bookmarks.

Managing Project Dependencies

Project dependencies control how source files use information in other
files, and consequently determine the build order. VisualDSP++ maintains
a makefile, which stores dependency information for each file in the
project. VisualDSP++ updates dependency information when you change
the project’s build options, add a file to the project, or choose Update
Dependencies from the Project menu.

Step 4: Specifying Project Build Options

After creating a project, setting the target processor, and adding or editing
the project’s source files, configure your project’s build options. Specify
options or accept the default options in VisualDSP++ before using the
development tools that create your executable file. You can specify options
for a whole project or for individual files, or you can specify a custom
build.

VisualDSP++ retains your changes to the build options. Settings
reflect your last changes, not necessarily the original defaults.
VisualDSP++ 4.5 User’s Guide 1-27

Project Development
Configuration

A project’s configuration setting controls its build. By default, the choices
are Debug or Release.

• Selecting Debug and leaving all other options at their default set-
tings builds a project that can be debugged. The compiler generates
debug information.

• Selecting Release and leaving all other options at their default set-
tings builds a project with limited or no debug capabilities. Release
builds are usually optimized for performance. Your test suite
should verify that the Release build operates correctly without
introducing significant bugs.

You can modify VisualDSP++’s default operation for either configuration
by changing the appropriate entries on the Compile, Assemble, and Link
pages. You can create custom configurations that include the build
options and source files that you want.

Project-Wide File and Tool Options

Next, you must decide whether to use project-wide option settings or
individual file settings.

For projects built entirely within VisualDSP++ with no pre-existing object
or archive (library) files, you typically use project-wide options. New files
added to the project inherit these settings.

Individual File and Tool Options

Occasionally, you may want to specify tool settings for individual files.
Each file is associated with two property pages: a General page, which lets
you choose output directories for intermediate and output files, and a
tool-specific property page (Compile, Assemble, Link, and so on), which
lets you choose options. For information about each tool’s options, see the
online Help or the manual for each tool.
1-28 VisualDSP++ 4.5 User’s Guide

Introduction to VisualDSP++
Step 5: Build a Debug Version of the Project

Next, build a debug version of the project.

Status messages from each code development tool appear in the Output
window as the build progresses.

The output file type must be an executable (.DXE) file to produce
debugger-compatible output.

Step 6: Create a Debug Session and Load the Executable

After successfully building an executable file, set up a debug session. You
run projects that you develop as hardware or software sessions. After
specifying the processor, connection type, and platform, load your
project’s executable file. From the General page of the Preferences dialog
box, you can configure VisualDSP++ to load the file automatically and
advance to the main function of your code.

Step 7: Run and Debug the Program

After successfully creating a debug session and building and loading your
executable program, run and debug the program.

If the project is not current (has outdated source files or dependency
information), VisualDSP++ prompts you to build the project before
loading and debugging the executable file.

Step 8: Build a Release Version of the Project

After you finish debugging your application, build a Release version of
your project to run on the product’s processor.
VisualDSP++ 4.5 User’s Guide 1-29

Code Development Tools
Code Development Tools
This section describes the following development tools.

• C/C++ compiler with run-time libraries

• Assembler

• Linker

• Expert Linker

• Preprocessor

• Archiver

• Splitter

• Loader

Available code development tools differ, depending on the processor.
The options available on the pages of the Project Options dialog box
enable you to specify tool preference.

VisualDSP++ supports ELF/DWARF-2 (Executable Linkable Format/
Debug With Arbitrary Records Format) executable files. VisualDSP++
supports all executable file formats produced by the linker.

If your system is configured with third-party development tools, you can
select the compiler, assembler, or linker to be used for a particular target
build.
1-30 VisualDSP++ 4.5 User’s Guide

Introduction to VisualDSP++
Compiler
The compiler processes C/C++ programs into assembly code. The term
compiler refers to the compiler utility shipped with the VisualDSP++
software.

The compiler generates a linkable object file by compiling one or more
C/C++ source files. The compiler’s primary output is a linkable object file
with a .DOJ extension.

To specify compiler options for your build, choose Project -> Project
Options. From the tree control of the ensuing Project Options dialog
box, expand Compile and click a subpage.

Compiler options are grouped into the subpages described in Table 1-4.

The available subpages and options depend on your target proces-
sor and your code development tools.

For more information about compile options, refer to your processor’s
VisualDSP++ C/C++ Compiler and Library manual and VisualDSP++
Help.

Table 1-4. Compiler Option Subpages

Category Provides

General Optimization, compilation, and termination options

Source Language
Settings

Settings related to the dialect of C or C++ accepted by the compiler

Preprocessor Macro and directory search options

Processor Processor-specific options

Profile-guided
Optimization

Options used while performing profile-guided optimization (PGO)

Warning Warning and error reporting options
VisualDSP++ 4.5 User’s Guide 1-31

Code Development Tools
C++ Run-Time Libraries
You must be running VisualDSP++ to use the C++ run-time
libraries.

The C and C++ run-time libraries (RTLs) are collections of functions,
macros, and class templates that can be called from source programs.
Many functions are implemented in the processor assembly language.

C and C++ programs depend on library functions to perform operations
that are basic to the C and C++ programming languages. These operations
include memory allocations, character and string conversions, and math
calculations. The libraries also include multiple signal processing func-
tions that ease processor code development. The RTL simplifies software
development by providing code for a variety of common needs.

The compiler provides a broad collection of C functions including those
required by the ANSI standard and additional Analog Devices-supplied
functions of value for processor programming. This release of the compiler
software includes both the Standard C Library and the Abridged Library, a
conforming subset of the Standard C++ Library. For more information
about the algorithms on which many of the C library’s math functions are
based, refer to the Cody and Waite text Software Manual for the Elemen-
tary Functions from Prentice Hall (1980).

For more information about the C++ library portion of the ANSI/ ISO
Standard for C++, refer to the Plauger text Draft Standard C++ Library
from Prentice Hall (1994) (ISBN: 0131170031).

Dinkum Abridged C++ Library

The Dinkum Abridged C++ library software documentation is located on
the VisualDSP++ installation CD in the Docs\Reference folder. Viewing
or printing these files requires a browser, such as Internet Explorer 5.01
(or higher). You can copy these files from the installation CD onto
another disk.
1-32 VisualDSP++ 4.5 User’s Guide

Introduction to VisualDSP++
Assembler
The assembler generates an object file by assembling source, header, and
data files. The assembler’s primary output is an object file with a .DOJ
extension.

To specify assembler options, choose Project -> Project Options, and
click Assemble (in the Project Options dialog box).

Assembler terms are defined as follows.

instruction set

 Set of assembly instructions that pertain to a specific processor.
For information about the instruction set, refer to your processor’s
hardware documentation.

preprocessor commands

Commands that direct the preprocessor to include files, perform
macro substitutions, and control conditional assembly

assembler directives

Directives that tell the assembler how to process source code and
set up processor features. Use directives to structure your program
into logical segments or sections that support the use of a Linker
Description File (.LDF) to construct an image suited to the target
system.

For detailed information, refer to the VisualDSP++ Assembler and
Preprocessor Manual or VisualDSP++ Help
VisualDSP++ 4.5 User’s Guide 1-33

Code Development Tools
Linker
The linker links separately assembled files (object files and library files) to
produce executable (.DXE) files, shared memory (.SM) files, and overlay
(.OVL) files, which can be loaded onto the target.

The linker’s output files (.DXE, .SM, .OVL) are binary, executable, and linkable
files (ELF). To make an executable file, the linker processes data from a
Linker Description File (.LDF) and one or more object (.DOJ) files. The
executable files contain program code and debugging information. The linker
fully resolves addresses in executable files.

To specify linker options, choose Project -> Project Options, and click
Link tab (on the Project Options dialog box). From the Link page, select
a Category of options. Linker options are grouped into the following
subpages.

• General

• LDF Preprocessing

• Elimination

• Processor

Linker terms are defined as follows.

link against

Functionality that enables the linker to resolve symbols to which
multiple executables refer. For instance, shared memory (.SM)
executable files contain sections of code that other processor
executable (.DXE) files link against. Through this process, a shared
item is available to multiple executable files without being
duplicated.
1-34 VisualDSP++ 4.5 User’s Guide

Introduction to VisualDSP++
link objects

Object files (.DOJ) that become linked and other items, such as
executable (.DXE, .SM, .OVL) files, that are linked against

.LDF file

File that contains the commands, macros, and expressions that
control how the linker arranges your program in memory

memory

Definitions that provide a description of your target processor sys-
tem to the linker

overlays

Files that your overlay manager swaps in and out of run-time
memory, depending on code operations. The linker produces
overlay (.OVL) files.

sections

Declarations that identify the content for each executable file that
the linker produces

For detailed information, refer to the VisualDSP++ Linker and Utilities
Manual or VisualDSP++ Help.

Linker Description File (.LDF)

A Linker Description File (.LDF) describes the target system and maps
your program code with the system memory and processors.

The .LDF file creates an executable file by using:

• The target system memory map

• Defined segments in your source files
VisualDSP++ 4.5 User’s Guide 1-35

Code Development Tools
The parts of an .LDF file, from the beginning to the end of the file, are
described as follows.

• Memory map – describes the processor’s physical memory (located
at the beginning of the .LDF file)

• SEARCH_DIR, $LIBRARIES, and $OBJECTS commands – define the
path names that the linker uses to search and resolve references in
the input files

• MEMORY command – defines the system’s physical memory and
assigns labels to logical segments within it. These logical segments
define program, memory, and stack memory types.

• SECTIONS command – defines the placement of code in physical
memory by mapping the sections specified in program files to the
sections declared in the MEMORY command. The INPUT_SECTIONS
statement specifies the object file that the linker uses to resolve the
mapping.

For details, refer to the VisualDSP++ Linker and Utilities Manual.
1-36 VisualDSP++ 4.5 User’s Guide

Introduction to VisualDSP++
Expert Linker
Expert Linker is a graphical tool that enables you to:

• Define a target processor’s memory map

• Place a project’s object sections into that memory map

• View how much stack or heap has been used after you run a processor
program

This interactive tool speeds up the configuration of system memory. It uses
your application’s target memory description, object files, and libraries to cre-
ate a memory map that you can manipulate to optimize your system’s use of
memory.

Expert Linker works with the linker. For more information about
linking, refer to the VisualDSP++ Linker and Utilities Manual.

Expert Linker graphically displays the available project information in an .LDF
file as input. This information includes object files, LDF macros, libraries,
and target memory descriptions. Use the drag-and-drop function to arrange
the object files in a graphical memory-mapping representation. When you are
satisfied with the memory layout, generate the executable file (.DXE) via
VisualDSP++ project options.

You can use default .LDF files that come with VisualDSP++ or the
Expert Linker wizard to create and customize a new .LDF file.

When opened in a project that already includes an .LDF file, Expert Linker
parses the .LDF file and graphically displays the target processor’s memory
map and the object mappings. The memory map appears in the Expert
Linker window (Figure 1-4 on page 1-39). Use this display to modify the
memory map or the object mappings. When the project is ready to be built,
Expert Linker saves the changes to the .LDF file.
VisualDSP++ 4.5 User’s Guide 1-37

Code Development Tools
Expert Linker can graphically display space allocated to program heap and
stack. After you load and run your program, Expert Linker indicates the used
portion of the heap and stack. You can then reduce the size of the heap or
stack to minimize the memory allocated for the heap and stack. Freeing up
memory in this way enables it to be used for storing other things like proces-
sor code or data.

You can launch the Expert Linker (see Figure 1-4) from VisualDSP++ in
three ways:

• Double-click the .LDF file in the Project window.

• Right-click the .LDF file in the Project window to display a menu and
then choose Open in Expert Linker.

• From the VisualDSP++ main menu, choose Tools, Expert Linker,
and Create LDF.

Expert Linker Window

The Expert Linker window (Figure 1-4) enables you to modify the mem-
ory map or the object mappings. You can specify a color for each type of
object (internal memory, external memory, unused memory, reserved
memory, output sections, object sections, overlays in live space, and over-
lays in run space). The objects are displayed in color when you view the
Memory Map pane in graphical memory map mode. When the project is
ready to be built, Expert Linker saves the changes to the .LDF file.

The Expert Linker window contains two main panes:

• The Input Sections pane displays a tree structure of the input
sections.

• The Memory Map pane displays each memory map in a tree or
graphical representation.
1-38 VisualDSP++ 4.5 User’s Guide

Introduction to VisualDSP++
You can dock or float the Expert Linker window in the VisualDSP++
main window.

Memory Map Pane Right-Click Menu

Table 1-5 describes the commands on the Memory Map right-click menu.

Figure 1-4. Expert Linker Window

Table 1-5. Memory Map Pane Right-Click Menu

Command Purpose

View ModevMemory Map Tree Displays the memory map in tree mode

View ModevGraphical
Memory Map

Displays the memory map in graphical blocks

ViewvMapping Strategy
(Pre-Link)

Displays the memory map, which shows where you intended to
place object sections

ViewvLink Results (Post-Link) Displays the memory map, which shows where the object sections
are actually placed

NewvMemory Segment Opens the Memory Segment Properties dialog box, from which
you specify the name, address range, type, width, and so on of the
memory segment that you want to add
VisualDSP++ 4.5 User’s Guide 1-39

Code Development Tools
NewvOutput Section Adds an output section to the selected memory segment

Note: Right-click on a memory segment to access this command.

NewvShared Memory Opens the Shared Memory Properties dialog box, from which
you specify the name of the shared memory output file and proces-
sors that share the memory

This command is not available on single-processor systems.

NewvOverlay Opens the Overlay Properties dialog box, from which you add a
new overlay to the selected output section or memory segment

Note: The new overlay’s run space is in the selected output section.

Delete Deletes the selected object

Pin-to-Output Section Pins an object section to an output section to prevent it from over-
flowing to another output section

This command is available only after you right-click on an object
section that is part of an output section set to overflow to another
section.

View Section Contents Opens the Section Contents dialog box, which displays the con-
tents of the input or output section

This command is available only after you link or build the project
and then right-click on an input or object section.

Table 1-5. Memory Map Pane Right-Click Menu (Cont’d)

Command Purpose
1-40 VisualDSP++ 4.5 User’s Guide

Introduction to VisualDSP++
Add Hardware Page Overlay
Support

Sets up hardware overlay live and run spaces for all available hard-
ware pages by:
a) Checking if memory segments are currently defined in all hard-
ware pages. If memory segments are located, you are queried about
whether to delete those segments.
b) Creating a memory segment containing an overlay (live space) in
each hardware page
c) Creating a memory segment containing all overlay run spaces in
hardware page 0
d) Creating a default mapping for each overlay. The default map-
ping maps objects containing the section, “pmpage0” to the hard-
ware overlay on PM page 0, “pmpage1” to PM page 1, “dmpage0”
to DM page 0, and so on.

View Symbols Opens the View Symbols dialog box and displays the symbols for
the project, overlay, or input section

This command is available after you link the project and then
right-click on the Memory Map pane for a processor, memory seg-
ment, output section, or input section.

Expand All Expands all items in the memory map tree to make their contents
visible

View Legend Opens the Legend dialog box, which shows all possible icons in the
tree window, with a brief description of each icon.

The Colors page displays a list of colors used in the graphical
memory map. You can specify each object’s color.

View Global Properties Opens the Global Properties dialog box for the selected object.

The dialog box’s title and content depend on the selected object.

Table 1-5. Memory Map Pane Right-Click Menu (Cont’d)

Command Purpose
VisualDSP++ 4.5 User’s Guide 1-41

Code Development Tools
Stack and Heap Usage

Expert Linker enables you to adjust the size of the stack and heap, and make
better use of memory.

Expert Linker can:

• Locate stacks and heaps and fill them with a marker value

This operation occurs after you load the program into a processor
target. The stacks and heaps are located by their memory segment
names, which may vary across processor families.

• Search the heap and stack for the highest memory locations written to
by the processor program

This operation occurs when the target halts after you run the program.
Assume that these values are the start of the unused portion of the
stack or heap. Expert Linker updates the memory map to show how
much of the stack and heap are unused.

Be aware of the following stack and heap restrictions.

• The heap, stack, and system stack must be defined in output sections
named HEAP, STACK, and SYSSTACK, respectively.

• The heap, stack, and system stack must be the only items in those out-
put sections. You cannot place other objects in those output sections.

For other processor families, the restrictions on memory segment names differ
according to what is used in the default .LDF files. If you do not heed these
restrictions, you cannot view stack and heap usage after running your
program.
1-42 VisualDSP++ 4.5 User’s Guide

Introduction to VisualDSP++
Figure 1-5 shows an example memory map after you run a SHARC program.

Figure 1-5. Memory Map Example After Running a SHARC Program
VisualDSP++ 4.5 User’s Guide 1-43

Code Development Tools
Archiver
The VisualDSP++ archiver (elfar.exe) combines object (.DOJ) files into
library (.DLB) files, which serve as reusable resources for project develop-
ment. The linker searches library files for routines (library members)
referred to by other objects and links them in your executable program.

Run the archiver from within VisualDSP++ or from the command line.
From VisualDSP++, create a library file as your project’s output.

To modify or list the contents of a library file (or perform other operations
on it), you must run the archiver from a command line. For details, refer
to the VisualDSP++ Linker and Utilities Manual.

Splitter
The splitter (elfspl21k.exe) processes executable files to prepare
non-bootable programmable read-only memory (PROM) image files.
These files are executed from the processor’s external memory.

The splitter’s primary output is a PROM file with these extensions:

• .S_# (SHARC processors)

• .H_# (SHARC processors)

• .STK (SHARC processors)

• .LDR (Blackfin and TigerSHARC processors)

For TigerSHARC processors, output from the splitter is 32 bit. For SHARC
processors, output from the splitter is 32 bit, 40 bit, 48 bit, or 64 bit.

To specify splitter options, choose Project > Project Options, and in the
tree control, click the Split page (or the Splitter subpage).
1-44 VisualDSP++ 4.5 User’s Guide

Introduction to VisualDSP++
Splitter terms are defined as follows.

non-bootable PROM-image files

The splitter’s output, which consists of PROM files that cannot be
used to boot-load a system

splitter

The splitter application, such as elfspl21k.exe, contained in the
software release

For more information about the splitter and options used to generate
loader files, refer to the VisualDSP++ Loader and Utilities Manual or
VisualDSP++ Help

Loader
The loader (elfloader.exe) generates boot-loadable files by processing
executable files in addition to a loader kernel. The loader output (.LDR)
file enables the processor to boot from an external device (host or ROM).

The loader creates programs that execute from internal memory.
The splitter generates programs that execute from external
memory.

To specify loader options, choose Project > Project Options, and open
the Load pages.

Loader terms are defined as follows:

boot kernel

The executable file that performs memory initialization on the
target
VisualDSP++ 4.5 User’s Guide 1-45

Code Development Tools
boot-loadable file

The loader’s output (.LDR), which contains the boot loader and the
formatted system configurations. This is a bootable image file.

boot loading

The process of loading the boot loader, initializing system memory,
and starting the application on the target

loader

The loader application, such as elfloader.exe, contained in the
software release

For more information about the loader, refer to the VisualDSP++ Loader
and Utilities Manual or VisualDSP++ Help.
1-46 VisualDSP++ 4.5 User’s Guide

Introduction to VisualDSP++
Processor Projects
Your goal is to create a program that runs on a single-processor
(or multiprocessor) system. A project is the structure where programs are
built. All development in VisualDSP++ occurs within a project.

A project refers to the collection of source files and tool configurations
used to create a processor program. The project file (.DPJ) stores program
build information.

VisualDSP++ provides flexibility for setting up projects. You configure
settings for code development tools and configurations, and you specify
build settings for the project and for individual files. You can set up fold-
ers that contain your source files. A project can include VDK support.

Use the Project window to manage projects from start to finish. Within
the context of a project, you can:

• Specify code development tools

• Specify project-wide and individual-file options for Debug or
Release configurations of project builds

• Create source files

VisualDSP++ facilitates movement among editing, building, and debug-
ging activities.
VisualDSP++ 4.5 User’s Guide 1-47

Processor Projects
Project Options
Project options apply to the entire project. Specify project options in the
Project Options dialog box. Figure 1-6 shows an example of this
multi-paged dialog box.

For each code development tool (compiler, assembler, linker, splitter, and
loader), one or more pages provide options that control how each tool
processes inputs and generates outputs. The available pages depend on your
target. Options correspond to tool command-line switches. You can define
these options once or modify them to meet changing development needs.

Tools can also be accessed from the operating system’s command
line.

Figure 1-6. Project Options Dialog Box Showing Project Page
1-48 VisualDSP++ 4.5 User’s Guide

Introduction to VisualDSP++
Project options also specify the following information.

• Project target

• Tool chain

• Output file directories

• Pre- and post-build options

Project Groups
A project group enables you to work with a number of projects at once. A
project group can be empty or contain any number of projects. Opening a
project adds it to the project group. Closing a project removes it from the
project group. Similar functionality is found in Microsoft Visual Studio.

The Project window (Figure 1-7) displays the project group icon and the
projects opened in that workspace.

Figure 1-7. Project Window
VisualDSP++ 4.5 User’s Guide 1-49

Processor Projects
Each workspace has one project group. When you switch among work-
spaces, the project group is loaded and the same set of projects are opened
just as when you last closed the workspace.

One project is active at a time. The active project responds to commands and
messages from menus and toolbars. The Project window displays the active
project with bold typeface. A Project box, located by default with the toolbar
buttons, displays the name of the active project (see Figure 1-8).

Though commands are sent to the active project, they may also be carried
out by a project on which the active project depends. For example, assume
that project A is active and depends on project B. Executing a Rebuild All
command on project A builds project B first. The same logic applies to the
Clean command, which deletes intermediate and target files.

Exporting a makefile exports one makefile for each open project. In the
makefile of a project depending on another project, one sub-target is cre-
ated for each project on which it depends. Thus, building a project builds
all dependent projects first.

Project Group Files

You can save project group information to a file so you can restore that
project group and share it conveniently.

Figure 1-8. Project Box Showing the Active Project
1-50 VisualDSP++ 4.5 User’s Guide

Introduction to VisualDSP++
The project group file (.DPG), which is in XML format, contains a list of
project entries. Each project entry corresponds to a project in the group
and contains project information, including the path to the project file
(.DPJ) and its dependent projects. Batch build specifications are saved in
the .DPG file for later use (so you can load and execute them without
re-specifying the same build targets). In the Project window, the root
node shows the project group’s file name without an extension.

Source Code Control (SCC)
VisualDSP++ includes Source Code Control (SCC), which enables you to
use the Microsoft Common Source Code Control (MCSCC) interface to
connect the VisualDSP++ IDDE to SCC applications installed on your
machine.

Various SCC products (such as Microsoft Visual SourceSafe or PVCS
Version Manager) support the MCSCC interface. From VisualDSP++
interface, you can access the commonly used features of these applications
without leaving the IDDE. You can launch the SCC application from the
plug-in menu to use non-supported features.

When you create a project, you are prompted to add the project to SCC.
When you open a project in the IDDE, the SCC plug-in connects to the
selected SCC application and locates a controlled copy of the project and
its source files. If a controlled copy is not located, the SCC application
must locate it. Typically, you are queried to browse for it. If the controlled
copy is successfully found or added, the plug-in keeps its application-spe-
cific path in the project file and reconnects with this path in the future.
You can subsequently reconnect to the controlled copy without having to
browse for it.

Operations executed on large numbers of files tend to take longer to fin-
ish. A message box provides status information by displaying the operation
currently executing. A button on the message box cancels the operation.
VisualDSP++ 4.5 User’s Guide 1-51

Processor Projects
The Output window’s Console view displays finished operations. Mes-
sages indicate what has been done. Warnings and error messages may also
appear in the Output window.

SCC applications provide dialog boxes and GUI displays for some file
operations such as show history, show difference, and show properties.
These operations can be run from VisualDSP++.

For complete details, refer to VisualDSP++ Help.

Makefiles
Use a makefile (.MAK or .MK) to automate builds within VisualDSP++.
The output make rule is compatible with the gnumake utility (GNU
Make V3.77 or higher) or other make utilities. VisualDSP++ generates a
project makefile that controls the orderly sequence of code generation in
the target. You can also export a makefile for use outside of VisualDSP++.
For more information about makefiles, go to:

http://www.gnu.org/manual/make/

A project can have multiple makefiles, but only one makefile can be
enabled (active).

The project in Figure 1-9 includes an active makefile (indicated by).

The active makefile, with its explicit gmake command line, builds the
project. When no makefile is enabled for a project, VisualDSP++ uses
specifications configured in the Project Options dialog box.
1-52 VisualDSP++ 4.5 User’s Guide

Introduction to VisualDSP++
You can view a makefile’s command line. To change the makefile’s target,
use the Configuration box, shown in Figure 1-10.

When you close a project, the Make commands and the target list associ-
ated with each makefile are serialized in the project (.DPJ) file.

Rules

You can enable only one makefile when building a project. If you enable
more than one makefile, VisualDSP++ generates an error message. After
you build your project with an external makefile, the executable file is not
automatically loaded (even when this option is configured).

Figure 1-9. Makefile in Project Window

Figure 1-10. Makefile in Configuration Box
VisualDSP++ 4.5 User’s Guide 1-53

Processor Projects
Output Window

Make command error messages and standard output appear in the Output
window. Double-clicking on an error-message position opens the makefile in
an editor window to the line of code causing the error.

Keywords in the makefile are syntax-colored.

Note: The error message format of gmake is parsed correctly when you dou-
ble-click on an error message. If you use another make utility, the double-click
feature does not function.

Example Makefile

An example of a makefile appears below.

Generated by the VisualDSP++ IDDE

Note: Any changes made to this Makefile will be lost the next
time the matching project file is loaded into the IDDE. If you
wish to preserve changes, rename this file and run it
externally to the IDDE.

The syntax of this Makefile is such that GNU Make v3.77 or
higher is required.
The current working directory should be the directory in which
this Makefile resides.
Supported targets:
Debug
Debug_clean
Release

Release_clean
Define ADI_DSP if it is not already defined. Define this
variable if you wish to run this Makefile on a host other than
the host that created it and VisualDSP++ may be installed in a
different directory.
ifndef ADI_DSP
ADI_DSP=C:\Program Files\Analog Devices\VisualDSP
endif

$VDSP is a gmake-friendly version of ADI_DIR
empty:=
1-54 VisualDSP++ 4.5 User’s Guide

Introduction to VisualDSP++
space:= $(empty) $(empty)
VDSP_INTERMEDIATE=$(subst \,/,$(ADI_DSP))
VDSP=$(subst $(space),\$(space),$(VDSP_INTERMEDIATE))
Define the command to use to delete files (which is different
on Win95/98 and Windows NT/2000)
ifeq ($(OS),Windows_NT)
RM=cmd /C del /F /Q
else
RM=command /C del
endif
#
Begin "Debug" configuration
#
ifeq ($(MAKECMDGOALS),Debug)
Debug : ./debug/mean.dxe
./debug/mean.doj :./mean.c ../../../include/stdio.h
$(VDSP)/cc21k -c .\Mean.c -g -proc ADSP-21062 -o
.\Debug\Mean.doj
./debug/benchmark.doj :./benchmark.asm
../../../include/asm_sprt.h ../../../include/def21060.h
$(VDSP)/easm21k.exe -proc ADSP-21062 -o .\Debug\benchmark.doj -g
.\benchmark.asm
./debug/mean.dxe :./debug/mean.doj ./debug/benchmark.doj
$(VDSP)/cc21k.exe .\Debug\Mean.doj .\Debug\benchmark.doj -proc
ADSP-21062 -L .\Debug -flags-link -od,.\Debug -o .\Debug\Mean.dxe
endif
ifeq ($(MAKECMDGOALS),Debug_clean)
Debug_clean:$(RM) ".\Debug\Mean.doj"

$(RM) ".\Debug\benchmark.doj"
$(RM) ".\Debug\Mean.dxe"
$(RM) ".\Debug*.ipa"
$(RM) ".\Debug*.opa"
$(RM) ".\Debug*.ti"

endif
Begin "Release" configuration
#
ifeq ($(MAKECMDGOALS),Release)
Release : ./release/mean.dxe
./release/mean.doj :./mean.c
VisualDSP++ 4.5 User’s Guide 1-55

Processor Projects
$(VDSP)/cc21k -c .\Mean.c -O1 -proc ADSP-21062 -o
.\Release\Mean.doj
./release/benchmark.doj :./benchmark.asm
$(VDSP)/easm21k.exe -proc ADSP-21062 -o .\Release\benchmark.doj
.\benchmark.asm
./release/mean.dxe :./release/mean.doj ./release/benchmark.doj
$(VDSP)/cc21k.exe .\Release\Mean.doj .\Release\benchmark.doj
-proc ADSP-21062 -L .\Release -flags-link -od,.\Release -o
.\Release\Mean.dxe
endif
ifeq ($(MAKECMDGOALS),Release_clean)
Release_clean:

$(RM) ".\Release\Mean.doj"
$(RM) ".\Release\benchmark.doj"
$(RM) ".\Release\Mean.dxe"
$(RM) ".\Release*.ipa"
$(RM) ".\Release*.opa"
$(RM) ".\Release*.ti"

endif

Project Configurations
By default, a project includes two configurations, Debug and Release,
described in Table 1-6. In previous software releases, the term configura-
tion was called “build type.”

Available configurations appear in the configuration box, which, by
default, is located in the Project toolbar, as shown in Figure 1-11.

You cannot delete the Release or Debug configuration.

Table 1-6. Default Project Configurations

Configuration Description

Debug Builds a project that enables the use of VisualDSP++
debugging capabilities

Release Builds a project with optimization enabled
1-56 VisualDSP++ 4.5 User’s Guide

Introduction to VisualDSP++
Customized Project Configurations
You can add a configuration to your project. A customized project config-
uration can include various project options and build options to help you
develop your project. Figure 1-12 shows a customized configuration
(Version2) listed in the configuration box.

Project Build
The term build refers to the process of performing operations (such as
preprocessing, assembling, and linking) on projects and files. During a
build, VisualDSP++ processes project files that have been modified since
the previous build as well as project files that include modified files.

A build differs from a rebuild all. When you execute the Rebuild All
command, VisualDSP++ processes all the files in the project, regardless of
whether they have been modified.

Figure 1-11. Configuration Box

Figure 1-12. Selecting a Project Configuration
VisualDSP++ 4.5 User’s Guide 1-57

Processor Projects
Building a project builds all outdated files in the project and enables you
to make your program. An outdated file is a file that has been modified
since the last time it was built or a file that includes (#include) a modified
file. For example, if a C file that has not been modified includes a header
file that has been modified, the C file is out of date.

VisualDSP++ uses dependency information to determine which files,
if any, must be updated during a build.

Note the following:

• A file with an unrecognized file extension is ignored at build
time.

• If an included header file is modified, VisualDSP++ builds
the source files that include (#include) the header file,
regardless of whether the source files have been modified
since the previous build.

• File icons in the Project window indicate file status (such as
excluded files or files with specific options that override
project settings).

Build Options
You can specify options for the entire project and for individual files.
Table 1-7 describes these build options.

Table 1-7. Build Options

Options Description

Project Specify these options from a tabbed page (for example, Compile or
Link) for each of the code development tools.

Individual file These settings override project-wide settings.

Custom build For maximal flexibility, edit the command line(s) issued to build a
particular file. For example, you might call a third-party utility.
1-58 VisualDSP++ 4.5 User’s Guide

Introduction to VisualDSP++
File Building
Building a file compiles or assembles the file and locates and removes errors.
You can build a single file or multiple files that you select.

The build process updates the selected source file’s output (.OBJ) file and
the output file’s debug information. Building a single file is very fast.
Large projects, however, may require hours to build.

If you change a common header file that requires a full build, you can build
only the current file to ensure that your change fixes the error in the current
file.

Batch Builds
Performing a batch build builds one or more build targets in the open
project group. You must configure the batch build before you can build it.

A build target in a project group is formed by the combination of a project
and a project configuration (such as a Release configuration). Refer to
VisualDSP++ Help for details on configuring and running a batch build.

Pre-Build and Post-Build Options
Pre-build and post-build options are typically DOS commands that are
executed before building a project and after a successful project build.
These commands invoke external tools. You can configure these options
via the Project Options dialog box.

For example, you can use a post-build command to copy the final output
file to another location on the hard drive or to invoke an application
automatically.

Automatically copying files and cleaning up intermediate files after a suc-
cessful build can be very useful.
VisualDSP++ 4.5 User’s Guide 1-59

Processor Projects
Command Syntax
Place “c:\windows\command.com /C” at the beginning of each DOS
command line. For example, to execute “copy a.txt b.txt”, type:

c:\windows\command.com /C copy a.txt b.txt

The letter “C” after the slash character must be uppercase.

Project Dependencies
Dependency data determines which files must be updated during a build. The
following are examples of dependency information.

..\.\.\include\cplus\cstddef

..\.\.\include\cplus\exception

..\.\.\include\cplus\new

..\.\.\include\cplus\xstddef

..\.\.\include\def21060.h

..\.\.\include\limits.h

..\.\.\include\cplus\stddef

..\.\.\include\stdio.h

..\.\.\include\string.h

..\.\.\include\VDK_Internals.h

..\.\.\include\VDK_Public.h

..\.\.\include\yvals.h

Project Window Rules
The Project window displays a project’s files, as shown in Figure 1-13.
1-60 VisualDSP++ 4.5 User’s Guide

Introduction to VisualDSP++
The following rules dictate how files and subfolders behave in the Project
window’s file tree.

• You can include any file in a project.

• Only one .LDF file is permitted.

• You cannot add the same file into the same project more than once.

• Only one project (project node) is permitted.

• A file with an unrecognized file extension is ignored at build time.

• When you add a file to a project, the file is placed in the first folder
configured with the same extension. If no such folders are present,
an added file goes to the project level.

Figure 1-13. Example of Project Files
VisualDSP++ 4.5 User’s Guide 1-61

VisualDSP++ Help System
VisualDSP++ Help System
The VisualDSP++ Help system is designed to help you obtain information
quickly. Use the Help system’s table of contents, index, full-text search
function, and extensive hyperlinks to jump to topics. Bookmark topics
that you plan to revisit.

VisualDSP++ Help is comprised of multiple Help systems (.CHM files).
Each file is identified with a book icon in the software installation’s
Help folder.

The majority of the Help system files are VisualDSP++ manuals and hard-
ware documentation. These manuals are also available in PDF format (on
the installation disk) for printing. Manuals are also available from Analog
Devices as printed books.

Each window, toolbar button, and menu-bar command in VisualDSP++ is
linked to a topic in Help. Other portions of the VisualDSP++ Help system
provide procedures for configuring and using tools.

Some .CHM files support pop-up messages for dialog box controls (buttons,
fields, and so on). These messages, which appear in little yellow boxes,
comprise part of the context-sensitive Help in VisualDSP++.

For more information about the Help system, refer to “Online Help” on
page A-54 and to “Using this Help System” in VisualDSP++ Help.
1-62 VisualDSP++ 4.5 User’s Guide

2 ENVIRONMENT

VisualDSP++ is an intuitive, easy-to-use user interface for programming

Analog Devices processors. This chapter introduces the VisualDSP++
work environment, including the main window and debugging windows.
Graphics are used to illustrate concepts and available window options.

From the application’s main window, you can open the Project window,
editor windows, the Output window, and various debugging windows.

Customize VisualDSP++ to meet your needs. Refer to VisualDSP++ Help
for “how to” information. This chapter is organized as follows.

• “Project Window” on page 2-2

The Project window provides a project hierarchy.

• “Editor Windows” on page 2-13

Editor windows allow you to view and edit files.

• “Output Window” on page 2-24

This window provides I/O messages and a scripting input.

• “Debugging Windows” on page 2-39

This section focuses on each debugging window, presenting its
purpose, features, and benefits.

For information about the VisualDSP++ title bar, control menu, menu
bars, toolbars and user tools, and status bars, refer to“Parts of the User
Interface” on page A-15
VisualDSP++ 4.5 User’s Guide 2-1

Project Window
Project Window
To open a Project window, choose View and Project Window. Figure 2-1
shows a Project window with VDK enabled.

An additional folder, titled Generated Files, may be present when a
project includes startup files.

The Project window can include two sub-tabs:

• The Project tab , which is always available, displays a
hierarchal representation of a debug session’s projects, folders, files,
and dependencies.

• The Kernel tab appears when VDK is enabled for a
project. It displays VDK-related information.

Figure 2-1. Example Project Window With Kernel Tab
2-2 VisualDSP++ 4.5 User’s Guide

Environment
Project View
The Project view displays a project group, which may contain any number
of projects. Only one project, however, is active at a time. Nodes are
arranged in a hierarchy similar to the file structure in Windows Explorer.

Figure 2-2 shows an example of information that displays in Project view.

Project Dependencies
A project may depend on other projects. The icon indicates depen-
dency and identifies the dependency. Building a project also builds the
sub-projects on which your project depends.

Figure 2-2. Project View
VisualDSP++ 4.5 User’s Guide 2-3

Project Window
Figure 2-3 shows how project dependencies appear in the Project view.

Project Nodes
The Project window comprises the types of nodes described in Table 2-1.

Project Folders

Project window folders (and) organize files within a project. You
can specify properties for folders.

Figure 2-3. Projects Dependencies Indicated in the Project View
2-4 VisualDSP++ 4.5 User’s Guide

Environment
Folders can be nested to any depth. Folders carry no attributes to the build
process, as they do not reflect the file system. Folders do not appear in
directory listings, as in Windows Explorer.

When you add files to the project tree with automatic file placement, each
file is placed in the first folder configured with the same file extension.
After automatic placement, you can manually move a file anywhere.

Table 2-1. Types of Nodes in the Project Window

Node Icon Description

Project group Only one project group permitted in a debug ses-
sion

Project Multiple projects permitted, but only one is active
(indicated with bold typeface)

Folder Closed folder

Opened folder revealing its contents

File File that uses project settings

File whose options differ from the project options

File excluded from the current configuration

Enabled (active) makefile

Project dependency Project on which another project depends
VisualDSP++ 4.5 User’s Guide 2-5

Project Window
To move a file out of one folder and into another folder, select the file and
drag it onto the other folder.

Project Files

In the Project window, files are represented by the icons in Table 2-2.

The files appear in an expandable and collapsible node tree.

Source files are the C/C++ language or assembly language files in your
project. Source files provide the project with code and data. You can add,
delete, and modify source files.

Each project must include one .LDF file, which contains command input
for the linker. If an .LDF file is not included in the project, the project is
built with a default .LDF file.

A project can also include data files and header files.

Table 2-2. File Icons in the Project Window

Icon Description

Files that use project options

Files that use options that differ from project options

Files excluded from the current configuration

Enabled (active) makefile
2-6 VisualDSP++ 4.5 User’s Guide

Environment
Project Window Icons for Source Code Control (SCC)

Icons in the Project window indicate source code control (SCC) status.
An icon with a green check mark () indicate that the file is under SCC
and is checked in. An icon with a red check mark () indicate that the
file is under SCC and is checked out. Files that are not connected to a
controlled copy under SCC do not display a check mark.

Table 2-3 shows examples of file icons used to indicate SCC status.

Table 2-3. SCC Status Icons

Icon Description

File is under SCC and is checked in

File is under SCC and is checked out

Project file is checked out

File includes a file-specific build command and is checked out

Makefile is checked out

File is excluded from the build and is checked out
VisualDSP++ 4.5 User’s Guide 2-7

Project Window
Project Page Right-Click Menus
Right-click menus (also called context menus or pop-up menus) operate
on Project window objects (the project group, projects, folders, and files).
These menus provide fast access to many menu bar and toolbar com-
mands. The commands available in a right-click menu depend on context
(the selected object).

Project window right-click menus offer these standard commands:

• Allow Docking (dock the Project window to the frame)

• Hide (remove the Project window from view)

• Float in Main Window

Project Group Icon Right-Click Menu

The project group icon () right-click menu (Figure 2-4) provides a
project group context from which to:

• Create a new project

• Open a project and add it to the project group

• View the project group’s properties

Figure 2-4. Project Group Icon’s Right-Click Menu
2-8 VisualDSP++ 4.5 User’s Guide

Environment
Project Icon Right-Click Menu

The project icon () right-click menu (Figure 2-5) provides a project
context from which to:

• Build the project

• Clean (delete intermediate and target files)

• Specify the active project

• Add folders and files

• View and specify project options

• View project properties

Figure 2-5. Project Icon’s Right-Click Menu
VisualDSP++ 4.5 User’s Guide 2-9

Project Window
Folder Icon Right-Click Menu

The selected folder icon (or) right-click menu (Figure 2-6) pro-
vides a “container” context from which to perform these “local”
operations:

• Add or delete a folder

• Add files to the folder

• View folder properties

File Icon Right-Click Menu

The selected file icon (or or) right-click menu (Figure 2-7 on
page 2-11) provides a file context from which to:

• Open the selected file for editing

• Build the file

• Remove the file from a project

• Specify options for the file

• View the file’s properties

Figure 2-6. Folder Icon Right-Click Menu
2-10 VisualDSP++ 4.5 User’s Guide

Environment
File icon commands apply to the selected file in the Project win-
dow, not to a source file in an editor window.

File Associations
VisualDSP++ associates the file extensions in Table 2-4 as the input to
particular code development tools.

VisualDSP++ is case insensitive to file extensions.

Figure 2-7. File Icon Right-Click Menu

Table 2-4. File Associations

Tool File Extensions

Compiler .C, .CPP, and .CXX

Assembler compiler:file
associations for tools

.ASM, .S, and .DSP

Linker .LDF, .DLB, and .DOJ
VisualDSP++ 4.5 User’s Guide 2-11

Project Window
Automatic File Placement
Automatic file placement is a feature that enables you to drag and drop
files into designated folders on the Project page in the Project window.
This saves time when you add files to a project.

File placement rules and the folder properties that you specify determine
where files are placed. By default, project folders are associated with the
file extensions listed in Table 2-5.

File Placement Rules

The following rules dictate file placement when you add files to a project.

• Dragging and dropping files

When you drag and drop a file onto the Project page, the file is
added to the first folder associated with the file’s extension. The
Project page accepts dragged files only when a project is opened.

• Using menu commands to add files

Files are added to the folders that you select on the Project page. If
you add a file to a project that has no folders, the file is added at
the project level (root level).

If you select the project node or a file node, the file is added to the
first folder associated with the file’s extension.

Table 2-5. Default Files Associations in Project Folders

Folder Default Associations

Source Files .C, .CPP, .CXX, .ASM, .DSP, .S

Header Files .H, .HPP, .HXX

Linker Files .LDF, .DLB, .DOJ

Kernel Files .VDK
2-12 VisualDSP++ 4.5 User’s Guide

Environment
Example

You create a folder labeled “C Source Files” and specify it with .C, .CPP,
and .CXX file extensions. You create a second folder labeled “Asm Files”
and associate it with .ASM files.

If you drag three files (file1.cpp, file1.asm, and file2.c) into the
Project window, file1.cpp and file2.c go into the C Source Files
folder, and file1.asm goes into the Asm Files folder.

After automatic file placement, you can manually move a file
anywhere by selecting and dragging the file.

Kernel Page
The Kernel tab of the Project window is available only for VDK-enabled
projects.

From the Kernel view, you can add, modify, and delete kernel elements
such as thread types, priorities, semaphore, and events. VisualDSP++
automatically updates vdk_config.cpp and vdk_config.h to reflect the
changes made on the Kernel view.

The example in Figure 2-8 shows an expanded view of the elements on the
Kernel page for a VDK-enabled project.

For information about VDK, refer to the VisualDSP++ Kernel (VDK)
User’s Guide.

Editor Windows
Use editor windows to view and edit files. Open as many editor windows
as you like from the Project window by double-clicking on a file or by
choosing Open File from a file’s right-click menu.

Figure 2-9 shows items that can be customized in editor windows.
VisualDSP++ 4.5 User’s Guide 2-13

Editor Windows
Figure 2-8. Expanded View of Elements on the Kernel Page
2-14 VisualDSP++ 4.5 User’s Guide

Environment
Editor windows support:

• User-defined color-coded comments, strings, keywords, and tab
settings (syntax coloring)

• Two viewing modes: source mode and mixed mode

• Printing, print preview, and user-defined headers and footers

• Bookmarking

• Finding/replacing with wrap-around search and regular expression
matching

• Going to a line number (and the display of line numbers)

• Jumping to the next or previous syntax error

Figure 2-9. Customizable Items in Editor Windows
VisualDSP++ 4.5 User’s Guide 2-15

Editor Windows
• Copying, cutting, pasting, undoing, and redoing functions. Each
open file has a deep stack (500+ items).

• Tabs for fast switching between source files

• Compiler annotations (indications of optimizations)

• Location of matching brace characters and auto-positioning of
brace characters (to line up with the preceding opening brace)

• Opening header files by right-clicking on #include statements

• Dragging-and-dropping highlighted sections of text (usually a valid
source statement) to an open Expressions window. When dropped,
the text is automatically added to the window and is evaluated.

• Running scripts

Many of these features are described next. Refer to VisualDSP++ Help for
how-to information.

Editor Window Symbols
The gutter (left margin) in an editor window displays icons to indicate
breakpoints, bookmarks, and the current position of the program counter
(PC). Table 2-6 describes these icons.

Table 2-6. Editor Window Symbols

Symbol Indicates

Current source line to be executed (PC location)

Enabled software breakpoint

Disabled software breakpoint
2-16 VisualDSP++ 4.5 User’s Guide

Environment
Bookmarks
Bookmarks are pointers in editor windows. Place a bookmark in a location
to return to it quickly at a later time.

Syntax Coloring
Specifying colors can help you locate information in the types of files
listed in Table 2-7.

Enabled hardware breakpoint

Disabled hardware breakpoint

Bookmark

Table 2-7. File Types That Support Syntax Coloring

File Type File Extension

Assembly .ASM

C .C

Linker Description Files .LDF

C++ .CPP

Header .H

Script Various extensions, such as .JS and .VBS

Table 2-6. Editor Window Symbols

Symbol Indicates
VisualDSP++ 4.5 User’s Guide 2-17

Editor Windows
Viewing Modes: Source Mode vs. Mixed Mode
Specify an editor window to display in source mode or mixed mode.

Source Mode

Source mode, as shown in Figure 2-10, displays C code only.

Mixed Mode

Mixed mode displays assembled code immediately after the corresponding
C code. The assembly code takes a specified color.

Figure 2-10. Example: Editor Window in Source Mode
2-18 VisualDSP++ 4.5 User’s Guide

Environment
Notes:

• To be viewable in mixed mode, the source file must be compiled
with debugging information enabled.

• The display of pipeline symbols can be enabled or disabled in
mixed mode.

• When optimized, a program can re-order the generated instruc-
tions so that they bear little resemblance to the order of the original
source lines. In mixed mode, assembly instructions are re-ordered
again so that all the instructions for a given source line are gathered
together under that source line.

Figure 2-11 shows an example of the mixed mode format.

Editor Tab Mode
Editor Tab mode provides an alternative, tab-based user interface for
managing multiple source files in editor windows. When this mode is
enabled via the View menu, a tab for each open source file appears at the
bottom of the editor window. Click tabs to switch between files.
VisualDSP++ 4.5 User’s Guide 2-19

Editor Windows
Figure 2-11. Example: Editor Window in Mixed Mode
2-20 VisualDSP++ 4.5 User’s Guide

Environment
Figure 2-12 shows an editor window with the Editor Tab option enabled.

Context-Sensitive Expression Evaluation
When a .DXE program has been loaded for debugging, you can evaluate
expressions in an editor window.

As you move the mouse pointer over a variable, with the pointer still on
top of the variable, VisualDSP++ evaluates the variable. If the variable is
in scope, the value appears in a tool tip window.

Figure 2-12. Switching Between Editor Windows Using Editor Tab Mode
VisualDSP++ 4.5 User’s Guide 2-21

Editor Windows
Viewing an Expression

Expressions can be viewed in different ways. When the editor window is
in mixed mode, view an expression by moving the pointer over a register
in an assembly instruction. The register contents are displayed in a tool
tip.

Highlighting an Expression

Highlight an expression in the editor window and then move the pointer
on top of the highlighted expression to display its value in a tool tip.
2-22 VisualDSP++ 4.5 User’s Guide

Environment
Right-Click Menu
The editor window’s right-click menu provides the commands shown in
Figure 2-13.

The available formats under Select Format depend on the target
processor. An additional command, Source Script, is available
when you are editing a script.

Figure 2-13. Example: Editor Window Right-Click Menu
VisualDSP++ 4.5 User’s Guide 2-23

Output Window
Output Window
The Output window:

• Displays standard I/O text messages such as file load status and
error messages

• Displays build status information for the current project build

• Provides access to errors in source files

• Acts as a scripting interface

The example Output window in Figure 2-14 shows build status informa-
tion. Display the Output window by choosing View and Output
Window.

Viewing Error Message Details
Each tool error message has associated explanatory text. You can view the
information in the Help window.

Figure 2-14. Viewing Build Status Information in the Output Window
2-24 VisualDSP++ 4.5 User’s Guide

Environment
To view an error message’s details, from the Output window's Build page,
use the PC’s mouse to select the six-character error identifier (for example,
cc0276). Selection is sometimes easier from right to left.

Figure 2-15. Example: Viewing Details of an Error Message in Help
VisualDSP++ 4.5 User’s Guide 2-25

Output Window
Output Window Tabs
The Output window’s two tabs, Console and Build, provide different
information and capabilities.

Build Page

The Build page (Figure 2-16) displays error messages generated during a
build.

Choosing Next Error or Prev Error from the Edit menu allows you to
scroll through error messages.

Double-clicking on an error message displays the offending code in an edi-
tor window. Refer to “Viewing Error Message Details”.

By default, VisualDSP++ output is blue and tool output is black. You can
modify these colors via the Preferences dialog box.

Console Page

The Output window’s Console page (Figure 2-18 on page 2-35) allows
you to:

• View VisualDSP++ or target status error messages

• View STDIO output from C/C++ programs

Figure 2-16. Example: Error Messages in the Output Window
2-26 VisualDSP++ 4.5 User’s Guide

Environment
• View I/O (streams) messages

• Scroll through previous commands by pressing the keyboard’s up
arrow (¦) and down arrow (Ø) keys

• Perform multiline selection, copy, paste, and clear

• Issue script commands and view script command output

• Auto-complete script commands

• Execute a previously issued script command by double-clicking on
the command

• Enter multiline script commands by adding a backslash character
(\) to the end of a statement

• Use bookmarks

• Toggle a bookmark by pressing Ctrl+F2

• Move to the next bookmark by pressing the keyboard’s F2 key

All text that displays on the Console page is written to the VisualDSP++
log file.

Code Development Tools Batch Processing
Messages

The code development tools that perform batch processing can produce
error and warning messages when returning a result. These messages
appear on the Build page in the Output window.

Every message is identified with a unique six-character code, such as
pp0019, that is consistent between versions of VisualDSP++. Message
descriptions include an explanation of the condition that caused the
VisualDSP++ 4.5 User’s Guide 2-27

Output Window
error/warning message and a suggested remedy to fix the problem. Where
applicable, messages include the source file’s name and the line number of
the offending code.

Message Severity Hierarchy

Each message has one or more severity levels.

You can change the severity level of an error marked “discretionary”. The
severity level of an error marked “non-discretionary” cannot be changed.

Syntax of Help for Error Messages

In VisualDSP++ Help, each error message can include several parts. The
available information depends on the tool and the message.

To view all the details of a message, you must view the message in
the Help system window. If you run a tool from a command-line
interface (such as a Command Prompt window or MS-DOS
Prompt window), the message shows only the ID code, error text,
and error location.

Table 2-9 describes the syntax for error message help.

Table 2-8. Message Severity Levels

Severity Level Description

Fatal error Identifies errors so severe that further processing of the input is suspended.
Fatal errors are sometimes called catastrophic errors.

Error Identifies problems that cause the tool to report a failure. An error might
allow further processing of the input to permit the reporting of additional
problems to be reported.

Warning Identifies situations that do not prevent the tool from processing the input,
but may indicate potential problems

Remark Provides information of possible interest
2-28 VisualDSP++ 4.5 User’s Guide

Environment
Promoting, Demoting, and Suppressing Error Messages

You can change the severity level of an error marked “discretionary.” Refer
to the tools documentation for command-line switches that override error
message severity. The Project Options dialog box provides options you
can use to override severity.

A discretionary message can be promoted, demoted, or suppressed. For
example, you might promote a remark or warning to an error, or you
might decide to demote an error to a warning or remark.

Table 2-9. Syntax for Error Message Help

Part Description

Identification Code Six-character code, unique to the message. The first two char-
acters identify the tool:

• ar (archiver)
• cc (compiler)
• ea (assembler)
• el (expert linker)
• id (IDDE)
• li (linker)
• pp (preprocessor)
• si (simulator)

Error Text Text that appears after the identification code in the Output
window

Description Detailed description of the message

Severity The degree of hardship imposed by the error. Some messages
can take more than one severity level. You can change the
severity level of an error marked “discretionary”. You cannot
change the severity level of errors marked “non-discretionary”.

Recovery Extra information, provided only if applicable

Example Example code

How to Fix The remedy for correcting the error

Related Information Link(s) to more information
VisualDSP++ 4.5 User’s Guide 2-29

Output Window
Say, for example, that a condition in the input is crashing the tool. You
could restrict the severity level of the problem to report an error (instead
of a fatal error).

Another way to suppress the reporting of an individual error message is to
use pragmas in the input source via the tool’s command line. For more
information about pragmas, refer to your processor’s VisualDSP++ C/C++
Compiler and Library manual.

The following examples demonstrate how to promote, demote, and sup-
press messages. The source file, test.c, is being compiled.

$#include <stdio.h>

int foo(void)

{

printf("In foo\n"); // doesn't return a value

int main(void)

{

int x; // no initial value

printf("x = %d\n", x);
2-30 VisualDSP++ 4.5 User’s Guide

Environment
return foo();

}

• Example 1: Compiling from the Command Line (Interface)

Compiling test.c yields two warning messages (cc0117 and
cc0549):

$ cc21k -c test.c

"test.c", line 5: cc0117: {D} warning: non-void function

"foo" should return a value

}

^

"test.c", line 10: cc0549: {D} warning: variable "x" is

used before its value is set

printf("x = %d\n", x);

^

build completed successfully

Notice that the compiler appended the letter “D” to each warning
message, indicating that the message is discretionary.
VisualDSP++ 4.5 User’s Guide 2-31

Output Window
• Example 2: Promoting Warnings to Errors

For example, typing $ cc21k -c test.c -Werror 549 in a
command window promotes one of the two warnings (cc0549)
to an error.

$ cc21k -c test.c -Werror 549

"test.c", line 5: error cc0117: {D} warning: non-void

function "foo" should return a value

}

^

"test.c", line 10: cc0549: {D} error: variable "x" is

used before its value is set

printf("x = %d\n", x);

^

1 error detected in the compilation of “test.c”.

cc21k: Fatal Error: Compilation failed
2-32 VisualDSP++ 4.5 User’s Guide

Environment
• Example 3: Demoting Messages to Remarks

You can demote messages to remarks. By default, the compiler does
not display anything less significant than a warning.

The -Wremarks flag in the following command outputs the two
warnings plus additional remarks.

$ cc21k -c test.c -Wremarks

The -Wremark 549,117 flag in the following command demotes
two specific messages to remarks. The command produces no
output because all the messages are changed to remarks, which are
not displayed.

$ cc21k -c test.c -Wremark 549,117

The following command changes the two warnings to remarks and
then displays all seven remarks.

$ cc21k -c test.c -Wremark 549,117 -Wremarks

• Example 4: Suppressing Messages

The following command suppresses two specific warning messages.
The command outputs five remarks, but the two warnings do not
display even though the -Wremarks flag requests all the remarks.

$ cc21k -c test.c -Wsuppress 549,117 -Wremarks

Suppressing Compiler Warnings and Remarks

You can suppress compiler warnings as well as compiler remarks.

You cannot suppress compiler warnings without also suppressing
remarks.

From the Compile page (Warning subpage) of the Project Options dialog
box, you can specify warning options.
VisualDSP++ 4.5 User’s Guide 2-33

Output Window
Log File
The VisualDSP++ log file contains all the status and error messages that
have been written to the Output window’s Console page.

Figure 2-17 shows a sample log file.

Messages are saved to the log file, VisualDSP_Log.txt, which, by
default, is located in the <install_path>\Data directory.

All sessions append to the log file. Occasionally, open the file and
delete parts of it (or all of it) to conserve disk space.

Output Window Customization
You can specify preferences that:

• Configure Output window fonts and colors

• Enable command auto-completion

• Display file names only while building (hide complete command
lines)

Figure 2-17. Portion of a Sample Log File
2-34 VisualDSP++ 4.5 User’s Guide

Environment
By default, the Output window resides at the bottom of the main applica-
tion window. You can resize or move the Output window to a different
portion of the screen by dragging it to the selected location. You can dock,
hide, or float the window.

The Output window’s Console page interacts with script engines. All
script input and output is sent to the Console page, as shown in
Figure 2-18.

These messages are saved to the log file, VisualDSP_Log.txt, which is
located in the installation’s Data directory.

Right-Click Menu
The Output window’s right-click menu is shown in Figure 2-19.

This menu enables you to:

• Load a script or enable the debugger

• Clear the text in the window or copy selected text

• Toggle bookmarks

• Select a scripting language

Figure 2-18. Messages in the Output Window’s Console Page
VisualDSP++ 4.5 User’s Guide 2-35

Output Window
• Print or find text in the window

• Dock, hide, or float the window. (To display the hidden window,
choose Output Window from the View menu.)

Script Command Output
Scripts provide a powerful means of developing full-blown test applica-
tions of processor systems. VisualDSP++ includes a language-independent
scripting host that uses the Microsoft ActiveX® script host framework.
This scripting host permits the use of multiple scripting languages that
conform to the Microsoft ActiveX script engine.

Figure 2-19. Output Window’s Right-Click Menu
2-36 VisualDSP++ 4.5 User’s Guide

Environment
The main benefit of calling scripts in these languages is that they have
support for COM scripting, which allows access to the VisualDSP++
Automation API. VisualDSP++ supports the following Microsoft ActiveX
script engines (languages):

• Visual Basic® (Scripting Edition)

• JScript®

The Tool Command Language (Tcl) interpreter included with
VisualDSP++ is not a Microsoft ActiveX script engine.
VisualDSP++ permits the use of other script engines (languages)
that are not supported by Analog Devices technical support.

Script output is logged to VisualDSP_Log.txt for viewing and analysis. By
default, this file is located in the installation’s Data directory.

In the Output window’s Console view, you can:

• Issue script commands and view script command output

For more information about issuing script commands, refer to
“Extensive Scripting” on page A-8.

• Enable the Microsoft Script Debugger

Right-click in the Output window and choose Enable Debugger.
The debugger steps through code, sets breakpoints, and so on.
Once enabled, the debugger stops on the first error encountered in
the script.

Although most script engines (languages) support this option,
some may not. Consult the script engine’s documentation for fur-
ther details on whether it supports the debugging interfaces within
the Microsoft ActiveX script engine framework.
VisualDSP++ 4.5 User’s Guide 2-37

Output Window
• Specify the scripting language

Right-click in the Console view and select a language from the list
of scripting languages installed on your machine.

The name of the current scripting language appears in the status
bar at the bottom of the VisualDSP++ main window, as shown in
Figure 2-20.

• Load a script

You can load a script by selecting Load Script from the File menu,
from the Console view’s right-click menu or the editor window’s
right-click menu. The script loads and runs until it finishes run-
ning or until you halt the script by choosing Halt Script from the
Debug menu.

The Console view supports script command auto-completion, which you
can enable on the General page of the Preferences dialog box, accessible
via the Settings menu.

The VisualDSP++ installation directory includes example scripts in the
“Scripting Examples” folder located under the processor family name
(for example, 21k) and the Examples folder.

Figure 2-20. Scripting Language Displayed in Status Bar
2-38 VisualDSP++ 4.5 User’s Guide

Environment
Debugging Windows
VisualDSP++ provides debugging windows to display program operation
and results. Figure 2-10 describes these windows.

Table 2-10. Debugging Windows

Window Provides

Output
(on page 2-24)

A Console page that displays standard I/O text messages such as file load
status, and error messages and streams, and a Build page that displays
build messages. You can interactively enter script commands and view
script output.

Editor
(on page 2-13)

Syntax coloring, context-sensitive expression evaluation, and status icons
that indicate breakpoints, bookmarks, and the current PC position

Disassembly
(on page 2-40)

Code in disassembled format. This window provides fill and dump capa-
bility.

Expressions
(on page 2-46)

The means to enter an expression and see its value as you step through
program execution

Trace
(on page 2-48)

A history of processor activity during program execution, including buffer
depth (instruction lines), cycle count, and instructions executed such as
memory fetches, program memory writes, and data/memory transfers
(SHARC processors only)

Locals
(on page 2-50)

All local variables within a function. Use this window with Step or Halt
commands to display variables as you move through your program.

Linear Profiling
(on page 2-51)

(Simulation only) Samples of the target’s PC register taken at every
instruction cycle, which provides an accurate picture of where instructions
were executed. Linear profiling is much slower than statistical profiling.

Statistical Profiling
(on page 2-51)

(JTAG emulation only) Random samples of the target processor’s program
counter (PC) and a graphical display of the resulting samples, showing
where the application spends time

Call Stack
(on page 2-59)

A means of moving the call stack back to the previous debug context

Register
(on page 2-71)

Current values of registers. You can change register contents and change
the number format.
VisualDSP++ 4.5 User’s Guide 2-39

Debugging Windows
Disassembly Windows
By default, a Disassembly window appears when you open a new session.
You can open a Disassembly window by choosing View, Debug Win-
dows, and Disassembly.

Custom Registers
(on page 2-74)

Current values of registers. Select the registers that you want to monitor.

Memory
(on page 2-59)

A view of processor memory. Similar number format and edit features as
register windows, plus fill and dump capability.

BTC Memory
(on page 2-65)

A view of background telemetry channel contents in real time. The window

displays the contents of the address that you want to see.
(SHARC and Blackfin emulator sessions only)

Plot
(on page 2-100)

A graphical display of values from memory addresses. The window sup-
ports linear and FFT (real and complex) visualization modes and allows
you to export an image to a file, the clipboard, or to a printer.

Multiprocessor
(on page 2-75)

Current status of each processor in a multiprocessor system (emulator ses-
sions only). This window allows you to define and manage groups of pro-
cessors for synchronous multiprocessor commands.

Pipeline Viewer
(on page 2-79)

Display of instructions in the pipeline and event details
(TigerSHARC and Blackfin processors only)

Cache Viewer
(on page 2-84)

Analysis of an application’s use of cache, which is helpful in optimizing appli-
cation performance

VDK State History
(on page 2-96)

(VDK-enabled projects only) History buffer of threads and events

Target Load
(on page 2-99)

(VDK-enabled projects only) Percent of time the target spent in the idle
thread

VDK Status
(on page 2-94)

(VDK-enabled projects only) At a program halt, thread state and status data

Image Viewer
(on page 2-109)

A view of BMP, JPEG, PPM, or MPEG data from processor memory or from
a file on your PC. You can edit, copy, print, or export image data.

Table 2-10. Debugging Windows (Cont’d)

Window Provides
2-40 VisualDSP++ 4.5 User’s Guide

Environment
Figure 2-21 and Figure 2-22 show examples of Disassembly windows, one
with and one without the address bar enabled.

Figure 2-21. Example: Disassembly Window Showing Address Bar

Figure 2-22. Example: Disassembly Window Without Address Bar
VisualDSP++ 4.5 User’s Guide 2-41

Debugging Windows
Disassembly windows display code in disassembled form, which is useful
for temporarily modifying the code to test a change or to view code when
no source is available. The Disassembly window enables you to examine
the assembly code generated by the C/C++ compiler. Choosing View
Source from the Disassembly window’s right-click menu enables you to
view the C/C++ source code for the loaded file.

A single-processor debug session provides one Disassembly window only,
but multiple instances of the window may be opened for different views.
In a multiprocessor debug session, multiple Disassembly windows are
available.

To make changes permanent, modify the code and rebuild the project.

Disassembly windows provide:

• Number format and edit features, similar to register windows

• Dump and fill capabilities

• Symbols at the far left of the window, denoting program execution
stages and pipeline stages

You can enable and disable the display of pipeline symbols in
mixed mode (C/C++ and assembly).

• An optional address bar that enables you to navigate to an address,
symbol, or expression. The address bar maintains a most recently
used history of visited locations.

To display the address bar, right-click in a Disassembly window
and choose Address Bar. A check mark next to this option on the
right-click menu indicates that this feature is enabled.

By default, the current source line to be executed is highlighted by a
light-blue horizontal bar, as shown in Figure 2-23.
2-42 VisualDSP++ 4.5 User’s Guide

Environment
The color of the current source line and other window items are user con-
figurable. Refer to VisualDSP++ Help for detail.

Other Disassembly Window Features

From the Disassembly window, you can perform the operations described
in Figure 2-11.

Right-Click Menu

The Disassembly window’s right-click menu provides access to the com-
mands shown in Figure 2-24.

Figure 2-23. Example: Current Source Line in the Disassembly Window

Table 2-11. Disassembly Window Operations

To... Place the mouse pointer over...

Move to a different address An address field and double-click. Then select the address from
the ensuing Go To dialog box. Note that you can also use the
address bar to navigate to an address, symbol, or expression.

Insert or remove a break-
point

An instruction and double-click

Toggle (enable or disable)
a breakpoint

An instruction and right-click. Then choose the appropriate com-
mand from the ensuing menu.
VisualDSP++ 4.5 User’s Guide 2-43

Debugging Windows
Figure 2-24. Disassembly Window Right-Click Menus
2-44 VisualDSP++ 4.5 User’s Guide

Environment
Disassembly Window Symbols

Symbols at the far left of the Disassembly window indicate program
execution stages (Figure 2-12).

Table 2-12. Disassembly Window Symbols

Symbol Description

(Gray arrow) The current instruction is being aborted due to a branch or jump
instruction.

Enabled software breakpoint

Disabled software breakpoint

Enabled hardware breakpoint

Disabled hardware breakpoint

F
(SHARC processors only) This instruction is currently in the Fetch Address
stage of the pipeline.

P
(ADSP-2136x SHARC targets only) This instruction is currently in the Prede-
code (Fetch2) stage of the pipeline.

D
(SHARC processors only) This instruction is currently in the Instruction
Decode stage of the pipeline.

A
(ADSP-2136x SHARC targets only) This instruction is currently in the Address
Decode stage of the pipeline.

E (SHARC targets only) The instruction is in the Execute pipeline stage.

(Yellow arrow) This instruction is currently in the Execute stage of the pipeline.
VisualDSP++ 4.5 User’s Guide 2-45

Debugging Windows
The display of pipeline stages is available only when:

• The session is connected to a SHARC simulator target

• Enable pipeline display is selected on the General tab page of the
Preferences dialog box, available from the Settings menu

Expressions Window
The Expressions window (Figure 2-25) lets you enter an expression to
evaluate in your program. Evaluations are based on the current debug con-
text. Open this window by choosing View, Debug Windows, and
Expressions.

The Name and Value columns are always visible. Other columns
(Address, Type, Size, and Format) are user-defined. You can select the
number format used by the window (global format). You can override the
global format and specify each expression's format (per-expression basis).
Changing the window's global format overrides any per-expression for-
matting; for example, if the global format is set to Hexadecimal and you
set the format of a single expression to Integer, changing the global format
to Float will change the format of every expression to Float.

Because of the way registers are saved and restored on the stack, the
register value on which the expression relies may be incorrect if you
change VisualDSP++’s context from the Call Stack window.

Figure 2-25. Expressions Window
2-46 VisualDSP++ 4.5 User’s Guide

Environment
Expressions Permitted in an Expression Window

Figure 2-13 lists and describes the types of expressions that may be
entered in an Expressions window.

As you step through your program, the Expressions window displays the
current value of each listed expression. Expressions evaluation is based on
the current debug context.

For example, if you enter expression “a” and a global variable “a” exists,
you see its value. If you then step into a function that has local variable
“a”, the local value displays until the debug context leaves the function.
When a variable goes out of context, a string displays next to the variable,
informing you that the variable is out of context.

Table 2-13. Types of Expressions Permitted in an Expressions Window

Expression Description

Memory address Precede memory identifiers with a $ sign, for
example: $dm(0xF0000000)

Register expression Precede register names with a $ sign, for example: $r0, $r1,
$ipend, $po, or $imask

C/C++ statements Use standard C/C++ arithmetic and logical operators.

Multiprocessor expression
(emulator sessions only)

Expressions can be evaluated on a particular processor by using
the format:

@processor_name(expression)

where processor_name is the name of one of your MP proces-
sors, and expression is the expression that you want to evaluate
on that processor.

For example, on an MP system with two processors (master and
slave), this expression evaluates the PC register on master:
@master($PC)
VisualDSP++ 4.5 User’s Guide 2-47

Debugging Windows
The expressions described above are C expressions. The current syntax
also allows the use of registers in expressions.

For example, the following expression is valid.

$R0 + $I0

Register expressions and C expressions can be mixed in an expression.

Register expressions follow these rules:

• Precede register names with a dollar sign character ($).

• Register names can be in uppercase or lowercase characters.

• Registers have no context. A register expression always evaluates to
the current value of the register.

Trace Windows
Perform a trace (also called an execution trace or a program trace) to
analyze the run-time behavior of a processor program, to enable I/O
capabilities, and to simulate source-to-target data streaming. Figure 2-26
shows an example of data in a Trace window.

The Trace window displays:

• Buffer depth (Custom in the Trace Buffer Depth dialog box)

• The clock cycle when the instruction occurred

• The address of the instruction executed

• The disassembled instruction
2-48 VisualDSP++ 4.5 User’s Guide

Environment
Note the following:

• For SHARC and TigerSHARC processors, depth is limited by your
system's virtual memory

• Trace is not supported in Blackfin simulator sessions, but is sup-
ported in Blackfin emulator sessions. The depth is limited by
on-board physical memory reserved for this feature.

Memory results have the following fields.

• Access type (RD or WR)

• Memory type (PM or DM)

• The address, in brackets ([])

• The data value written or read

Figure 2-26. Example of Data in a Trace Window
VisualDSP++ 4.5 User’s Guide 2-49

Debugging Windows
Refer to “Code Analysis Tools” on page 3-7 for related information.

Locals Window
The Locals window displays the value of local variables within a function,
as shown in Figure 2-27. Open this window from the View menu by
choosing Debug Windows and Locals.

Use the Locals window with a Step or Halt command to display the cur-
rent value of variables when moving through your program.

You can select the number format used by the window (global format).
You can override the global format and specify each expression's format
(per-expression basis). Changing the window's global format overrides any
per-expression formatting; for example, if the global format is set to Hexa-
decimal and you set the format of a single expression to Integer, changing
the global format to Float will change the format of every expression to
Float.

Complex variables, C structures, and C++ classes appear with a plus
sign. Click on the plus sign to display all variable information.

Figure 2-27. Example: Locals Window
2-50 VisualDSP++ 4.5 User’s Guide

Environment
Statistical/Linear Profiling Window
To open a profiling results window, choose Tools, (Statistical Profiling or
Linear Profiling), and New. Depending on the target, the window’s title
is Statistical Profiling or Linear Profiling. The window comprises two
panes, as shown in Figure 2-28.

Window Components

The window, which comprises two panes and a status bar, provides a
right-click menu for performing various window functions.

Left Pane

The window’s left pane displays a list of the executed functions, assembly
source lines, and PCs (with no debug information). The time that each
item spends on execution appears as a histogram and as a percent. The
order of the items in the display is determined by the percentage of global
execution time for each item.

Figure 2-28. Example of a Linear Profiling Window
VisualDSP++ 4.5 User’s Guide 2-51

Debugging Windows
The left pane includes the information described in Table 2-14.

Double-clicking on a line with a function or assembly source line in the
left pane displays the corresponding source file in the right pane. The top
of the function or assembly source line is shown in the source file. If you
double-click on a PC address with no debug information, the
Disassembly window opens to that address.

Table 2-14. Left Pane Information

Column Displays Purpose

Histogram Horizontal bars Graphically represents the execution
percentage

%
-or-
Count

A percent with two decimal
places, for example:

15.01%
-or-
a number

Displays execution in percent or as a
count. Right-click and choose View
Execution Percent to view execution as
a percent, or choose View Sample
Count to view the PC sample count.

Execution Unit Functions, assembly source lines,
and PCs for which no debug
information exists

These items are sorted by the percent-
age of global execution time that each
item took to execute. The highest per-
centage items appear at the top of the
list
2-52 VisualDSP++ 4.5 User’s Guide

Environment
Right Pane

The right pane includes the information described in Figure 2-15.

Status Bar

The status bar at the bottom of the window indicates the total number of
collected PC samples, the total elapsed time, and indicates whether statis-
tical profiling is enabled.

Right-Click Menu

The Statistical Profiling and Linear Profiling windows provide a
right-click menu. The menu commands depend on the context (whether
you right-click in the left pane or right pane) and the current settings.

Table 2-16 describes the right-click menu commands.

Table 2-15. Information in the Right Pane

Column Displays

% Execution percent in text format with two decimal places, for example:

1.03%
-or-

the PC sample count for each source line

Line Line numbers of the source file

File Entire source file. Each source line occupies one line in the grid control.

Table 2-16. Right-Click Menu Commands in Profiling Windows

Command Description

Enable Enables or disables profiling

Load Profile Opens the Select a Statistical /Linear Profile to Load dialog box
from which you can load profile data saved from a previous run

Save Profile Saves the current run’s data to a file
VisualDSP++ 4.5 User’s Guide 2-53

Debugging Windows
Window Operations

You can select various options for the Statistical/Linear Profiling window
and perform various window operations.

For power estimation, this window displays two additional columns. Refer
to “Energy-Aware Programming” on page 3-31 for more information.

Changing the Window View

After specifying window properties for the Statistical/Linear Profiling and
enabling profiling, the profiler collects data when you run a program.
Depending on the filtering options selected, the window’s Execution Unit
column displays:

• Function names (such as main)

• Single addresses, for example, PC(0x2000)

Concatenate Profile Merges profiling data stored from a previous run with current data

Clear Profile Clears statistics saved from a previous run

View Execution Percent Displays the execution percent in each execution unit or source
line. This value is the sample count for that execution unit divided
by the total number of samples.

View Sample Count Displays the sample count for that execution unit

Mixed
-or-

Source

Sets the display mode for C/C++ source lines from the right pane
only. Choose Mixed to display both C/C++ source lines and assem-
bly lines. C/C++ source lines appear in black type, and assembly
lines appear in gray. Profiling data appears for each assembly line.
Choose Source to display only the C/C++ source lines.

Properties Opens the Profile Window Properties dialog box, where you can
view or change window settings. When performing linear
profiling, you can select display options such as cache hits, cache
misses, execution count, reads, and writes.

Table 2-16. Right-Click Menu Commands in Profiling Windows

Command Description
2-54 VisualDSP++ 4.5 User’s Guide

Environment
• Address ranges, for example, [2000–2050]

Single addresses and address ranges display in hexadecimal format.
The “0x” notation, however, appears beside single addresses only.

Displaying a Source File

Double-clicking on a function name in the Execution Unit column not only
displays the source of the function in the right pane but also displays profiling
data for each line of the function. Table 2-29 shows an example of code dis-
played for a function.

Displaying Functions in Libraries

The profiling window enables you to display functions in libraries, as
shown in Figure 2-30.

To use this feature, right-click in the profiling window and choose
Properties to open the Profile Window Properties dialog box.

Next, click the Filter tab, select C/C++ functions, and click the Add but-
ton to open the Add Functions dialog box. Then select the Show all
functions option.

Figure 2-29. Example: Code Displayed for a Function
VisualDSP++ 4.5 User’s Guide 2-55

Debugging Windows
Working With Ranges

Clicking on the icon in an address range expands or contracts the list of func-
tions within that address range.

When expanded, the list of functions appears and the profiling data appear
immediately after the address range.

Switching Display Modes

The right-click menu’s Mixed and Source commands simplify switching
between two views. Table 2-31 shows the source mode view and
Figure 2-32 shows the mixed mode view.

When you view the window in mixed mode, profiling data for each assembly
line displays, as shown in Table 2-33. Mixed mode displays profiling statistics
for individual assembly instructions.

Filtering PC Samples With No Debug Information

Since you spend most of your time building a “debug version” of your code,
eliminate non-debug code, such as C run-time library initialization code.

Figure 2-30. Profiling Window Showing Library Functions
2-56 VisualDSP++ 4.5 User’s Guide

Environment
The profiling results in Table 2-34 show where a lot of time is spent before
filtering.

The profiling results after filtering (Table 2-35) reflect the difference.

Figure 2-31. Source Mode View

Figure 2-32. Mixed Mode View
VisualDSP++ 4.5 User’s Guide 2-57

Debugging Windows
Figure 2-33. Profiling Data for Each Assembly Line (Mixed Mode)

Figure 2-34. Profiling Results Before Filtering

Figure 2-35. Profiling Results After Filtering
2-58 VisualDSP++ 4.5 User’s Guide

Environment
Call Stack Window
The Call Stack window (Table 2-36) enables you to double-click on a
stack location to move the call stack back to a previous debug context.
Open this window by choosing View, Debug Windows, and Call Stack.

 The Call Stack window functions with C/C++ code only.

Use this window to analyze the state of parent functions when erroneous
data is being passed to the currently executing function and to see the con-
text from which the current function is being called. You can walk up the
call stack and view local variables in different scopes.

Memory Windows
Use Memory windows to:

• View and edit memory contents

• Display the address of a value. Move the mouse pointer over the
value, and hold down the keyboard’s Ctrl key.

• Lock the number of columns currently displayed. This action
resizes the window horizontally without altering the display.

• Track one expression

Figure 2-36. Call Stack Window
VisualDSP++ 4.5 User’s Guide 2-59

Debugging Windows
You open memory windows from the Memory menu.

Memory windows provide:

• Number format and edit features

• Fill and dump capabilities

• An optional address bar for fast navigation to recently used
addresses, symbols, or expressions

To display the address bar, right-click in a memory window and
choose Address Bar. A check mark next to this command on the
right-click menu indicates that this option is enabled.

Number Formats in Memory Windows

The memory windows in the following figures show examples of different
memory number formats.

Figure 2-37. SHARC Memory Window in Binary Format
2-60 VisualDSP++ 4.5 User’s Guide

Environment
Figure 2-38. SHARC Memory Window in Octal Format

Figure 2-39. SHARC Memory Window in Hexadecimal Format

Figure 2-40. SHARC Memory Window in Unsigned Integer Format
VisualDSP++ 4.5 User’s Guide 2-61

Debugging Windows
Memory Window Right-Click Menu

Memory windows provide a right-click menu. Choosing the Select For-
mat command enables you to change the display’s number format.
Table 2-41 shows the formats available for SHARC processors.

Figure 2-41. Example: Memory Window Formats for SHARC Processors
2-62 VisualDSP++ 4.5 User’s Guide

Environment
Expression Tracking in a Memory Window

While stepping through code, a memory window configured for expression
tracking shows the memory at the address specified by the expression.

Figure 2-42. Expression Tracking in a Memory Window
VisualDSP++ 4.5 User’s Guide 2-63

Debugging Windows
When the target halts, the tracking expression is evaluated and the memory
window jumps to that address. For example, when the tracking expression is
“$PC”, the memory window behaves like the Disassembly window.

Rules

• In a memory window, several expressions for tracking can be
configured.

• In a memory window, only one expression (the active expression) can
be tracked at any time.

• The active expression appears in the memory window’s title bar.

• The memory window’s right-click menu displays a list of configured
expressions, from which to select only one expression for tracking.

• To track multiple expressions, open multiple memory windows and
track one expression per window.
2-64 VisualDSP++ 4.5 User’s Guide

Environment
Memory Window Display Customization

You can specify the colors used for symbols, data, address values modified
values, and undefined memory regions. You can also adjust the width of
the window to display a particular number of data columns. For example,
the memory window in Figure 2-43 is sized to display five columns.

The commands available via the menu bar’s Memory menu and the
memory window’s right-click menu depend on the processor that
you are debugging.

Background Telemetry Channels (BTCs)
Background telemetry channels (BTCs) enable VisualDSP++ and a processor
to exchange data via the JTAG interface while the processor is executing.
Before BTC, all communication between VisualDSP++ and a processor took
place while the processor was in a halted state.

Background telemetry channels are supported only in SHARC and
Blackfin emulator sessions. For information about using BTCs, refer
to the VisualDSP++ Getting Started Guide and online Help.

Figure 2-43. Example: Memory Window Sized to Display Five Columns
VisualDSP++ 4.5 User’s Guide 2-65

Debugging Windows
BTC Definitions in Your Program

Background telemetry channels are defined on a per program (.DXE) basis.
The channels are defined when a specific program is loaded onto a processor.
Define channels in your program by using simple macros.

The following example code shows channel definitions.

#include "btc.h"

.section/DM seg_dmda; // for ADSP-2126x processors

BTC_MAP_BEGIN

BTC_MAP_ENTRY ('Channel0', 0xf0001000, 0x00100)

BTC_MAP_ENTRY ('Channel1', 0xf0002000, 0x01000)

BTC_MAP_ENTRY ('Channel2', 0xf0003000, 0x10000)

BTC_MAP_END

The first step in defining channels in a program is to include the BTC macros
by using the #include btc.h statement. Then each channel is defined with
the macros. The definitions begin with BTC_MAP_BEGIN, which marks the
beginning of the BTC map. Next, each individual channel is defined with the
BTC_MAP_ENTRY macro, which takes the parameters described in Table 2-17.

Once the channels are defined, end the BTC map by using the BTC_MAP_END
macro.

Table 2-17. Parameters for the BTC_MAP_ENTRY_ASM Macro

Parameter Description

Name Name of the channel (32 characters max)

Starting address Starting address of the channel in memory

Length Length of the channel in 32-bit words for ADSP-2126x
processors
2-66 VisualDSP++ 4.5 User’s Guide

Environment
Enabling BTC on ADSP-2126x and ADSP-BF36x Processors

After the channel definitions are added, the BTC must be initialized with a
call to the _btc_init function during the application’s start-up code.

After initialization, BTC commands from the host are processed via the
low-priority emulator interrupt (EMULI). A vector to the interrupt service
routine must first be installed.

In assembly language, the vector can be installed with a jump to a
_btc_isr instruction placed at the EMULI vector location:

JUMP _btc_isr;

After the interrupt vector is installed, the interrupt itself must be enabled with
the following code:

// setup imask
ustat1 = imask;
BIT SET ustat1 EMULI;
imask = ustat1;

// enable interrupts
ustat1 = mode1;
BIT SET ustat1 IRPTEN;
mode1 = ustat1;

In C/C++, the vector can be installed with the interrupt function as
follows:

interrupt (SIG_EMUL, btc_isr);

In C/C++, the interrupt function enables the interrupt for you.

After adding code to initialize BTC and enable the BTC interrupt, you must
link with the BTC library (libbtc26x.dlb for assembly applications or
libcbtc26x.dlb for C/C++ applications). This library contains the initializa-
tion function, interrupt service routine, and other functions that permit data
transfer over the BTC.
VisualDSP++ 4.5 User’s Guide 2-67

Debugging Windows
BTC Priority

On ADSP-2126x and ADSP-BFBF36x SHARC processors, BTC data
transfer is handled through the low-priority emulator interrupt (EMULI). Since
the priority of this interrupt is fixed, the priority of BTC is also fixed.

The priority of the BTC can impact the response time from when the host
requests data and the processor responds. Once the processor begins to service
the request, interrupts can still be serviced by the processor. BTC performance
can be affected by the frequency of system interrupts.

BTC Memory Window

The BTC Memory window lets you view background telemetry channel
contents in real time. The window displays the contents of the address
that you want to see. Change the window’s view to meet your needs.

Open this window by choosing View, Debug Windows, and BTC
Memory.

The view in Figure 2-44 shows the contents of a specified channel only
(for example, Channel1).
2-68 VisualDSP++ 4.5 User’s Guide

Environment
The view in Figure 2-45 shows the list of currently defined channels and
the contents of the selected channel.

Figure 2-44. Example: Viewing Contents of a Specified Channel Only

Figure 2-45. Defined Channels and Contents of a Selected Channel
VisualDSP++ 4.5 User’s Guide 2-69

Debugging Windows
BTC Memory Window Right-Click Menu

Table 2-18 describes the BTC Memory window’s right-click menu.

Table 2-18. BTC Memory Window Right-Click Menu

Command Purpose

Go To Opens the Go To dialog box, in which you specify an address. The speci-
fied address appears in the top-left corner of the display. The address must
be within the range defined for the channel currently being displayed.
Tip: Double-clicking in the address column also opens the Go To dialog
box.

Show Map
 or
Hide Map

Shows or hides a more informative map display of all the current channel
definitions
Show Map displays a channel list. Double-click a channel to display its
contents in the lower portion of the window.
Hide Map removes the list of channels. The selected channel remains in
the display.

Lock Columns Locks or unlocks the number of columns currently displayed in the win-
dow

Select Format Specifies how to display data in the window. Choices include double
words (32 bits), words (16 bits), and bytes (8 bits).

Refresh Rate Specifies the refresh rate, which is used when Auto Refresh is chosen. The
display is updated at the selected interval.

Auto Refresh Enables the window to refresh itself at given intervals. The rate is specified
by Refresh Rate. Auto Refresh mode is valid only while the processor is
running.

Channel Timeout Specifies the length of time to wait for any single response from the BTC.
If the timeout value is exceeded, the current transaction ends.
2-70 VisualDSP++ 4.5 User’s Guide

Environment
Register Windows
Access various register windows via the VisualDSP++ Register menu. The
available commands (and subsequent windows) depend on the processor.

Figure 2-46 shows an example Register menu tree for a SHARC
processor.

Figure 2-46. Example: Register Windows for a SHARC Processor
VisualDSP++ 4.5 User’s Guide 2-71

Debugging Windows
Figure 2-47 shows an example Register menu tree for a TigerSHARC
processor.

Figure 2-47. Example: Register Windows for a TigerSHARC Processor
2-72 VisualDSP++ 4.5 User’s Guide

Environment
Figure 2-48 shows an example of a data register file in a register window.

A register window enables you to:

• View and change register contents

• Change the window’s presentation (number format)

Register window number formats include standard formats, such as hexa-
decimal, octal, and binary. Depending on the processor, other formats
may be available.

You can change a register’s data directly from within a register window.
The modified register content is used during program execution. Edits to
data do not affect your source files. To make changes permanent, edit the
source file and rebuild your project.

Figure 2-48. Example Register Window
VisualDSP++ 4.5 User’s Guide 2-73

Debugging Windows
Stack Windows
Depending on your processor, access to various stack windows is available,
including:

• PC Stack

• Counter Stack

• Loop Stack

• Status Stack

Access stack windows via the Register menu. For more information about
your processor’s stack windows, consult VisualDSP++ Help.

Custom Registers Windows
While debugging, you can configure and display Custom Registers
windows. To create a Custom Registers window, choose Register,
Custom, and Manage. Then configure and add the registers that you want
to display. The Custom Registers window appears immediately after it is
created.

Each Custom Registers window displays a customizable title and the
registers that you choose to monitor. The Custom Registers window
shown in Figure 2-49 displays the contents of five registers.

Figure 2-49. Example: A Customized Registers Window
2-74 VisualDSP++ 4.5 User’s Guide

Environment
Multiprocessor Window
The SHARC and TigerSHARC simulators do not support
multiprocessor (MP) debugging; multiprocessing for these proces-
sors is available in emulator sessions only. Multiprocessing support
for Blackfin ADSP-BF561 and ADSP-BF566 processors is available
in simulation.

Use the Multiprocessor window (Figure 2-50) to select and control the
different processors in a multiprocessor debug session.

Figure 2-50. Example: Multiprocessor Window
VisualDSP++ 4.5 User’s Guide 2-75

Debugging Windows
Multiprocessor Window Pages

The Multiprocessor window has two tabbed pages, Status and Groups.

Status Page

The Status page (Figure 2-51) shows the status of each processor in the
multiprocessor system. A horizontal bar highlights the processor with
focus.

Change focus by clicking on a processor in the list.

Figure 2-51. Multiprocessor Window – Status Page
2-76 VisualDSP++ 4.5 User’s Guide

Environment
Groups Page

The Groups page (Figure 2-52) shows the current list of multiprocessor
groups. A Default group is created with each new multiprocessor session.
The members of the Default group are the processors that you checked off
under Multiprocessor System in the New Session dialog box.

From the Groups page, you can assign one or more processors to a group.
Performing a multiprocessor operation (MP Run, MP Halt, MP Step,
MP Reset, and MP Restart) affects only the processors in the currently
selected group.

Right-clicking on the Group page displays a context menu for adding or
removing a group.

Operating on Multiprocessor Groups

For example, if a session contains three processors (A, B, and C) and a
group is created that contains A and C. Running the MP Run command
runs A and C only, and B remains unaffected.

Figure 2-52. Example: Multiprocessor Window – Groups Page
VisualDSP++ 4.5 User’s Guide 2-77

Debugging Windows
Focus

Processor focus changes, depending on the window currently selected.
To move focus among the processors, click on a processor listed in the
Multiprocessor window (Figure 2-50).

You can pin a register window, a memory window, or Disassembly win-
dow to a specific processor. Select the processor in the Multiprocessor
window and right-click in the window that you want to pin. Then choose
Pin to Processor to lock the window to the selected processor. A window
pinned to a processor always displays that processor’s data, regardless of
the currently focused processor.

For example, if a register window is pinned to Processor 1 and a memory
window is pinned to Processor 2, selecting the register window moves the
focus to Processor 1. Selecting the memory window moves the focus to
Processor 2. The Multiprocessor window’s Status page reflects the change
in focus.

Right-Click Menu

The Multiprocessor window’s right-click menu offers these commands:

Figure 2-53. Multiprocessor Window’s Right-Click Menu
2-78 VisualDSP++ 4.5 User’s Guide

Environment
Pipeline Viewer Window
(TigerSHARC and Blackfin processors in simulation only) The Pipeline
Viewer window (Figure 2-54) displays instructions in the pipeline and
allows you to view event details. Open this window by choosing View,
Debug Windows, and Pipeline Viewer.

For SHARC processors, the Disassembly window displays symbols
(F, D, or E), indicating an instruction’s pipeline stage.

Column headings refer to pipeline stages for the processor’s core registers.
Refer to your processor’s hardware documentation for details.

Figure 2-54. Pipeline Viewer Window
VisualDSP++ 4.5 User’s Guide 2-79

Debugging Windows
Right-Click Menu

The Pipeline Viewer window’s right-click menu provides the commands
described in Table 2-19.

Table 2-19. Pipeline Viewer Right-Click Menu

Item Purpose

Enabled Enables and disables collection of pipeline data while running or step-
ping

Clear Empties the current sample buffer

Display Format Controls the display format of data
Address shows the hexadecimal-formatted address of the pipeline stage
(for example, 0x1234). Use this format to follow a particular address
route through the pipeline.
Disassembly disassembles the instruction at that address and shows the
opcode mnemonic, similar to a Disassembly window. Use this format to
determine why a particular event is occurring.
Opcode format is the hexadecimal representation of the disassembly
mnemonic.

Save Opens the Save As dialog box, where you export the collected data to a
text file

Properties Opens the Pipeline Viewer Properties dialog box, where you view and
specify properties (buffer and display depth, display format, column
widths, grid lines, and the appearance of stages) for the Pipeline Viewer
window. You can also modify window colors.
2-80 VisualDSP++ 4.5 User’s Guide

Environment
Pipeline Viewer Properties Dialog Box

From the Pipeline Viewer Properties dialog box, you can specify how
(depth and format) the Pipeline Viewer window displays pipeline events.
Table 2-20 describes the Pipeline Viewer properties.

From the dialog box’s Colors tab, you can specify the colors that display
in the Pipeline Viewer window. The current color appears under Current
Color. Click a color in the color palette or click Other to specify a custom
color. Click the Reset button to restore the default colors.

Table 2-20. Pipeline Viewer Properties

Property Item Purpose

Buffer depth Specifies the total number of pipeline samples to retain at any time.
When this buffer overflows, the oldest data shifts out to make room
for new samples. The default is 100.

Display depth Specifies the number of samples to display.
Adjust this number to meet your performance needs. The lower the
depth, the faster the target can run. This option cannot be set
greater than the Buffer depth. The default is 20.

Display format Specifies the data’s format

Address includes the hexadecimal-formatted address of the pipeline
stage (for example, 0x1234).

Disassembly includes the opcode mnemonic, similar to the format
displayed in a Disassembly window.

Opcode format is the hexadecimal representation of the disassembly
mnemonic.

Show gridlines Toggles the display of gridlines in the window. The default is On.

Auto-size columns Automatically sizes all columns to have the same width as samples
are collected. The default is On.

Stages to view Specifies the stages to appear in the window. Note that all stages are
collected, but you view only the stages that you select to appear.
VisualDSP++ 4.5 User’s Guide 2-81

Debugging Windows
Pipeline Viewer Window Event Icons

Table 2-21 shows Pipeline Viewer window icons that indicate pipeline
stage events for ADSP-TS101 and ADSP-TS20x TigerSHARC processors.

The icons in the above table are listed in descending priority. When more
than one event occurs at a certain stage at a certain cycle, only one icon
displays—the icon with highest priority. For example, if an instruction
that was a Branch Target Buffer hit is aborted, the Abort icon appears.

Table 2-21. Pipeline Viewer Event Icons

Icon Event Description

Abort A stage contains an instruction that has been aborted.

Invalid
Instruction in
fetch pipe

A stage contains a placeholder representing a result of an
invalid fetch. This condition occurs when an instruction
alignment buffer is full; or the fetch pipe was flushed because
of an abort in the execution pipeline.

Stall A stall has been generated at a stage of the pipeline.

Wait
An instruction at a stage of the pipeline waits to be executed
(because of a stall down the pipeline).

Bubble
The pipeline stage contains an invalid instruction as a result of
a stall up the pipeline.

Hit
An instruction at a stage is a Branch Target Buffer Hit. The
address of the last slot of the instruction line was found in the
Branch Target Buffer.
2-82 VisualDSP++ 4.5 User’s Guide

Environment
Pipeline Instruction Event Details

To view event details, press and hold down the keyboard’s Ctrl key and
move the mouse pointer over the cell in the Pipeline Viewer window. The
pipeline event details appear in a tool tip (message) box, as shown in
Figure 2-55.

A pipeline event can include the details described in Table 2-22.

Figure 2-55. Example: Tool Tip Box Showing Pipeline Event Details

Table 2-22. Pipeline Event Details

Item Displays

Address Address of the pipeline stage at that cycle (if valid)

Instruction Assembly instruction of that address (if valid)

Type Type of event

Cause Cause of the event condition

Details Further explanation of the cause of the event (if applicable)
VisualDSP++ 4.5 User’s Guide 2-83

Debugging Windows
Cache Viewer Window
(Simulation only) The VisualDSP++ Cache Viewer window provides a
means to visualize a processor’s cache and locate problem areas. The tool
shows how instructions are being executed. Use this valuable information to
boost your application’s performance.

The Cache Viewer window (Figure 2-56) displays each instruction’s execu-
tion characteristics. Cache Viewer information indicates the type of cache
event and describes the cause of the event. Each instruction that executes from
cache is marked with an H (hit) or an M (miss). Hits represent cache instruc-
tions executed without a stall. Misses identify instructions fetched from slower
parts of memory, because they were not found in cache.

Figure 2-56. Viewing a Cache Event’s Details in the Cache Viewer
2-84 VisualDSP++ 4.5 User’s Guide

Environment
Use the hit or miss information to increase an application’s performance by
locating instructions in the cache when they are needed. Ensuring that no
cache misses are located in frequently executed areas of an application
(as highlighted by the profiler utility) is a critical step in optimizing your
application’s software performance.

As shown in Figure 2-56, the Cache Viewer window enables you to view the
details of any cache event. These descriptive details help you understand the
cause of the cache event. Use this information to isolate areas where perfor-
mance can be improved.

For example, based on cache event details, you might:

• Modify an application’s layout in memory to avoid cache thrashing

• Prefetch instructions to avoid compulsory misses

• Lock down ways in the cache to avoid a conflict miss with a frequently
accessed instruction

Open the Cache Viewer window by choosing View, Debug Windows, and
Cache Viewer.

The Cache Viewer consists of several tabbed pages, described in
Table 2-23.

Table 2-23. Cache Viewer Window Pages

Page Displays

Configuration Cache configuration information

Detailed View Location (set and way) of cache event

History List of cache events

Performance Cache performance metrics

Histogram A plot of cache activity

Address View Cache events on an Address vs. Cycle plot
VisualDSP++ 4.5 User’s Guide 2-85

Debugging Windows
The Cache Viewer window’s right-click menu (described in Table 2-24)
enables you to read, write, and step a cache events log, which is a file that
records cache events.

The cache events log file does not include icons. Thus, the Cache
Viewer window’s Detailed View page does not display icons.

Stepping enables you to execute one cache event at a time from the cache
events log file. The cache event displays on the Detailed View, History, and
Histogram pages. When stepping is configured, a check mark appears next to
the Step command on the right-click menu. By default, this option is enabled
when a cache events log file is opened for reading.

Table 2-24. Cache Viewer Window’s Right-Click Menu

Menu Option Description

Enabled Enables and disables collection of cache data while the target is
running or stepping

Clear Clears all displays and deletes all stored cache data

Map References Opens the Map References dialog box, where you specify the
cache reference map (start address and end address)

Event LogvRead Opens the File Open dialog box, where you select and open a
cache events log file. The log file data is used by the Cache
Viewer window’s Configuration view.

Event LogvWrite Opens the File Save dialog box, where you save a cache events
log file. Cache events are written to this log file.

Event LogvStep Executes one cache event at a time from the cache events log file.
The cache event displays in the Detailed View, History, and
Histogram pages of the Cache Viewer window.

By default, this option is enabled when a cache log file is opened
for reading.

Properties Opens the Cache Viewer Properties dialog box, where you
specify the Cache Viewer window’s appearance
2-86 VisualDSP++ 4.5 User’s Guide

Environment
Configuration Page

The Configuration page (Figure 2-57) displays configuration information
for configured cache.

The Cache Selection pull-down box (top of dialog box) lists cache displays.
When multiple caches are configured, use this list to change cache displays.

The Cache Configuration list box (below the Cache Selection pull-down
box) displays a list of items and their values. The first three items (Cache
Name, Number of Sets, and Number of Ways) are required. The target may
display additional items, such as Cache Size and Line Size. The list of items
depends on the selection in the Cache Selection pull-down box.

Figure 2-57. Example: Configuration Page
VisualDSP++ 4.5 User’s Guide 2-87

Debugging Windows
Detailed View Page

The Detailed View page (Figure 2-58) displays a grid, depicting cache sets
(rows) and cache ways (columns).

Data received from a cache event is placed in the cell corresponding to the
cache set and way. The most recent cache events are highlighted.

Each cell has an icon and text entry. The icon indicates the type of cache
event (hit, miss, and so on) that occurred. Depending on the selected
objects, details (such as reference address, PC address, cycle count, event
type, event description, and so on) can be shown.

Figure 2-58. Example: Detailed View Page
2-88 VisualDSP++ 4.5 User’s Guide

Environment
Pressing down the keyboard’s Ctrl key and moving the mouse over a cell
displays a tooltip, showing cache event and cache line information.

A lock icon in the column header indicates that the cache way is locked.

A reference map icon in the Set # column indicates the results of the refer-
ence mapper function. Double-clicking on a cell switches the display to
the history view (History page) for the selected cell.

History Page

The History page (Figure 2-59) displays detailed information for each cache
event that occurred in the selected set and way.

Figure 2-59. Example: History Page
VisualDSP++ 4.5 User’s Guide 2-89

Debugging Windows
Select the set and way from the pull-down control (top of dialog box) or
by double-clicking a cell on the Detailed View page.

You can specify the number of stored cache events. Sort the rows by clicking
on any column heading. An up arrow in a column heading indicates an
ascending sort order; a down arrow indicates a decending sort order.

Table 2-25 describes cache event history information.

Table 2-25. History Information for Cache Events

Item Description

Index # Shows the order in which the cache events were received. The
index starts at zero and increments each time a cache event is
received.

Set # Displays the set number where the cache event occurred

Way # Displays the way number where the cache event occurred

Cycle Displays the cycle count when the cache event occurred

PC Address Displays the PC address of the cache event

Ref Address Displays the reference address of the cache event

Symbol Lookup Displays the symbol name when the reference address resolves to a
symbol in memory

Valid Displays the cache line valid flag (Yes or No)

Event Type Displays the cache event type, such as Hit or Miss

Description Displays the cache event’s description
2-90 VisualDSP++ 4.5 User’s Guide

Environment
Performance Page

The Performance page (Figure 2-60) shows a list of performance metrics
(items and values), which are determined by the target.

The target updates this list. The update rate, however, is not predetermined.

Figure 2-60. Example: Performance Page
VisualDSP++ 4.5 User’s Guide 2-91

Debugging Windows
Histogram Page

The Histogram page (Figure 2-61) shows a plot of the total number of cache
events that occurred in each cache set.

A vertical line displays for each cache set. The line starts at zero and ends at
the total number of cache events. Use this plot to identify the most active
cache sets.

Figure 2-61. Example: Histogram Page
2-92 VisualDSP++ 4.5 User’s Guide

Environment
Address View Page

The Address View page (Figure 2-62) displays cache events on an Address
versus Cycle plot. Use this view to display the cache events for the specified
addresses over time.

Cache events display as icons, identical to the icons used in the detailed view.
A start address and count are required. Enter the start address as a hexadecimal
value or a symbol. Click the browse (…) button to browse for a symbol.

The count determines the number of addresses displayed. After entering a
start address and count, click Update to display the cache event data. Use hor-
izontal and vertical scroll bars to scroll the view.

Figure 2-62. Example: Address View Page – Address Range View
VisualDSP++ 4.5 User’s Guide 2-93

Debugging Windows
VDK Status Window
The VDK Status window (Figure 2-63) is available when an executable
file is built with VDK support enabled. Open this window by choosing
View, VDK Windows, and Status.

Figure 2-63. Example: VDK Status Window
2-94 VisualDSP++ 4.5 User’s Guide

Environment
When the execution of a VDK-enabled program is halted, VisualDSP++ reads
data for threads, semaphores, events, event bits, device flags, memory pools,
and messages and displays state and status data in this window. When one of
the above VDK entities is created, it is added to the display. An entity is
removed from the display when it is destroyed.

Initially, information is displayed in a collapsed state, which shows only the
name of the entity and, in some cases, its current state. When a thread is in the
Ready state, its priority displays.

Clicking the plus sign () next to the name of an entity expands the view.

The possible thread states are as follows.

• Running

• Ready

• SemaphoreBlocked

• EventBlocked

• DeviceFlagBlocked

• MessageBlocked

• SemaphoreBlockedWithTimeout

• EventBlockedWithTimeout

• DeviceFlagBlockedWithTimeout

• MessageBlockedWithTimeout

• Sleeping

• Unknown

See the VisualDSP++ Kernel (VDK) User’s Guide for details.
VisualDSP++ 4.5 User’s Guide 2-95

Debugging Windows
VDK State History Window
VDK state history is available only for executable files with VDK support.
During execution of a VDK-enabled program, if Full Instrumentation is
specified for the project, thread and event data are collected in a history buffer.
When a running program is halted, the history buffer data is plotted in the
VDK State History window, described in Figure 2-64. Some features
become available only when the data cursor is enabled. Open this window
by choosing View, VDK Windows, and History.

Figure 2-64. VDK State History Window
2-96 VisualDSP++ 4.5 User’s Guide

Environment
Each thread appears as a horizontal bar (thread status bar). The ThreadID and
the name of the thread type appear to the left of the bar. When a thread is
destroyed, the name of the thread type is no longer displayed. Each thread
event appears as an arrow above a thread.

Thread Status and Event Colors

Threads and events are coded by color, based on thread status and event type.
The colors appear in the horizontal bars (threads) and colored arrows (events)
used throughout the plot. Events of the same type are drawn in the same
color.

Right-click on the plot and choose Legend to display legends that define
each color in the VDK State History window. To customize colors,
right-click on the plot and choose Properties.

Trace thread-switched history by following the thin green line, which winds
through the display, passing under threads to indicate the running thread at
any particular time. When a context switch occurs and changes the running
thread, a vertical green line is drawn from the previously running thread to the
next running thread.

When you use the data cursor, a yellow triangle to the left of a thread name
identifies the currently running thread.
VisualDSP++ 4.5 User’s Guide 2-97

Debugging Windows
Window Operations

The status bar (at the bottom of the plot) on the State History page shows
the event’s details and thread status when the data cursor is enabled. Event
details include the event type, the tick when the event occurred, and an
event value. The value for a thread-switched event indicates the thread
being switched in or out.

Right-click on the plot and choose Data Cursor to activate the data cur-
sor, which is used to display event and thread status details. Based on the
event that occurred, the thread status changes. Press the keyboard’s right
arrow key or left arrow key to move to the next or previous event. When
the data cursor hits a thread-switched event, it moves to the thread being
switched in. The yellow triangle to the left of the thread name indicates
the currently active thread.

You can zoom in on a region to examine that area in more detail. Hold the
left mouse button down while dragging the mouse to create a selection
box. Then release the mouse button to expand the plot. To restore the
plot to its original scale, right-click on the plot and choose Reset Zoom.

Right-Click Menu

The VDK State History window’s right-click menu provides easy access
to operations that can be performed from the state history plot.
2-98 VisualDSP++ 4.5 User’s Guide

Environment
Target Load Window
Clicking the Target Load tab from the VDK State History window dis-
plays the Target Load window. A target load plot (Figure 2-65) shows the
percentage of time that the target spent in the Idle thread.

A load of 0% indicates that VDK spent all of its time in the Idle thread. A
load of 100% indicates that the target did not spend any time in the Idle
thread.

Load data is processed by means of a moving window average.

Figure 2-65. Target Load Window Plot
VisualDSP++ 4.5 User’s Guide 2-99

Debugging Windows
Plot Windows
Use a plot window to display a memory plot, which is a visualization of
values obtained from processor memory. You can display one or multiple
plot windows by choosing View, Debug Windows, Plot, and New.

In the Plot Configuration dialog box, specify the contents of a plot. In the
Plot Settings dialog box, specify the plot’s presentation. You can modify a
plot’s configuration and immediately view the revised plot.

Figure 2-66 shows an example of a plot window.

From a plot window, you can zoom in on a potion of a plot or view the
values of a data point.

You can print a plot, save the plot image to a file, or save the plot’s data to
a file. For details, refer to VisualDSP++ Help.

Figure 2-66. Plot Window
2-100 VisualDSP++ 4.5 User’s Guide

Environment
Plot Window Features

Plot windows include a status bar, toolbar, and a right-click menu.

Status Bar

The status bar, located at the bottom of the plot window, displays the plot
type and other information, depending on the plot type and other
settings.

The following examples show different plot information displayed on the
status bar.

In a waterfall plot, the status bar indicates the azimuth and elevation view-
ing angles. If you zoom in on a region, the status bar indicates that zoom
is enabled. When using the data cursor, the status bar shows the selected
point’s data value.

When a plot window’s auto-refresh mode is enabled in BTC mode, the status
bar indicates current buffer capacity (for example, 89%) and data logging
status.

Buffer capacity, which dynamically changes between 0 and 100%, indicates
the portion of the buffer currently in use. The ideal size is a little below 100%.
Readings of 100% indicate lost data.

Figure 2-67. Status Bar Information for Plots
VisualDSP++ 4.5 User’s Guide 2-101

Debugging Windows
Table 2-26 describes the data logging status indicators in a plot window.

Tool Bar

The plot window’s toolbar, shown in Figure 2-68, provides buttons for
recording and playing back streaming data and a box for specifying streamed
data (.BIN) file names.

Table 2-26. Data Logging Status Indicators in a Plot Window

Status Indicates

Record Real-time data being displayed is also being saved (logged) to a .BIN file.

Live Data is being displayed in real time.

Playback A previously saved data (log) file is being viewed.

Figure 2-68. Plot Window’s Toolbar
2-102 VisualDSP++ 4.5 User’s Guide

Environment
Right-Click Menu

The plot window’s right-click menu is shown in Figure 2-69.

This menu provides access to the standard window options (docking, clos-
ing, and floating in the main window) and to the plot window features
described in Table 2-27.

Figure 2-69. Plot Window’s Right-Click Menu
VisualDSP++ 4.5 User’s Guide 2-103

Debugging Windows
Table 2-27. Plot Window Operations

Feature Description

Data Cursor Displays the data value associated with the position of the plot win-
dow’s data cursor. View the value on the left side of the plot window’s
status bar. Press the keyboard’s arrow keys to move around the graph.

Reset Zoom Resets the plot window to its initial full-scale display

Configure Opens the Plot Configuration dialog box, where you add, remove,
or modify data sets. You can also change the plot type and rename the
plot.

Modify Settings Opens the Plot Setting dialog box, where you customize the plot’s
appearance. You can specify plot settings (grids, colors, margins,
fonts, axes, and so on) and settings for each data set (data processing).

Save Settings Saves plot configuration settings for future use. The configuration is
stored, but not the data. You can retrieve settings (.VPS file) and load
new plot data.

Export Exports the plot image to various destinations including the Win-
dows clipboard. Save the plot image as a file (JPG, GIF, TIF, EPS,
TXT, or DAT format) or print a hard copy.

Auto Refresh Enables a plot window to refresh automatically based on settings that
you specify. The auto-refresh timer starts. Streaming data is read and
displayed. When this option is deselected, the timer is stopped and
streaming data is not processed. You can specify auto-refresh options
such as BTC, refresh rate, and missing data indication.

Auto Refresh Settings Enables you to configure options that control auto-refresh settings for
plot windows. These settings determine the method in which mem-
ory is transferred.
2-104 VisualDSP++ 4.5 User’s Guide

Environment
Plot Window Statistics

View various statistics (mean, standard deviation, signal-to-noise ratio (SNR),
minimum data value, and maximum data value) while displaying a plot. Note
that statistics apply only to the portion of data that is visible. When the plot is
zoomed, the statistics are recalculated only for the visible area.

Figure 2-70 shows statistics displayed for a portion of audio data.

For details about viewing statistics, refer to VisualDSP++ Help.

Figure 2-70. Statistics Displayed for a Portion of Audio Data
VisualDSP++ 4.5 User’s Guide 2-105

Debugging Windows
Plot Configuration

A plot configuration comprises two parts: data values and presentation
(configuration) settings.

A plot window must contain at least one data set, a series of data values in
processor memory. Create data sets in the Plot Configuration dialog box,
shown in Figure 2-71.

Specify the type of plot (for example, waterfall), the memory location, the
number of values, the axis associated with each data set, and other options
that identify the data. Note that three-dimension (3-D) plots require addi-
tional specifications for row and column counts.

Figure 2-71. Plot Configuration Dialog Box
2-106 VisualDSP++ 4.5 User’s Guide

Environment
The Settings button enables the configuration of presentation options
(such as titles, grids, fonts, colors, and axis presentation) for each data set.
You can recall a plot from a saved settings file (.VPS). VisualDSP++ uses
these settings and reads processor memory to display a plot window.

Plot Window Presentation

Customize the presentation of a plot window to fit your needs. Configure
presentation settings from the Plot Settings dialog box, which you can
invoke by:

• Right-click from within a plot window

• Click the Settings button in the Plot Configuration dialog box

The Plot Settings dialog box provides the tabs shown in Figure 2-72.

Options on the tab pages enable you to configure the plot window’s
presentation. On the Style page, for example, you can easily specify sym-
bols for a data set as well as line type and width, as shown in Figure 2-73.

Figure 2-72. Tabs in the Plot Setting Dialog Box

Figure 2-73. Specifying Line Styles
VisualDSP++ 4.5 User’s Guide 2-107

Debugging Windows
In addition to the many presentation options, you can select a rectangular
area, as shown in Figure 2-74, and zoom in on it.

Figure 2-74. Zooming in on a Selected Area
2-108 VisualDSP++ 4.5 User’s Guide

Environment
Plot Presentation Options

Depending on the selected plot type, many plot presentation options are
available.

In the Plot Settings dialog box, these options are grouped by function on
tabbed pages, as described in Table 2-28.

You can specify a plot’s presentation options before generating the plot
(while configuring the plot) or after generating the plot.

Image Viewer
The Image Viewer window reads and displays image data from processor
memory or a file on your PC. Use this window to configure image attributes
and to view images. This display is ideal for testing image-processing
algorithms.

You select the image source (from processor memory or a file on your PC)
and specify image attributes. If the image is located in processor memory,
you must specify the image’s address, size, and format.

Table 2-28. Plot Settings Options by Page

Page Options That You Can Specify

General Title and subtitle, grid lines, margins, background colors, and
legend

2-D Axis For X-axis and Y-axis: axis titles, start and increment values,
scales

3-D Axis For X-axis, Y-axis, and Z-axis: axis titles, Z-axis settings, step
sizes, scale multipliers, color and mesh

Font Font name, color, and size

Style For a data set: line type, width, color; symbol and type

Data Processing For a data set: data processing algorithm, sample rate, and
triggering
VisualDSP++ 4.5 User’s Guide 2-109

Debugging Windows
The Image Viewer supports the following pixel formats: Grayscale 8,
Grayscale 12, Grayscale 16, RGB555, RGB565, RGB24, and RGB32.

To open the Image Viewer window, choose View, Debug Windows, and
Image Viewer.

Refer to Help for information about format types, packed data, and
detailed how-to information.

Figure 2-75. Image Viewer Window
2-110 VisualDSP++ 4.5 User’s Guide

Environment
Automation Interface

The Image Viewer has an automation interface that permits COM-aware
languages to access Image Viewer functions, such as loading, retrieving,
displaying, and saving data.

Toolbar

The top of the window provides these tools:

Table 2-29. Image Viewer Window Toolbar Buttons

Button Purpose

Configure. Opens the Image Configuration dialog box

Refresh. Reads processor memory and updates the image display

Zoom In. Zooms in by a factor of two

Zoom Out. Zooms out by a factor of two

Zoom Cancel

Save. Opens a Save dialog box, from which to save the image.

Print

Copies the image to the Windows clipboard
VisualDSP++ 4.5 User’s Guide 2-111

Debugging Windows
Status Bar

As you move the mouse over the image, the status bar indicates:

• Zoom status

• Processor address where the selected pixel is located

• Pixel values for color images, intensity values for gray-scale images

• Pixel coordinates (column and row)

Pixel color depth is 24 bits for color images and 8 bits for
gray-scale images.

Right-Click Menu

The Image Viewer window's right-click menu provides these commands:

Table 2-30. Right-Click Menu Commands

Command Purpose

Configure Opens the Image Configuration dialog box, from which to specify
image attributes

Refresh Reads the image data from processor memory

Color - Gamma Adjust Opens the Image Effects dialog box, from which to adjust gamma
and view the resulting image

Rotate Provides four selections: 0, 90, 180, or 270

Flip Provides four selections: None, Horizontal, Vertical, or Both.

Auto-Refresh A black check mark indicates that auto-refresh is enabled (based
user-specified settings)

Auto-Refresh Settings Opens the Auto-Refresh Settings dialog box, from which to config-
ure auto-refresh settings
2-112 VisualDSP++ 4.5 User’s Guide

3 DEBUGGING

This chapter describes VisualDSP++ debugging tools used during

single-processor and multiprocessor debug sessions. The topics are
organized as follows.

• “Debug Sessions” on page 3-2

• “Code Analysis Tools” on page 3-7

• “Program Execution Operations” on page 3-10

• “Simulation Tools” on page 3-16

• “Plots” on page 3-19

• “Flash Programmer” on page 3-28

• “Energy-Aware Programming” on page 3-31
VisualDSP++ 4.5 User’s Guide 3-1

Debug Sessions
Debug Sessions
You run the projects that you develop as debug sessions (sessions).

A session is defined by the elements listed in Table 3-1.

The processor, connection type, and platform specify the debug session.
By default, a session name is generated automatically. You can further
identify the session by modifying the default name, choosing a more
meaningful name.

 A well-chosen name can prevent confusion later.

Table 3-1. Specifying a Debug Session

Element Description

Processor When you create an executable file, the processor is specified by the
Linker Description File (.LDF) and other source files.

Connection type The connection type (target) is the software module that controls a
type of debug target (a simulator or an emulator).
A simulator is software that mimics the behavior of a processor chip.
Simulators are used to test and debug processor code before a pro-
cessor chip is manufactured.
The choice of an EZ-KIT Lite connection type uses a “debug agent”
as the platform.
An emulator is software that “talks” to a hardware board that con-
tains one or more actual processors.

Platform For a given debug target, several platforms may exist. For a simula-
tor, the platform defaults to the identically-named simulator. When
the debug target is an EZ-KIT Lite® board, the platform is the
board in the system on which to focus. When the debug target is a
JTAG emulator, the platforms are the individual JTAG chains.
3-2 VisualDSP++ 4.5 User’s Guide

Debugging
Debug Session Management
You can run several debug sessions at once and can switch dynamically
between sessions.

The typical reasons for running multiple debug sessions are:

• To write different versions of your program to compare their
operating efficiencies

• To debug completely different programs without having to run
multiple instances of VisualDSP++

Simulation vs. Emulation
While connected to a simulator session, you may open as many sessions as
your system’s memory can handle.

While connected to actual hardware through an emulator, only one debug
session may be connected to one emulator at any time. If multiple emula-
tors are installed and are connected to multiple target boards, one debug
session may be connected to each individual emulator.

In a JTAG emulator session, only one debug session may be con-
nected to each physical target/emulator combination. Otherwise,
contention issues may arise. Upon switching to a different session,
VisualDSP++ detaches from the old session before attaching to the
new session.

Breakpoints

In a simulator session, a breakpoint can be set at any address in your
executable program’s memory. Program execution halts at the address
where the breakpoint is located.

Hardware breakpoints can be used in emulator debug sessions only;
see “Hardware Breakpoints” on page 3-16.
VisualDSP++ 4.5 User’s Guide 3-3

Debug Sessions
Watchpoints

Watchpoints are like breakpoints that trap on a specified condition.You
can set watchpoints on registers, stacks, and memory ranges. Reaching the
condition halts program execution and updates all windows.

Watchpoints are available only during simulation.

Multiprocessor (MP) System Debugging
Often, performance-based products require two or more processors.
A system built with multiple processors is called a multiprocessor system
(MP system). A system built with a single processor is called a single-pro-
cessor system.

The SHARC and TigerSHARC simulators do not support
multiprocessor (MP) debugging; multiprocessing for these proces-
sors is available in emulator sessions only. Multiprocessing support
for Blackfin ADSP-BF561 and ADSP-BF566 processors is available
in simulation.

Setting Up a Multiprocessor Debug Session

The first step in setting up a multiprocessor debug session is to develop a
multiprocessor project by using the multiprocessing capabilities of the
linker and an .LDF file to describe the multiprocessor system. Refer to the
VisualDSP++ Linker and Utilities Manual, especially sections about the
SHARED_MEMORY{} and MPMEMORY{} commands.

The second step is to use the VisualDSP++ Configurator utility to
describe the hardware to the VisualDSP++ software if you are running a
JTAG emulator session. VisualDSP++ uses this description when you set
up your debug session. Refer to VisualDSP++ Help for information about
using the VisualDSP++ Configurator.
3-4 VisualDSP++ 4.5 User’s Guide

Debugging
When running a multiprocessor simulator debug session, select the desired
configuration from the Select Platforms page of the Session Wizard. After
specifying your hardware system, build your project.

The first time that you launch VisualDSP++ for a new project, the Session
Wizard opens to enable you to configure the MP session. The next time
VisualDSP++ is launched, the debug session is configured automatically.

Debugging a Multiprocessor System

Debugging a multiprocessor system requires that you synchronously run,
step, halt, and observe program execution operations in all the processors
at once.

The following capabilities help to speed a multiprocessor debug session.

• Multiprocessor debug commands (Debug -> Multiprocessor)
operate similar to commands used to debug a single processor.
The only difference is that MP commands work synchronously
on all active processors in the currently selected MP group

• Multiprocessor window (refer to “Multiprocessor Window” on
page 2-75)

The Status page displays the status of each processor and lets you
switch processor focus.

The Group page enables you to group processors into multiple,
logical units to which all MP commands are applied.

• Window pinning. Note that you can use pinning and the processor
status items in the Multiprocessor window with single-processor
debug commands to debug individual processors in an MP session.

• Window color specification (see VisualDSP++ Help)
VisualDSP++ 4.5 User’s Guide 3-5

Debug Sessions
Focus and Pinning

Often, in a multiprocessor debug session, you have to examine the
behavior of a single processor to better understand its interaction with the
other processors on the target.

When you debug a single processor in an MP session, the processor being
debugged has the focus.

By pinning a window to a processor, you dedicate that window (such as a
memory window) to a particular processor in a multiprocessor group.
Pinning associates a window to a specific processor statically.

Before debugging, open and pin the register windows and memory
windows that you plan to use. If these windows are not pinned,
they display information for any processor that has focus.

When a window is pinned to a processor, a pin icon appears in the win-
dow’s upper-left corner.

For example:

Window Title Bar Information

Figure 3-1 shows a pinned window in a multiprocessor debug session.

The title bar of a pinned window shows:

• A pushpin icon () to indicate that it is a pinned window

• The processor’s name

• Window title

• Number format, such as hexadecimal (for windows that support
multiple formats)
3-6 VisualDSP++ 4.5 User’s Guide

Debugging
Additional Focus Indication

If configured, VisualDSP++ shades unfocused windows with a specified
color. You can specify the background color of focused and unfocused
windows. For details, refer to VisualDSP++ Help.

Code Analysis Tools
You use code analysis tools to examine your code’s behavior and locate
areas that may be optimized for better performance.

VisualDSP++ provides these code analysis tools:

• Profiling (statistical and linear)

• Traces (SHARC processors only)

• Processor memory plots (see “Plot Windows” on page 2-100)

• Pipeline Viewer (see “Pipeline Viewer Window” on page 2-79)

• Cache Viewer (see “Cache Viewer Window” on page 2-84)

Figure 3-1. Pinned Window in a Multiprocessor Debug Session
VisualDSP++ 4.5 User’s Guide 3-7

Code Analysis Tools
Statistical Profiles and Linear Profiles
VisualDSP++ provides two profiling methods that measure program
performance by sampling the target’s Program Counter (PC) register to
collect data. Use linear profiling with simulator targets, and use statistical
profiling with emulator targets.

The Linear Profiling window and Statistical Profiling window display the
data collected by these two profiling methods and indicate where the
application is spending its time. Refer to “Statistical/Linear Profiling Win-
dow” on page 2-51 for details.

The window’s title (Linear Profiling or Statistical Profiling) depends on
whether this tool is used during simulation or emulation.

Simulation: Linear Profiling

Linear profiling with the simulator is not statistical because the simulator
samples every PC executed. This feature provides an accurate and com-
plete picture of program execution.

Linear profiling is much slower than statistical profiling. Simulator targets
support linear profiling, but do not support statistical profiling.

Emulation: Statistical Profiling

A statistical profile measures the performance of a user program by
sampling the target’s PC register at random intervals while the target is
running the program. Most of the execution time in the program is in the
areas where most of the PC registers are concentrated.

Statistical profiling provides a more generalized form of profiling that is
well suited to JTAG emulator debug targets. Emulator targets do not sup-
port linear profiling.

JTAG sampling is completely non-intrusive, so the process does not incur
additional run-time overhead.
3-8 VisualDSP++ 4.5 User’s Guide

Debugging
Statistical Profiling of Short Run Programs

Statistical profiling of short run programs does not display any results.
Statistical profiling requires a minimum number of samples. The more
samples, the more accurate. Below a minimum, it is not worth reporting.
For a 600-MHz Blackfin processor, at 10 MHz the emulator collects
about 60000 samples per second, which is about a 10000-to-1 ratio versus
the number of instructions the processor executes per second. If the pro-
gram has fewer than 10000 instructions, the profile will contain only one
sample (at most), which is not useful information.

Statistical profiling is meant to be run in an operational system over time,
allowing you to evaluate repetitive code (such as FFTs and ISRs) which
are called often in the running system. This requires a longer time to
become statistically stable.

Traces
(SHARC processors only) A trace captures a history of processor activity
during program execution. Run a trace (execution trace or a program trace)
to analyze the run-time behavior of your application program, enable I/O
capabilities, and simulate source-to-target data streaming.

VisualDSP++ provides a Trace window. Refer to “Trace Windows” on
page 2-48 and to Help for details.

A trace includes the following information.

• Buffer depth (instruction lines)

• Cycle count

• Instructions executed such as memory fetches, program memory
writes, and data/memory transfers

Viewing the disassembled instructions that were performed can also help
in analyzing code behavior.
VisualDSP++ 4.5 User’s Guide 3-9

Program Execution Operations
Program Execution Operations
By default, when VisualDSP++ starts up, it attaches to the previous session.
You can override this behavior, and instead, force VisualDSP++ to start a new
session.

When loading and running your program, use VisualDSP++ features to
step, break, and halt the program.

Selecting a New Debug Session at Startup
If you had a problem, such as a corrupted workspace, in your last debug ses-
sion, use the following procedure to force a fresh session at startup.

VisualDSP++ must be closed before performing the following
procedure.

1. Hold down the keyboard’s Ctrl key.

Do not release the Ctrl key until the Session Wizard appears, as
described in the next step.

2. Invoke VisualDSP++ as you normally do.

Typical methods include using the Windows Start button sequences,
clicking desktop icons, or using Windows Explorer.

The Session Wizard appears.

3. Specify and activate a debug session.

When launching VisualDSP++ in stand-alone mode, ensure that
the session is configured correctly before loading the program.
3-10 VisualDSP++ 4.5 User’s Guide

Debugging
Loading the Executable Program
Once you have specified the debug session, begin the session by loading
the executable program.

After a successful build of the target executable program, VisualDSP++
(if configured) loads the program automatically to the current session
when the session processor type matches the project’s processor. If the cur-
rent session processor does not match the project’s processor type, you are
prompted to choose another session.

If automatic load is not configured, VisualDSP++ does not try to load the
executable program automatically after a successful build.

 The target must be an executable (.DXE) file.

This debugging feature saves time, because you do not have to load the
executable target manually. You can start to debug immediately after
successfully building the project.

Program Execution Commands
Run program execution commands from the Debug menu or from the
toolbar.

Executable files run until an event such as a breakpoint, watchpoint, or
user-issued Halt command stops execution. When program execution
halts, all windows are updated to current addresses and values.

Multiprocessor (MP) commands operate like single-processor commands
with one exception—they perform an action on all processors in the MP
group. MP Run, MP Halt, and MP Step are synchronous operations,
which means that all processors in the currently selected MP group exe-
cute on exactly the same clock cycle. Some commands have keyboard
shortcuts; refer to “Keyboard Shortcuts” on page A-32.

Use the commands described in Table 3-2 to control program execution.
VisualDSP++ 4.5 User’s Guide 3-11

Program Execution Operations
Restarting the Program
You can set the Program Counter (PC) to the first address of the interrupt
vector table.

Performing a Restart During Simulation

In the simulator, restart works like a reset; however, the target’s memory
does not change. All registers are reset to their initial values.

Memory is not reset. Thus, C and assembly global variables are not
reset to their original values. Your program may behave differently
after a restart. To re-initialize these values, reload your .DXE file.

Table 3-2. Commands Used to Control Program Execution

Command Description

Run Runs an executable program. The program runs until an event stops it,
such as a breakpoint or user intervention. When program execution
halts, all windows update to current addresses and values.

Halt Stops program execution. All windows are updated after the processor
halts. Register values that changed are highlighted, and the status bar
displays the address where the program halted.

Run to Cursor Runs the program to the line where you left your cursor. You can place
the cursor in editor windows and Disassembly windows.

Step Over (C/C++ code only in an editor window) Single-steps forward through
program instructions. If the source line calls a function, the function
executes completely, without stepping through the function instruc-
tions.

Step Into (editor window or Disassembly window) Single-steps through the pro-
gram one C/C++ or assembly instruction at a time. Encountered func-
tions are entered.

Step Out Of (C/C++ code only in an editor window) Performs multiple steps until
the current function returns to its caller, and stops at the instruction
immediately following the call to the function.
3-12 VisualDSP++ 4.5 User’s Guide

Debugging
Performing a Restart During Emulation

In the emulator, a restart works exactly like a reset. Only registers with
default reset values are affected. All other registers remain unchanged.

Breakpoints
An enabled breakpoint halts program execution at a specific instruction or
address. You can enable and disable breakpoints as well as add and delete
breakpoints.

A disabled breakpoint is set up, but not turned on. A disabled breakpoint
does not stop program execution. It is dormant and may be used later.

A break occurs when the conditions that you specify are met.

You can quickly place an unconditional breakpoint at an address in a
Disassembly window or editor window by:

• Selecting an address and clicking Toggle Breakpoint button

• Double-clicking a line in a Disassembly window or editor window

Symbols in the left margin of a Disassembly window or editor window
indicate breakpoint status, as shown in Table 3-3.

Table 3-3. Breakpoint Status Symbols

Symbol Indicates

Enabled (set) software breakpoint

Disabled software breakpoint (recognized, but cleared)
VisualDSP++ 4.5 User’s Guide 3-13

Program Execution Operations
Unconditional and Conditional Breakpoints
A breakpoint configured to occur when the Program Counter reaches a
specific address is an unconditional breakpoint. The breakpoint occurs
when it is reached.

A breakpoint configured to occur when various conditions (criteria) are
met is called a conditional breakpoint. The conditions may include:

• A user-defined expression that must evaluate to TRUE

• A skip (count) that specifies the number of times to skip over the
breakpoint before finally halting

If both an expression and skip are set, execution stops when the break-
point is reached “n” times when the expression is true, where n represents
the skip count. When the expression is empty, execution stops when the
breakpoint is reached “n” times.

Automatic Breakpoints
In VisualDSP++ 4.0 and earlier, after a program is loaded, software break-
points are automatically set at main. In VisualDSP++ 4.5, you can
configure whether those “automatic” breakpoints are set after a program is

Enabled hardware breakpoint

Disabled hardware breakpoint

Table 3-3. Breakpoint Status Symbols

Symbol Indicates
3-14 VisualDSP++ 4.5 User’s Guide

Debugging
loaded. Also, you can specify additional breakpoints to be set after a load
and you can specify each additional breakpoint as being a software break-
point or a hardware breakpoint.

You conifer the automatic breakpoints via the Automatic page of the
Breakpoints dialog box. Next to each label in the breakpoint list, is a brief
description of the breakpoint location like “start of program” for main,
“end of program” for ___lib_prog_term, and so on. User-defined break-
points are labeled “user breakpoint” if you do not provide a description.

Automatic breakpoints may be set as software breakpoints or hardware
breakpoints. If the IDDE is connected to a simulator target, the “hard-
ware/software” specification is ignored since all breakpoints are software
breakpoints. If the IDDE is connected to an emulator target that supports
hardware breakpoints, you can specify each automatic breakpoint as being
a hardware breakpoint or a software breakpoint in the target. Automatic
breakpoints are specified, saved, and restored on a per-session basis.

Multiprocessor Sessions. In a multiprocessor session, you must configure
the automatic breakpoints one processor at a time by setting focus on a
processor, opening the Automatic page of the Breakpoints dialog box, and
specifying/enabling the breakpoints for the processor that has the focus.

Watchpoints
Similar to breakpoints, watchpoints stop program execution when
user-specified conditions are satisfied. Watchpoints, however, are used to
set a condition, such as a memory read or stack pop, for halting events.

 Use watchpoints only during simulation.

Watchpoints, unlike breakpoints, are not attached to a specific address.
A watchpoint halts anywhere in your program once the watchpoint
conditions are satisfied.
VisualDSP++ 4.5 User’s Guide 3-15

Simulation Tools
Hardware Breakpoints
Similar to simulator watchpoints, hardware breakpoints enable you to set
breaks on instructions or data transfers within a user-defined memory range.

Choosing Hardware Breakpoints from the Settings menu opens the
Hardware Breakpoints dialog box, from which to configure the hardware
breakpoints.

Refer to VisualDSP++ Help for your processor family (SHARC ICE,
TigerSHARC ICE, or Blackfin ICE) for details about configuring the
hardware breakpoints.

Latency

Hardware breakpoints do not assert until one (1) or two (2) instruction cycles
after the actual break condition occurs. Note that the program counter is not
placed on the instruction that caused the break.

Restrictions

When using hardware breakpoints, do not place breaks at any address where a
JUMP, CALL, or IDLE instruction would be illegal.

Do not place breaks in the last few instructions of a DO LOOP or in the delay
slots of a delayed branch. For more information on these illegal locations, refer
to your processor’s hardware documentation.

Simulation Tools
Before you have the processor, you can use interrupts and data streams
within VisualDSP++ to simulate the processor’s behavior.
3-16 VisualDSP++ 4.5 User’s Guide

Debugging
Interrupts
Use interrupts to simulate external interrupts in your program. When you
use interrupts with watchpoints and streams, your program simulates
real-world operation of your processor system.

Input/Output Simulation (Data Streams)
In many products, processors exist as part of a larger system where they
can act as a host or a slave. They can drive other devices or take part in
processing a subset of data. Because of their extensive I/O capabilities,
Analog Devices processors excel in these roles.

Use data streams to transmit data between:

• A device and a file

• A device and a device

• A device in one processor and a device in another processor in a multi-
processor system

Using background telemetry channel (BTC) technology, VisualDSP++
permits the streaming of data from a target processor without halting the
processor.

This capability applies to emulation targets only.

The plot window receives and displays a stream of data from processor
memory. If the target supports background telemetry, the plot window
reads memory and updates the display without halting the target. Other-
wise, the plot window halts the processor, reads memory, updates the plot,
and resumes the processor.

The plot window allows data to be streamed to (or from) a binary data
file. The data file can be converted into ASCII format for input to other
applications such as MATLAB and Excel.
VisualDSP++ 4.5 User’s Guide 3-17

Simulation Tools
The processor application may collect and transfer data in four different
ways:

• Sampling a test point over time

• Transferring a data array over BTC at a specified point in the
application (SHARC and Blackfin emulation targets only)

• Using GetMem() directly

• Periodically halting the target to read memory

For information about using BTC, refer to the VisualDSP++ Getting Started
Guide.
3-18 VisualDSP++ 4.5 User’s Guide

Debugging
Plots
Use the VisualDSP++ data plotting capability to display data in processor
memory as a plot (graph) in a plot window (Figure 3-2). A data plot can
assist you by allowing you to visualize data.

Refer to “Plot Windows” on page 2-100 for plot window configuration
information. For complete details on configuring plots, refer to
VisualDSP++ Help.

Figure 3-2. Plot Window Displaying Processor Memory
VisualDSP++ 4.5 User’s Guide 3-19

Plots
When plotting processor memory, you can:

• Choose from multiple plot types and specify the plot’s data and
presentation

• Apply a data processing algorithm to the processor’s memory data

• Modify a plot’s configuration and immediately view the results

• Zoom in on a plot area or view data point values, in a plot window

• Print a plot, save the plot image to a file, or save the plot’s data to a
file

Plot Types
Each plot must be specified to be one of the plot types in Table 3-4.

The X, Y, and Z values are read from processor memory.

Table 3-4. Available Plot Types

Plot Type Description Requires

Line
(on page 3-21)

Displays points connected by a
line

Y value for each data point

X-Y
(on page 3-22)

Similar to a line plot, but also
uses X-axis data

X value and Y value for each
data point

Constellation
(on page 3-23)

Displays a symbol at each data
point

X value and Y value for each
data point

Eye diagram
(on page 3-24)

Typically used to show the sta-
bility of a time-based signal

Y value for each data point

Waterfall
(on page 3-25)

3-D plot typically used to show
the change in frequency content
of signal over time

Z value for each data point

Spectrogram
(on page 3-27)

2-D plot displays amplitude data
as a color intensity

Z value for each data point
3-20 VisualDSP++ 4.5 User’s Guide

Debugging
Line Plots
A line plot (Figure 3-3) displays a range of processor memory values con-
nected by a line. The values read from processor memory are assigned to
the Y-axis. The corresponding X-axis values are automatically generated.

Multiple data sets can be plotted on a single graph.

Figure 3-3. Line Plot
VisualDSP++ 4.5 User’s Guide 3-21

Plots
X-Y Plots
An X-Y plot (Figure 3-4) requires an X value and a Y value for each data
point. Unlike a line plot, an X-Y plot requires X-axis data.

The X and Y data are specified separately in a user-defined memory loca-
tion. The number of X and Y points must be equal.

Figure 3-4. X-Y Plot
3-22 VisualDSP++ 4.5 User’s Guide

Debugging
Constellation Plots
A constellation plot (Figure 3-5) displays a symbol at each (X,Y) data
point.

The X and Y data are specified separately in a user-defined processor
memory location. The number of X and Y points must be equal.

Figure 3-5. Constellation Plot
VisualDSP++ 4.5 User’s Guide 3-23

Plots
Eye Diagrams
An eye diagram plot (Figure 3-6) is typically used to show the stability of a
time-based signal. The more defined the eye shape, the more stable the
signal.

This plot works like a storage oscilloscope by displaying an overlapped his-
tory of a time signal. The eye diagram plot processes the input data and
optionally looks for a threshold crossing point (default is 0.0). A trace is
plotted when the threshold crossing is reached. Plotting continues for the
remainder of the trace data.

When a breakpoint occurs (or a step is performed), the plot data is
updated and a new trace is plotted. The eye diagram uses a data shifting
technique that stores the desired number of traces in a plot buffer (default
is ten traces). When the number of traces is exceeded, the first trace shifts
out of the buffer and the new trace shifts into the last buffer location. This
technique is referred to as first in, first out (FIFO).

You can modify options for threshold value, rising trigger, falling trigger,
and the number of overlapping traces.

Figure 3-6. Eye Diagram Plot
3-24 VisualDSP++ 4.5 User’s Guide

Debugging
Waterfall Plots
A waterfall plot (Figure 3-7) is typically used to show the change in fre-
quency content of signal over time.

The plot comprises multiple line plot traces in a three-dimensional (3-D)
view. Each line plot trace represents a slice of the waterfall plot.

The easiest way to create a waterfall plot is to define a 2-D array in C code
(a grid). The first array dimension is the number of rows in the grid, and
the second dimension is the number of columns in the grid. The number
of columns is equal to the number of data points in each line trace.

Figure 3-7. Waterfall Plot
VisualDSP++ 4.5 User’s Guide 3-25

Plots
A time-based signal is sampled at a predefined sampling rate and stored as
a slice in the grid (row 0, columns 0–N).

Figure 3-8 shows a grid of sampled data.

The next time, a signal is sampled and stored (in row 1, columns 0–N).
This process continues until all the rows are filled.

By default, an FFT performed on each slice results in a frequency output
display. Use a color map on the 3-D Axis page of Color Settings dialog
box to enhance the display. Each color corresponds to a range of ampli-
tude values.

The plot output displays a legend showing each color and associated range
of values.

You can rotate the waterfall plot to any desired azimuth and elevation by
using the keyboard’s arrow keys.

Figure 3-8. Grid of Sampled Data
3-26 VisualDSP++ 4.5 User’s Guide

Debugging
Spectrogram Plots
A spectrogram plot (Figure 3-9) displays the same data as a waterfall plot,
except in a two-dimensional (2-D) format.

Each (X,Y) location displays as a color representing the amplitude of the
data. By default, an FFT performed on each slice results in a frequency
output display. A legend displays the colors and associated range of values.

Figure 3-9. Spectrogram Plot
VisualDSP++ 4.5 User’s Guide 3-27

Flash Programmer
Flash Programmer
The VisualDSP++ Flash Programmer provides a convenient, generic interface
to numerous processors and flash memory devices. This utility simplifies the
process of changing data values on a flash device and modifying its memory.
You no longer have to remove the flash memory from the board, use a separate
Flash Programmer, and then replace the flash.

For complete details on using the Flash Programmer utility, refer to
VisualDSP++ Help.

Flash Programmer API

The VisualDSP++ Flash Programmer API provides a generic interface
between the VisualDSP++ Flash Programmer and the flash driver.

To use this tool, you must load an accompanying flash driver into the
processor. The flash driver is the processor executable code that handles
commands from the Flash Programmer and actually manipulates the flash.

Analog Devices supplies sample flash drivers for use with EZ-KIT Lite
evaluation systems (or custom hardware that uses flash devices similar to
those found on EZ-KIT Lite boards).

You may write your own flash drivers by following this API specification.
This allows you to implement new algorithms, modify existing ones, or
add support for a new flash device/processor combination with the current
Flash Programmer. Flash drivers may be implemented in C or assembly
language. To provide a completely generic flash loader interface, the
VisualDSP++ Flash Programmer API uses a set of named symbols, their
associated addresses, and a few numbered commands.
3-28 VisualDSP++ 4.5 User’s Guide

Debugging
Flash Devices
Flash memory parts are non-volatile memories that can be read, programmed,
and erased. In most applications, flash devices store:

• Boot code that the processor loads at startup

• Data that must persist over time and through the loss of power

Typically, flash device programming is performed with a device programmer
at the factory or by an application developer. When a flash device is wired
appropriately to the processor, the processor can program the flash device.

Flash Programmer Functions
Use the Flash Programmer to:

• Load a flash algorithm (driver) program onto the processor at any time

• Obtain the flash manufacturer and device codes

• Reset the flash

• Program the flash from a data file

• Fill portions of flash memory with a value and quickly “punch-in” data

• Erase the entire flash or a single sector

• Send custom commands to the driver for batch processes or
user-defined behavior

The Flash Programmer utility stores the most recently used information in the
registry for retrieval when the utility is next started up. A message box shows
the utility’s current state.
VisualDSP++ 4.5 User’s Guide 3-29

Flash Programmer
Flash Driver
To use the Flash Programmer utility, you must first load a flash driver onto the
processor. The driver is a processor application that interfaces with the Flash
Programmer and performs all the interaction with the flash device. Analog
Devices supplies sample drivers for use with certain EZ-KIT Lite evaluation
systems.

Flash Programmer Window
Figure 3-10 shows an example of the Flash Programmer window.

Figure 3-10. Flash Programmer Window in Driver View
3-30 VisualDSP++ 4.5 User’s Guide

Debugging
Energy-Aware Programming
Energy-aware programming is the ability to use simulation to view the
relative impact of instructions, source lines, functions, programs,
frequency, and voltage on an application’s estimated energy profile. This
allows you to make trade-offs that minimize power usage. The technique
used to estimate the energy of the application is a partial implementation
of a process known as Instruction Level Energy Estimation (ILEE).
For details on ILEE, refer to EE-294 on the Analog Devices Web site.

Ranking
The Linear Profiling window in the simulator displays an Energy Units
column. The numbers accumulated in the Energy Units column represent
the “ranking” of each instruction executed with regard to a power change
of the processor’s core voltage. These numbers are generated by measuring
the core voltage while running test code for each instruction.

Utilizing these readings as absolute measurements would not be accurate
enough considering factors (such as leakage current, temperature, and fab-
rication process of the chip) that play a part in an application’s power.
Therefore, these measurements are referred to as instruction “ranking”.

Example
The following example demonstrates how energy-aware programming can
be used to profile the core power used by an application.

To set up the Linear Profiling window for power profiling:

1. From the Tools menu, choose Linear Profiling, and then choose
New Profile.

2. Right-click on the Linear Profiling window, choose Properties,
and select Energy Units. Then click OK.
VisualDSP++ 4.5 User’s Guide 3-31

Energy-Aware Programming
When you profile your code, each instruction “ranking” is converted to
Energy and the PLL values are used for voltage and frequency scaling.

To create a project that enables Processor Clock and Power Settings:

1. From the File menu, choose New, and then choose Project. The
Project Wizard appears.

2. In Name, enter a name for the new project. In Project types, select
Standard application. Then click Next.

3. In Processor types, select one of these processors: ADSP-BF531,
ADSP-BF532, or ADSP-BF533. Then click Next.

4. Under Do you want to?, select Add startup code only. Then click
Next.

5. In the tree control (left side of Project Wizard), click Processor
Clock and Power Settings.

6. Select Configure clock and power settings. Then click Finish.

7. In the Project window, add application source file(s) to the new
project.

Build and run your application. The numbers in the Energy Units column
of the Linear Profiling window are an accumulation of the ranking of
every instruction after it has been converted to Energy. This display allows
you to view the relationship between power settings in different parts of
your code. Use these numbers to verify your power savings.

Figure 3-11 shows the profiling results when the Configure clock and
power settings option is enabled. Figure 3-12 shows the results when
Configure clock and power settings is disabled. Note that both of these
illustrations show only the left side of the Linear Profiling window.
3-32 VisualDSP++ 4.5 User’s Guide

Debugging
Using the profiled numbers in the “Count” and “Energy Units” columns
of both displays and referring to ___float32_mul, we can calculate a
power savings of approximately 50%.

First, we calculate the average Energy for the function by dividing the
“Energy Units” by the number of cycles in the “Count” column:

• Power Savings On = 2160473/5639 = 383.13

• Power Savings Off = 4307328/5639 = 763.84

The ratio of these two numbers (383.13/763.84) is 0.501580. This is the
power savings.

In the following example, the “ranking” measurements are based on an
EZ-KIT Lite evaluation system configured at 1.2 volts and 250 MHz.
Having enabled power savings, the voltage changes to .85 volts. We apply
these numbers to the “Voltage and Frequency Scaling” equation described
in EE-229:

Figure 3-11. Power Savings On
VisualDSP++ 4.5 User’s Guide 3-33

Energy-Aware Programming
PDDDYN@V = PDDDYN@V0 * (V/V0)2 * (F/F0)

The voltage and frequency power scaling ratio derived via this calculation
is very close to the power savings ratio obtained via the values displayed in
“Energy Units” columns of Figure 3-11 and Figure 3-12.

(.85/1.2)2 * (250/250) = 0.501736

In an application where voltage and frequency are manipulated dynami-
cally during different functions to achieve a more efficient energy profile,
proper tallying of energy at changing voltage and frequency settings is
handled correctly so overall energy profile improvements can be seen by
comparing different profiles of an application at different settings.

Figure 3-12. Power Savings Off
3-34 VisualDSP++ 4.5 User’s Guide

A REFERENCE INFORMATION

This appendix includes a glossary (on page A-67) and collection of other

reference material. Take advantage of the many features in VisualDSP++
so you can speed up program development. Sections include:

• “Support Information” on page A-2

• “IDDE Command-Line Parameters” on page A-7

• “Extensive Scripting” on page A-8

• “File Types” on page A-12

• “Parts of the User Interface” on page A-15

• “Keyboard Shortcuts” on page A-32

• “Window Operations” on page A-39

• “Text Operations” on page A-46

• “Online Documentation” on page A-51

• “Online Help” on page A-54

• “Glossary” on page A-67
VisualDSP++ 4.5 User’s Guide A-1

Support Information
Support Information
Choosing the About VisualDSP++ command from the Help menu opens
the About VisualDSP++ dialog box, which provides access to the follow-
ing types of support information.

• Software versions

The General page (Figure A-1) displays version information about
the VisualDSP++ software. This information includes the name of
the registered user and company, the version of IDDE and its build
date, and the directory path in which VisualDSP++ is installed.

Figure A-1. Example of the General Page
A-2 VisualDSP++ 4.5 User’s Guide

Reference Information
• License management

The Licenses page (Figure A-2) provides a centralized view of your
current licenses. You can view license status and perform all neces-
sary licensing activities (installing, registering, and validating).

Figure A-2. Example of the Licenses Page
VisualDSP++ 4.5 User’s Guide A-3

Support Information
• Component versions

The Components page (Figure A-3) displays a list of your system’s
components and provides information (name, version, provider)
about your debug target, symbol manager, and processor library.

Figure A-3. Example of the Components Page
A-4 VisualDSP++ 4.5 User’s Guide

Reference Information
• Software Versions

The Version page (Figure A-4) displays a list of your system’s tools.
Each tool includes a description, version number, and a timestamp
(day and time).

Figure A-4. Example of the Versions Page
VisualDSP++ 4.5 User’s Guide A-5

Support Information
• Links to support on the Web

The Support page (Figure A-5) provides direct links to various
Web pages that contain support information such as application
notes, code examples, the DSP Knowledgebase, processor and tools
anomalies and workarounds, manuals and data sheets, product
comparisons, tools updates, and more. You can also generate the
body of an e-mail that automatically contains your system’s
description.

Figure A-5. Example of the Support Page
A-6 VisualDSP++ 4.5 User’s Guide

Reference Information
IDDE Command-Line Parameters
VisualDSP++ can be invoked from a command line or a shortcut.

Syntax:

idde.exe [-f script_name]

[-s session_name]

[-p project_name]

Note: Specify the full path to idde.exe. Only one instance of each
parameter is permitted.

Table A-1 describes the idde.exe command-line parameters.

Examples:

idde.exe -f "c:\\scripts\\myscript.vbs"

idde.exe -s "My BF535 JTAG Emulator Session"

idde.exe -p "c:\\projects\\myproject.dpj"

Table A-1. idde.exe Command-Line Parameters

Item Description

-f script_name Loads and executes the script specified by script_name. Use this
parameter to automate regression tests. You can also manipulate Visu-
alDSP++ by running a script from a library of common commands
that you create. If an error is encountered while executing this script,
VisualDSP++ exits automatically.

-s session_name Specifies the session to which VisualDSP++ connects when it starts.
The session must already exist. Use this parameter when you debug
more than one target board. Having multiple shortcuts to idde.exe
allows you to run a different session. This overrides VisualDSP++’s
default behavior of connecting to the last session.

-p project_name Specifies the project to load at startup. The project must already exist.
VisualDSP++ 4.5 User’s Guide A-7

Extensive Scripting
Extensive Scripting
Issue script commands from a command window, the Output window’s
Console view, from a menu, from an editor window, or from a user tool.
Refer to “Script Command Output” on page 2-36 for details on scripting.

• Command window issuance

Load a script from a command window with an idde command by
typing:

idde -f script_filename

Optionally, add -s and the session name to specify a previously
created session. If no session name is specified, the last session is
used.

If the script encounters an error during execution, VisualDSP++
automatically exits.

• Output window issuance

Load a script from the Output window’s Console view by typing
one of the following commands.

For the Microsoft ActiveX script engine, type:

Idde.LoadScript script_filename

For Tcl, type:

source filename

Similar to C/C++, use a backslash (\) as an escape character. If you
specify paths in the Windows environment, you must escape the
escape character, as shown in this example:

c:\\my_dir\\my_subdir\\my_file.vbs
A-8 VisualDSP++ 4.5 User’s Guide

Reference Information
For Tcl only, you may also use forward slashes to delimit
directories in a path, as shown in this example:

source c:/my_dir/my_subdir/my_file.tcl

Command execution is deferred until a line is typed without a
trailing backslash. This permits the entry of an entire block of code
(or entire procedure) for the script interpreter to evaluate at once.

Use the built-in Idde object to easily access the properties and meth-
ods of the VisualDSP++ Automation API when using a Microsoft
ActiveX script engine. For example:

Idde.ActiveSession.ActiveProcessor

Evaluate expressions by using the “?” when a Microsoft ActiveX script
engine is selected. For example:

? Idde.FullName

• Menu issuance

You can quickly issue frequently used scripts. From the File menu,
choose Recent Scripts and then select the script.
VisualDSP++ 4.5 User’s Guide A-9

Extensive Scripting
• Editor window issuance

In an open editor window that contains a script, right-click and
choose Load Script, as shown in Figure A-6.

• User tool issuance

From the User Tools toolbar, click a user tool. Alternatively,
choose a user tool from the Tools menu.

Figure A-6. Running a Script in an Editor Window
A-10 VisualDSP++ 4.5 User’s Guide

Reference Information
You can invoke a script (such as .JS or .VBS) automatically when launching
VisualDSP++ from a shortcut on your Window’s desktop or Start button.
Right-click on the shortcut and select Properties and the Shortcut tab. Then
append -f and the name of the script file to the executable file in the Target
text box.

The example shown in Figure A-7 runs myscript.js automatically when
idde.exe is launched.

Figure A-7. Example: Loading a Script From a Shortcut
VisualDSP++ 4.5 User’s Guide A-11

File Types
File Types
Table A-2 describes processor project files used by VisualDSP++.

Table A-2. Files Used With VisualDSP++

Extension Name Purpose

.ASM Assembly source file Source file comprising assembly language
instructions

.C C source file Source file comprising ANSI standard C
code and Analog Devices extensions

.CPP

.CXX

.HPP

.HXX

C++ source file Preprocessed compiler files that are
inputs to the C/C++ compiler. These
files comprise ANSI standard C++ code.

.DPJ Project file Contains a description of how your
source files combine to build an execut-
able program

.LDF Linker Description File Linker command source file is a text file
that contains commands for the linker in
the linker’s scripting language

.IS

.PP

.S

Intermediate files Preprocessed assembly files generated by
the preprocessor

.DOJ Assembler object file Binary output of the assembler

.DLB Archiver file Archiver’s binary output in ELF format

.H Header file Dependency file used by the preproces-
sor, and a source file for the assembler
and compiler

.DAT Data file Dependency file used by the assembler
for data initialization

.DLO

.DXE

.OVL

.SM

Debugging files Binary output files from the linker in
ELF/DWARF format
A-12 VisualDSP++ 4.5 User’s Guide

Reference Information
.MAP Linker memory map file Optional output for the linker. This text
file contains memory and symbol infor-
mation for executable files.

.TCL

.TC8
Tool Command Language

files

Tcl scripting language files used to script
work

.OBJ Assembled object file (Previous releases only, replaced by .DOJ)
Output of the assembler

.LST Listing file Optional file output by the assembler

.BNM

.H

.LDR

Loader format files The loader’s output in ASCII format.
Different varieties exist. Used to create
boot PROMS.

.H_#

.S_#

.STK

PROM format files The loader’s output in ASCII format.
Different varieties exist. Used to create
boot PROMS.

.ACH Architecture file (Previous releases only, replaced by .LDF)

.TXT Linker command-line file (Previous releases only, replaced by .LDF)
ASCII text file that contains
command-line input for the linker

.EXE Debugging file (Used in previous releases, replaced by
.DXE)

.EXE Compiled simulation file Enables faster execution speed compared
to a standard .DXE program

.VDK VisualDSP++ kernel

support file

Enables VDK support

.JS

.VBS
Script files Enable you to script work for test appli-

cations. Scripting languages let you
access the Automation API to interact
with the IDDE.

.processor Assembly source file Source file comprising assembly language
instructions

Table A-2. Files Used With VisualDSP++ (Cont’d)

Extension Name Purpose
VisualDSP++ 4.5 User’s Guide A-13

File Types
.MAK

.MK
Makefiles The output make rule file is used for

project builds

.DPG Project group An .XML file containing information
about projects

Table A-2. Files Used With VisualDSP++ (Cont’d)

Extension Name Purpose
A-14 VisualDSP++ 4.5 User’s Guide

Reference Information
Parts of the User Interface
When you open VisualDSP++, the application’s main window appears.
Figure A-8 shows an example of the VisualDSP++ main window.

This work area contains everything necessary to build, manage, and debug
a project. You can set up preferences that specify the appearance of appli-
cation objects (fonts, visibility, and so on). You can open project files by
dragging and dropping them into the main window.

Figure A-8. VisualDSP++ Main Window
VisualDSP++ 4.5 User’s Guide A-15

Parts of the User Interface
The VisualDSP++ main window includes these parts:

• Title bar and control menu

• Menu bar, toolbars, and status bar

• Project window

• Output window

VisualDSP++ also provides access to many debugging windows to facili-
tate project development. For more information, see “Debugging
Windows” on page 2-39. You have to learn only one interface to debug all
your processor applications.

VisualDSP++ supports ELF/DWARF-2 executable files. VisualDSP++
supports all executable file formats produced by the linker.

Title Bar
Figure A-9 shows the different parts of the title bar.

The title bar includes these components:

• Control menu button

• Application name – Analog Devices VisualDSP++

• Name of the active target

Figure A-9. Title Bar (Split into Three Parts to Fit the Page)
A-16 VisualDSP++ 4.5 User’s Guide

Reference Information
• Project name

• File name (when an editor window is maximized in the main
window)

• Standard Windows buttons

Clicking the control menu button opens the control menu, which
contains commands for positioning, resizing, minimizing, maximizing,
and closing the window. Double-clicking the control button closes
VisualDSP++. The title bar right-click menu (Figure A-10) and control
menu (Figure A-11) are identical.

Additional Information in Title Bars

A register window’s title bar displays its numeric format (such as octal).
An editor window’s title bar displays the name of the source file.

Title Bar Right-Click Menu

A menu like the one in Figure A-10 appears when you right-click within
the VisualDSP++ title bar or within the title bar of a child (sub) window.

Figure A-10. Right-Clicking in the VisualDSP++ Window’s Title Bar
VisualDSP++ 4.5 User’s Guide A-17

Parts of the User Interface
From the VisualDSP++ title bar’s right-click menu, you can:

• Resize or move the application window

• Close VisualDSP++

Control Menu
Control menu (system menu) commands move, size, or close a window.

Program Icons

Click a program icon to open a control menu.

 Program icon for the application and debugging windows

 Program icon for editor windows

Placing the mouse pointer over a control menu command displays a brief
description of the command appears in the status bar at the bottom of the
application window.

Editor Windows

A floating editor window’s control menu includes the Next command,
which moves the focus to another window.

Figure A-11. VisualDSP++ Control Menu
A-18 VisualDSP++ 4.5 User’s Guide

Reference Information
When an editor window floats in the main application window, its pro-
gram icon resides at the left side of its title bar. When an editor window is
maximized, the program icon resides at the left end of the menu bar.
Editor windows are described on page 2-13.

Debugging Windows

Each debugging window has a control menu. You can open a debugging
window’s control menu only when the window is floating in the main
window. For more information, see “Debugging Windows” on page 2-39.

Menu Bar
By default, the menu bar (Figure A-12) appears directly below the applica-
tion title bar. It displays menu headings, such as File and Edit.

To display menu commands and submenus, click a menu heading. You
can also run many menu bar commands by:

• Clicking toolbar buttons

• Typing keyboard shortcuts

• Right-clicking and choosing a command from a context menu

Toolbars and User Tools
A toolbar is a set of buttons. Run a command quickly by clicking a toolbar
button.

Figure A-12. VisualDSP++ Menu Bar
VisualDSP++ 4.5 User’s Guide A-19

Parts of the User Interface

Use toolbars to organize the tasks that you use most often. Position tool-
bars on the screen for fast access to the tools that you plan to use.
VisualDSP++ includes standard (built-in) toolbars. You can create custom
toolbars. Refer to “Toolbar Operation” on page A-22 for more informa-
tion about toolbars.

Built-In Toolbars

Table A-3 shows the standard (default) toolbars.

Table A-3. Built-In Toolbars

Name Toolbar

File

Edit

Help

Project

Window

Debug

Debug Session

Multiprocessor

User Tools

Workspaces

A-20 VisualDSP++ 4.5 User’s Guide

Reference Information
To obtain information about a tool, move the mouse pointer over the tool
and press the keyboard’s F1 key.

Toolbar Customization

By default, nine standard toolbars (Table A-3) appear near the top of the
application window, below the menu bar.

You can change the appearance of toolbars by:

• Moving, docking, or floating the toolbars

• Adding buttons to (or removing from) toolbars

• Displaying large buttons

You can also:

• Hide toolbars from view

• Add and delete custom-built toolbars
VisualDSP++ 4.5 User’s Guide A-21

Parts of the User Interface
User Tools

Save time running commands by configuring user tools. A maximum of
ten user tools may be configured.

A user tool runs a command, which can:

• Contain parameters to launch an application

• Be a script command

Access configured user tools from the Tools menu or from the User Tools
toolbar, as shown in Figure A-13.

When a user tool is configured, its menu name (label) appears in the
Tools menu. The label also appears when you move the mouse pointer
over a user tool button.

Toolbar Buttons

The toolbar comprises separate tool buttons and provides quick mouse
access to commands.

The toolbar is a Windows docking bar which you can move it to different
areas of the screen by dragging it to the selected location.

Toolbar Operation

This section describes the toolbars and shows how to customize their
appearance. Refer to “Toolbars and User Tools” on page A-19 for more
information about toolbars.

Figure A-13. Default User Tools
A-22 VisualDSP++ 4.5 User’s Guide

Reference Information
Table A-4. Toolbar Buttons

Button Purpose

 Connects to the debug target, or disconnects from the debug target

Creates a new document

Opens an existing document

 Saves the active document or template with the same name

 Saves all open files that have been modified, including files not in the current
project

 Prints the active document

 Loads a program into the target

Reloads the most recent program into the target

 Cuts selected data from the document and store it on the clipboard

 Copies the selection to the clipboard

 Pastes the contents of the clipboard at the insertion point

 Undoes previous edit command (multilevel undo)

 Redoes the command undone by the previous Undo command (multilevel
redo)
VisualDSP++ 4.5 User’s Guide A-23

Parts of the User Interface
 Finds a text block in an editor window

 Finds again or repeats the previous find command

 Replaces the selected text with other text

 Searches through files for text or regular expressions

 Goes to or moves to the specified location

 Displays the current source file

 Toggles the bookmark at selected line in the active editor window

 Goes to the next bookmarked line in the editor window

 Goes to the previous bookmarked line in the editor window

 Clears all bookmarks in the editor window

 Opens VisualDSP++ Help to the Search page

 Provides context-sensitive Help for a button command or portion of
VisualDSP++

 Opens the About VisualDSP++ dialog box

Table A-4. Toolbar Buttons (Cont’d)

Button Purpose
A-24 VisualDSP++ 4.5 User’s Guide

Reference Information
 Adds a source file to the project

 Removes the selection from the project

 Opens an existing project

 Saves the open project

 Opens the Project Options dialog box, where you specify project options

 Builds the selected source file

 Builds the project (update outdated files)

 Builds all files in the project

 Stops the current project build

 Arranges windows as tall non-overlapping tiles

 Arranges windows as wide non-overlapping tiles

 Arranges windows so they overlap

 Closes all open windows

Table A-4. Toolbar Buttons (Cont’d)

Button Purpose
VisualDSP++ 4.5 User’s Guide A-25

Parts of the User Interface
 Refreshes all the debugging windows

 Runs (starts or continues) the current program

 Restarts the current program

 Stops the current program

 Resets the target

 Toggles a breakpoint for the current line

 Clears all current breakpoints

 Enables or disables one breakpoint

 Disables all breakpoints

 Steps one line

 Steps over the current statement

 Steps out of the current function

 Runs the program to the line containing the cursor

Table A-4. Toolbar Buttons (Cont’d)

Button Purpose
A-26 VisualDSP++ 4.5 User’s Guide

Reference Information
Toolbar Button Appearance

You can specify the appearance of the toolbar buttons. An option, large
buttons, increases the size of each button (Table A-5).

Toolbar Shape

You can change the shape of a floating toolbar. Table A-6 shows two tool-
bar shapes.

Depending on the number of tools in the toolbar, you can create other
length and width arrangements.

 Opens the Expressions window

 Opens the Locals window

 Opens the Call Stack window

 Opens the Disassembly window

 Runs the command associated with the user tool (one of ten)

 Opens the associated workspace (one of ten)

Table A-4. Toolbar Buttons (Cont’d)

Button Purpose
VisualDSP++ 4.5 User’s Guide A-27

Parts of the User Interface
Toolbars: Docked vs. Floating

By default, toolbars are located under the application’s menu bar, but you
can move them to these locations:

• Over a docked window

• On the main window

• Anywhere on the desktop

Table A-5. Toolbars in Different Viewing Options

Option Settings Docked Floating

Large buttons – Off

Large buttons – On

Table A-6. Toolbars in Two Orientations

Horizontal Vertical
A-28 VisualDSP++ 4.5 User’s Guide

Reference Information
A toolbar attached to a window is called a docked toolbar. You can tell
when a toolbar is going to dock by the size and shape of its moving outline
as you drag it. Its outline becomes slightly smaller than its floating outline.
To prevent a toolbar from docking, press and hold the Ctrl key while
dragging the toolbar to a new location.

A toolbar can be detached from a window and moved to another location
anywhere on the desktop. A floating toolbar is a stand-alone window, as it
is not docked. A docked toolbar does not show its name; however, a float-
ing toolbar displays its title.

Figure A-14 shows a floating Help toolbar.

Toolbar Rules

When working with toolbars, be aware of these rules:

• You can customize a built-in toolbar (for example, by removing a
button from the File toolbar), but you cannot delete a built-in
toolbar. You can reset the buttons in a built-in toolbar to their
original default settings.

• You can change the name of a user-defined toolbar, but not the
name of a built-in toolbar. For example, the File toolbar cannot be
changed to a different name.

Refer to VisualDSP++ Help for details.

Figure A-14. Floating Help Toolbar
VisualDSP++ 4.5 User’s Guide A-29

Parts of the User Interface
Status Bar
The status bar, which is located at the bottom of the main application
window, provides various informational messages. Figure A-15 shows
examples of information displayed on the status bar.

The type of information that appears in the status bar depends on your
context (what you are doing).

• Moving the mouse pointer over a toolbar button or a menu bar
command displays a brief description of the button or command.

• Halting program operation with a Halt command displays the
address where the program halted.

• When using script commands, the status bar provides information,
such as when the menu item has focus.

While editing a file, the right side of the status bar displays editor window
information, as described in Table A-7.

Figure A-15. Status Bar Appearance Depends on Context

Table A-7. Status Bar Information While Editing

Item Indicates

Line ### Cursor current line number

Col ### Cursor current column number

CAP The keyboard’s Caps Lock key is latched down
A-30 VisualDSP++ 4.5 User’s Guide

Reference Information
NUM The keyboard’s Num Lock key is latched down

SCRL The keyboard’s Scroll Lock key is latched down

Table A-7. Status Bar Information While Editing

Item Indicates
VisualDSP++ 4.5 User’s Guide A-31

Keyboard Shortcuts
Keyboard Shortcuts
VisualDSP++ includes keyboard shortcuts (also called shortcut keys) for
commonly used operations. These keyboard shortcuts appear in the tables
below. You can also access and run commands by:

• Clicking on menu items (and commands) in the menu bar

• Clicking toolbar buttons

• Right-clicking from a particular context, such as from the Project
window

• Clicking configured user tools (for example,)

• Clicking buttons in dialog boxes

• Running scripts (via the File menu, Output window, or editor
window)

• Choosing a command from a control menu

Working With Files
When working with files, use the keyboard shortcuts listed in Table A-8.

Table A-8. Keyboard Shortcuts for Working With Files

Action Key(s)

Open a new file Ctrl+N

Open an existing file Ctrl+O

Save a file Ctrl+S

Print a file Ctrl+P

Go to the next window F6

Go to the previous window Shift+F6
A-32 VisualDSP++ 4.5 User’s Guide

Reference Information
Moving Within a File
To move within a file, use the keyboard shortcuts listed in Table A-9.

Table A-9. Keyboard Shortcuts for Moving Within a File

Action Key(s)

Move the cursor to the left one character Left Arrow (←)

Move the cursor to the right one character Right Arrow (→)

Move the cursor to the beginning of the file Ctrl+Home

Move the cursor to the end of the file Ctrl+End

Move the cursor to the beginning of the line Home

Move the cursor to the end of the line End

Move the cursor down one line Down Arrow (↓)

Move the cursor up one line Up Arrow (↑)

Move the cursor one page down Page Down

Move the cursor one page up Page Up

Move the cursor right one tab Shift

Move the cursor left one tab Shift+Tab

Move the cursor left one word Ctrl+Left Arrow (←)

Move the cursor right one word Ctrl+Right Arrow (→)

Move to the matching brace character within a file Ctrl+B

Go to the next bookmark F2

Go to a line Ctrl+G

Find text Ctrl+F

Find the next occurrence of text F3
VisualDSP++ 4.5 User’s Guide A-33

Keyboard Shortcuts
Cutting, Copying, Pasting, Moving Text
To edit text, use the keyboard shortcuts listed in Table A-10.

Selecting Text Within a File
To select text within a file, use the keyboard shortcuts listed in
Table A-11.

Table A-10. Keyboard Shortcuts for Editing Text

Action Key(s)

Copy text Ctrl+C or Ctrl+Insert

Copy text Select with cursor and Ctrl+drag

Cut text Ctrl+X or Shift+Delete

Delete text Delete (selection or forward)

Delete text Backspace (selection or backward)

Move text Select with cursor and drag

Move selected text right one tab Tab

Move selected text left one tab Shift+Tab

Paste text Ctrl+V or Shift+Insert

Undo the last edit Ctrl+Z or Alt+Backspace

Redo an edit command Shift+Ctrl+Z

Replace text Ctrl+H or Ctrl+R

Table A-11. Keyboard Shortcuts for Selecting Text Within a File

Action Key(s)

Select all text in a file Ctrl+A

Select the character on the left Shift+Left Arrow (←)
A-34 VisualDSP++ 4.5 User’s Guide

Reference Information
Working With Bookmarks in an Editor Window
When working with bookmarks in an editor window, use the keyboard
shortcuts listed in Table A-12.

Select the character on the right Shift+Right Arrow (→)

Select all text to the beginning of the file Shift+Ctrl+Home

Select all text to the end of the file Shift+Ctrl+End

Select all text to the beginning of the line Shift+Home

Select all text to the end of the line Shift+End

Select all text to the line below Shift+Down Arrow (↓)

Select all text to the line above Shift+Up Arrow (↑)

Select all text to the next page Shift+PgDn

Select all text to the above page Shift+PgUp

Select the word on the left Shift+Ctrl+Left Arrow (←)

Select the word on the right Shift+Ctrl+Right Arrow (→)

Select by column Place cursor, press and hold down Alt and drag the
cursor (selects by column-character instead of by
line-character)

Table A-12. Keyboard Shortcuts for Bookmarks

Action Key(s)

Toggle a bookmark Ctrl+F2

Go to next bookmark F2

Table A-11. Keyboard Shortcuts for Selecting Text Within a File (Cont’d)

Action Key(s)
VisualDSP++ 4.5 User’s Guide A-35

Keyboard Shortcuts
Building Projects
To build projects, use the keyboard shortcuts listed in Table A-13.

Using Keyboard Shortcuts for Program Execution
For program execution, use the keyboard shortcuts listed in Table A-14.

Table A-13. Keyboard Shortcuts for Building Projects

Action Key(s)

Build the current project F7

Build only the current source file Ctrl+F7

Table A-14. Keyboard Shortcuts for Program Execution

Action Key(s)

Load a Program Ctrl+L

Reload a Program Ctrl+R

Dump to File Ctrl+D

Run F5

Multiprocessor Run Ctrl+F5

Run to Cursor Ctrl+F10

Halt Shift+F5

Step Over F10

Step Into F11

Multiprocessor Step Ctrl+F11

Step Out Of Alt+F11

Halt a Script Ctrl+H
A-36 VisualDSP++ 4.5 User’s Guide

Reference Information
Working With Breakpoints
When working with breakpoints, use the keyboard shortcuts listed in
Table A-15.

Obtaining VisualDSP++ Help
To obtain VisualDSP++ Help, use the keyboard shortcuts listed in
Table A-16.

Miscellaneous
For windows and workspaces, use the keyboard shortcuts listed in
Table A-17.

Table A-15. Keyboard Shortcuts for Breakpoints

Action Key(s)

Open the Breakpoints dialog box Alt+F9

Enable/disable a breakpoint Ctrl+F9

Toggle between setting a software or hardare breakpoint Shift+F9

Toggle (add or remove) a breakpoint F9

Table A-16. Keyboard Shortcuts for Obtaining Online Help

Action Key(s)

View VisualDSP++ Help for the selected object F1

Obtain context-sensitive Help for controls (buttons, fields,
menu items)

Shift+F1
VisualDSP++ 4.5 User’s Guide A-37

Keyboard Shortcuts
Table A-17. Miscellaneous Keyboard Shortcuts

Action Key(s)

Refresh all windows F12

Select workspace 1 through 10 Alt+1 … Alt+0
A-38 VisualDSP++ 4.5 User’s Guide

Reference Information
Window Operations
Similar to many Windows applications, VisualDSP++ provides multiple
ways to adjust the view of the user interface.

Window Manipulation
The Window menu commands (Figure A-16) enable you to manipulate
your window display and update windows during program execution.
Refer to your Windows documentation for more information.

Figure A-16. Window Menu Commands
VisualDSP++ 4.5 User’s Guide A-39

Window Operations
Right-Click Menu Options
A menu appears when you right-click in a window or on its title bar. The
menu options in Table A-18 affect window behavior.

Scroll Bars and Resize Pull-Tab
Scroll bars appear along the right and bottom edges of the application or
document window, as shown in Figure A-17.

The scroll boxes inside the scroll bars indicate the vertical and horizontal
location in the document. Use the mouse to scroll to other parts of the
document.

Table A-18. Window Right-Click Menu Commands

Option Description

Allow Docking Enables or disables docking

Close Closes the window

Float in Main Window Causes the window to become a normal MDI child window
(like an editor window) and disables its docking ability

Figure A-17. Scrolling the View Area
A-40 VisualDSP++ 4.5 User’s Guide

Reference Information
When the application window is not maximized, the resize pull-tab
appears in the lower-right corner of the window. Click and drag the
pull-tab to resize the application window.

Windows: Docked vs. Floating
A window attached to the application’s frame is referred to as a docked
window.

You can detach a window from the main window and move it to another
location anywhere on the desktop. A floating window stands alone, because
it is not docked.

Depending on your needs, you can:

• Dock a window to the application’s main window (frame)

• Float a window

A window’s right-click menu provides commands for docking or floating
the window. The Allow Docking command and the Float In Main Win-
dow commands are mutually exclusive.

Docked Windows

The Project window in Figure A-18 is docked. (The docking option,
Allow Docking, is enabled.)

To prevent a window from docking, hold down the keyboard’s Ctrl key
while dragging the window to another position.
VisualDSP++ 4.5 User’s Guide A-41

Window Operations
Figure A-18. Example of a Docked Project Window
A-42 VisualDSP++ 4.5 User’s Guide

Reference Information
Floating Windows

The Project window in Figure A-19 is floating in the main window.
(Float In Main Window is enabled). The presence of an icon in the
top-left corner of a window indicates that it is floating.

The Project window in Figure A-20 is also floating in the main window.
(Float In Main Window is enabled.)

The Project window in Figure A-21 is floating, but not in the main win-
dow. (Float In Main Window is not selected.)

Window Position Rules
The following rules apply to window positions.

• Unless Allow Docking is disabled, a window must reside within
the main window.

• An editor window cannot be docked to the main window.

Figure A-19. Project Window Floating in Main Window (1 of 2)
VisualDSP++ 4.5 User’s Guide A-43

Window Operations
• A window specified as an MDI child cannot be positioned over a
docked window.

• Unless the Output window is floating in the main window, a
window specified as an MDI child cannot be positioned over the
Output window.

Figure A-20. Project Window Floating in Main Window (2 of 2)

Figure A-21. Example: Project Window is Not Floating in Main Window
A-44 VisualDSP++ 4.5 User’s Guide

Reference Information
Standard Windows Buttons
The standard Windows buttons are located on the right side of the title
bar, as shown in Figure A-22.

These buttons resize and close the window as described in Table A-19.

Figure A-22. Example: Title Bar Showing Standard Window Buttons

Table A-19. Standard Windows Buttons

Button Name – Purpose

Minimize – reduces the window to its Windows icon

Maximize – enlarges the window to fill the screen

Restore – returns the window to its last non-minimized, non-maximized
position after you maximize the window

Close – closes the application window and exits the program
VisualDSP++ 4.5 User’s Guide A-45

Text Operations
Text Operations
VisualDSP++ allows the use of regular expressions and tagged expressions
in find/replace operations and comments in your code.

Regular Expressions vs. Normal Searches
Normally, when you search for text, the search mechanism scans for an
exact, character-by-character match of the search string, which does not
have to be an entire word. Every character in the search string is examined.
If there are embedded spaces, for instance, the exact number is matched.

Regular expression matching provides much more flexibility and power
than a normal search. A regular expression can be a simple string, which
yields the same matches as normal searches. Some characters in a regular
expression string, however, have special interpretations, which provide
greater flexibility.

For example, with regular expression matching, you can find the
following.

• All occurrences of either hot or cold

• Occurrences of for followed by a left parenthesis, with any number
of intervening spaces

• A semicolon (;) only when it is the last character on a line

• The string ADSP followed by a sequence of digits

Using a regular expression as the search pattern for replacement provides
ways to identify and recover the variable portions of the matched strings.
A-46 VisualDSP++ 4.5 User’s Guide

Reference Information
Specific Special Characters

Regular expressions assign special meaning to the following characters.

If you have to match on one of these characters, you must escape it by
preceding it with a backslash (\). Thus, \^ matches the ^ character, yet ^
matches the beginning of the line.

Table A-20. Special Search Characters

Character Description

^ A caret matches the beginning of the line.

$ A dollar sign matches the end of the line.

. A period (.) matches any character.

[abc]
A bracketed sequence of characters matches one character, which may be
any of the characters inside the brackets. Thus, [abc] matches an a, b,
or c.

[0–9]

This shorthand form is valid within the sequence brackets. It specifies a
range of characters, from first through last, exactly as if they had been
written explicitly.

Ranges may be combined with explicit single characters and other ranges
within the sequence. Thus, [-+.0–9] matches any constituent character
of a signed decimal number; and [a–zA-Z0–9_] matches a valid identi-
fier character, either lowercase or uppercase.

Ranges follow the ordering of the ASCII character set.

[^abc]
[^0–9]

A caret (^) that is the first character of a sequence matches all characters
except for the characters specified after the caret.

(material)

The material inside the parentheses can be any regular expression. It is
treated as a unit, which can be used in combination with other expres-
sions.

Parenthesized material is also assigned a numerical tag, which may be
referenced by a replace operation.
VisualDSP++ 4.5 User’s Guide A-47

Text Operations
Special Rules for Sequences

The normal special character rules of regular expressions do not apply
within a bracketed sequence. Thus, [*&] matches an asterisk or
ampersand.

Certain characters have special meaning within a sequence. These include
^ (not), – (range), and] (end of sequence). By placing these characters
appropriately, you can specify these characters to be part of the sequence.

To search for a right bracket character, place] as the first character of the
search string. To search for a hyphen character, place – as the first charac-
ter of the search string after], if present. Place a caret anywhere in the
search string except at the front, where it means “not.”

Repetition and Combination Characters

Each character described in Table A-21 extends the meaning of the item
that immediately precedes it. This item may be a single character, a
sequence in braces, or an entire regular expression in parentheses.

Table A-21. Match Characters

Character Description

*

An asterisk matches the preceding any number of times, including none at all.
Thus, ap*le matches apple, aple, appppple and ale.

For example, ^ *void matches only when void occurs at the beginning of a
line and is preceded by zero or more spaces.

+
A plus character matches the preceding any number of times, but at least one
time. Thus, ap+le matches apple and aple, but does not match ale.

?
A question mark matches the preceding either zero or one time, but not more.
Thus, ap?le matches ale and aple, but nothing else.

|

The pipe character (|) matches either the preceding or following item. For
example, (hot)|(cold) matches either hot or cold.

Spaces are characters. Thus, (hot) | (cold) matches “hot “or” cold”.
A-48 VisualDSP++ 4.5 User’s Guide

Reference Information
Match Rules

If multiple matches are possible, the *, +, and ? characters match the long-
est candidates. The | character matches the left-hand alternative first.

For more information, see the many reference texts available on this topic,
such as Mastering Regular Expressions, Powerful Techniques for Perl and
Other Tools by Jeffrey E. F. Friedl, (c) 1997 O’Reilly & Associates, Inc.

Tagged Expressions in Replace Operations
Use a tagged expression as part of the string in the Replace field for a
replace operation.

A tagged expression must be enclosed between parentheses characters.

In the Replace field, the operators in Table A-22 represent tagged expres-
sions from the Find field.

The replace expression can specify an ampersand (&) character, meaning
that the & represents the substring that was found. For example, if the sub-
string that matched the regular expression is “abcd”, a replace expression
of “xyz&xyz” changes it to “xyzabcdxyz”. The replace expression can also

Table A-22. Using Tagged Expressions in Replace Operations

Find Field Replace Field

Entire matched substring \0

Tagged expressions within parentheses () from left to right \1 \2 \3 \4 \5
\6 \7 \8 \9

Entire match expression &
VisualDSP++ 4.5 User’s Guide A-49

Text Operations
be expressed as “xyz\0xyz”, where the “\0” indicates a tagged expression
representing the entire matched substring. Similarly, you can have another
tagged expression represented by “\1”, “\2”.

Although the tagged expression 0 is always defined, the tagged
expressions 1, 2, and so on, are defined only when the regular
expression used in the search has enough sets of parenthesis. Some
examples are shown in Table A-23.

Comment Start and Stop Strings
Use start comment strings and stop comment strings for comment
highlighting colors. Table A-24 describes the two types of comment
strings that you can set for each file type.

Table A-23. Examples of Replace Operations

String Search Replace Result

Mr. (Mr)(\.) \1s\2 Mrs.

abc (a)b(c) &-\1-\2 abc-a-c

bcd (a|b)c*d &-\1 bcd-b

abcde (.*)c(.*) &-\1-\2 abcde-ab-de

cde (ab|cd)e &-\1 cde-cd

Table A-24. Start and Stop Comment Strings

String Purpose

! Starts an assembly style, single-line comment

/* Starts a C/C++ style, multiline comment

// Starts a C/C++ style, single-line comment

Carriage return Ends a single-line comment (C and Assembly)
A-50 VisualDSP++ 4.5 User’s Guide

Reference Information
Online Documentation
VisualDSP++ includes three types of user documentation: Help files,
PDF files, and HTML files.

The VisualDSP++ software installation procedure does not copy
PDF versions of books and data sheets or supplemental reference
documentation to the VisualDSP++ installation directory.

*/ Ends a C/C++ style, multiline comment

(blank) Ends a C/C++ style, single-line comment

Table A-25. Types of User Documentation

Files Purpose

.CHM VisualDSP++ Help system files and VisualDSP++ manuals are provided
in Microsoft HTML Help format. Installing VisualDSP++ automati-
cally copies these files to the <installation>\Help folder. Visu-
alDSP++ Help is ideal for searching the entire tools manual set. Invoke
Help from the VisualDSP++ Help menu or via the Windows Start but-
ton. The .CHM files require Internet Explorer 5.01 (or higher) or the
installation of a component that provides a .CHM file viewer.

.PDF Manuals and data sheets in Portable Documentation Format are located
in the installation CD’s Docs folder. Viewing and printing a .PDF file
requires a PDF reader, such as Adobe Acrobat Reader (4.0 or higher).
Running setup.exe on the installation CD provides easy access to
these documents. You can also copy PDF files from the installation CD
onto another disk.

.HTM or .HTML Dinkum Abridged C++ library and FlexLM network license
manager software documentation is located on the installation CD in
the Docs\Reference folder. Viewing or printing these files requires a
browser, such as Internet Explorer 5.01 (or higher). You can copy these
files from the installation CD onto another disk.

Table A-24. Start and Stop Comment Strings

String Purpose
VisualDSP++ 4.5 User’s Guide A-51

Online Documentation
Printing Online Documentation
Besides printing topics from VisualDSP++ Help (on page A-52), you can
print large documents (VisualDSP+ manuals, hardware manuals and data
sheets, and more) from the VisualDSP++ Tools Installation CD-ROM.

To print documents:

1. Insert the VisualDSP++ Tools Installation CD-ROM in the
CD-ROM drive.

2. Open the Docs folder by using one of these options:

From the VisualDSP++ Tools Installation main menu, click View
Documentation. (If the main menu does not appear, run
setup.exe.)

In Windows Explorer, select the CD-ROM drive (for example, D:)
and open the Docs folder.

3. Open the folder where the document is located.

The Data Sheets folder contains processor data sheets. Be sure to
check the Analog Devices Web site for updated versions.

The Hardware Manuals folder contains hardware manuals.

The Reference folder includes the .HTML files that comprise the
Dinkum Abridged C++ library and the FlexLM network license
documentation.

The Tools Manuals folder contains VisualDSP++ tools manuals.

4. Double-click the document that you want to print. Selecting a
.PDF file opens Adobe Acrobat Reader and displays the document.
Selecting an .HTML file opens a browser and displays the document.

5. From the File menu, choose Print and specify the pages that you
want to print (and other print options).
A-52 VisualDSP++ 4.5 User’s Guide

Reference Information
Viewing Online Help
Invoke VisualDSP++ Help from within VisualDSP++ or outside of
VisualDSP++ by clicking the Windows Start button. You can also access
Help manually via Windows Explorer.

To access online Help from the VisualDSP++ Help menu, choose
Contents, Search, or Index.

To access online Help from the Windows Start button, click the Start
button and choose Programs, Analog Devices, VisualDSP++<version>,
and VisualDSP++ Documentation.

The Help function is programmed to look for the Help system in the
VisualDSP++ Help folder.

By default, the VisualDSP++ software installation procedure places the
complete set of Help files in the installation’s Help folder.

If you receive an error message after invoking Help, the Help system:

• May not have been loaded onto your PC

• May have been deleted

• May reside in a directory other than the default directory

To locate the help (.CHM) files manually, use the Windows Search function
as follows.

1. Record the Help file (.CHM) named in the error message.

2. From the Windows Start button, choose Search and For Files or
Folders. Enter the name of the .CHM file from step 1.

3. After locating the file, launch it manually by clicking the file name
from the Search Results window (or from Windows Explorer).
VisualDSP++ 4.5 User’s Guide A-53

Online Help
Online Help
VisualDSP++ online Help refers to the application (product) Help
packaged together with the VisualDSP++ tool suite. This section describes
the following topics:

• Portions of the VisualDSP++ Help window

• Context-sensitive Help

• Copying example code from Help

• Printing from Help

• Bookmarking frequently used Help topics

• Navigating in online Help

• Search features

Help Window
The VisualDSP++ Help window comprises three parts:

• The navigation pane provides tabbed pages (Contents, Index,
Search, and Favorites) that provide different views.

• The viewing pane displays the selected object (Help topic,
Web page, video, .PDF file, application).

• Toolbar buttons provide navigation and allow you to specify
options.
A-54 VisualDSP++ 4.5 User’s Guide

Reference Information
Figure A-23 shows the parts of the VisualDSP++ Help window.

Move through the Help system and view Help topics by using the Help
window’s navigational aids, as shown in Figure A-24.

Other standard Microsoft HTML Help buttons are described in
Table A-26.

Context-Sensitive Help
You can view context-sensitive Help (information pertinent to your
current activity) for various items (toolbar buttons, menu commands,
windows, and dialog box controls) in VisualDSP++.

Figure A-23. Parts of the VisualDSP++ Help Window
VisualDSP++ 4.5 User’s Guide A-55

Online Help
Figure A-24. Help Window Navigational Aids

Table A-26. Standard Microsoft HTML Help Buttons

Button Purpose

Hides the Help window’s left pane. This button narrows the Help
window.

Displays the Help window’s left pane. This button restores a full
view after you click Hide.

Highlights the name of the current topic on the Contents pane.
After you jump around the Help system, this button shows the cur-
rent topic’s relation to other topics.
Note: The Locate mechanism does not operate at all times. It oper-
ates after using a “search” but does not operate after using the
“index”.
A-56 VisualDSP++ 4.5 User’s Guide

Reference Information
Viewing Menu, Toolbar, or Window Help

To view Help information for a menu, toolbar, or window:

1. Click the toolbar’s Help button () or press Shift+F1.

The mouse pointer becomes a Help pointer ().

2. Move the Help pointer over a menu command, toolbar button, or
window.

3. Click the mouse. The Help window opens (if not already open) to
the object’s description, which appears in the right pane.

Viewing Dialog Box Help

To view Help for a dialog box control (button or field), perform one of
the following actions:

• Select a field or button in a dialog box and press F1 or Shift+F1.

• Click the question mark button () in the top-right corner of the
dialog box.

The mouse pointer becomes a Help pointer ().

Next, move the Help pointer over a dialog box control (button or
field) and click the mouse. A description of the object appears in a
yellow pop-up window.

• Position the mouse pointer over a label or control (button or field)
in a dialog box and right-click.

A What’s This button () appears. Move the mouse
pointer over the What’s This button and click.

 “What’s This” Help is not configured for all items.
VisualDSP++ 4.5 User’s Guide A-57

Online Help
Viewing Window Help

To view window Help:

1. Click the window to make it active.

2. Press the F1 key.

A description of the window appears in the right pane.

Copying Example Code From Help
You can copy code from Help and then paste it into your application.
Be aware that the copied text may carry unwanted control codes. For
example, if you copy a hyphen with a parameter, the actual code of the
copied hyphen may be an ASCII 0x96 instead of an ASCII 0x2D. The
hyphen may look OK, but it will cause an error when the command is
run.

Printing Help
You can print a specific Help topic or multiple Help topics (an entire
section of VisualDSP++ Help).

Table A-27. How to Print Help Topics

To print Do this

Current topic Right-click within the help topic and choose Print.

Selected topic On the Contents page:

Right-click the topic () and choose Print.

Entire section of
Help

On the Contents page:

Right-click a book icon (or) and choose Print. Then choose Print

the selected heading and all subtopics.
A-58 VisualDSP++ 4.5 User’s Guide

Reference Information
Tip: From the Help window’s Contents page, click (), located at the
top of the window.

Bookmarking Frequently Used Help Topics
Bookmarking a topic in VisualDSP++ Help is just like bookmarking a
page in a book. This feature is also called “setting up favorite places.”

Note: Each time a Microsoft HTML Help topic is bookmarked, a record is
recorded in the file, HH.DAT. This file not only records VisualDSP++ Help
bookmarks, but also the bookmarks placed in other application Help systems
that use .CHM files.

Once a bookmark is placed onto a topic, you can view a list of book-
marked topics and quickly open one.

To place a bookmark at a topic:

1. Display the topic.

2. On the left side of the Help window, click the Favorites tab.

3. Click Add.

Remove a bookmark by selecting the name and clicking Remove.

The Help system adds the topic and displays it in the alphabetized
list.

To open a bookmarked topic:

1. On the left side of the Help window, click the Favorites tab.

2. Perform one of these actions:

• Double-click the topic.

• Select the topic and click Display.
VisualDSP++ 4.5 User’s Guide A-59

Online Help
Navigating in Online Help
To move around in the Help system, click the following.

• A hyperlink within text. The text is underlined and displayed in a
color that is different from the regular black text.

• A topic listed under a See Also heading. The text is underlined
and displayed in a color that is different from the regular black
text.

• A mini button or its associated text. The button is a small gray
square and the underlined text is in a different color.

A topic name on the Contents page (Figure A-25)

Figure A-25. Contents Page – Online Manual Topics

Click a page icon
to view the topic
A-60 VisualDSP++ 4.5 User’s Guide

Reference Information
An index entry on the Index page (Figure A-26)

• A topic name on the Search page. The bottom portion of the
Search page displays the located topics (hits) that include your
search string.

Searching Help
VisualDSP++ Help provides full-text and advanced search capabilities for
finding information.

Full-Text Searches

A full-text search locates every occurrence of a text string within the Help
system. Specify a particular word or phrase to find only the topics that
contain that word or phrase.

You can search previous results, match similar words, and search through
the topic titles only.

A basic search consists of the word or phrase that you want to locate. Use
similar word matches, a previous results list, or topic titles to further
define your search.

Figure A-26. Index Entries on the Index Page

Click an index
entry to view the
 associated topic
VisualDSP++ 4.5 User’s Guide A-61

Online Help
You can run an advanced search, which uses Boolean operators and wild-
card expressions to further narrow the search criteria. Figure A-27 shows
an example of a Boolean search for “new AND plot”.

To find information with a full-text search:

1. Click the Help viewer’s Search tab.

2. In Type in the word(s) to search for, type the word or phrase you
want to find.

3. Select Search previous results to narrow the search.

4. Select Match similar words to find words that are similar to the
search string.

5. Select Search titles only to search for words in topic titles only.

6. Click the Options button () at the top of the Help Viewer
window to highlight all instances of search terms found in topic
files. Then choose Search Highlight On.

Figure A-27. Boolean Search for “new AND plot”
A-62 VisualDSP++ 4.5 User’s Guide

Reference Information
7. Click List Topics, select the topic you want, and then click
Display.

Sort the list by clicking the Title, Location, or Rank column
heading.

Rules for Full-Text Searches

Observe these rules when formulating queries:

• Searches are not case sensitive. You may type search strings in
uppercase or lowercase characters.

You can search for any combination of letters (a–z) and numbers
(0–9).

• Searches ignore punctuation marks such as the period, colon,
semicolon, comma, and hyphen.

• Group the elements of your search by using double quote
characters or parentheses to set apart each element.

• You cannot search for quotation marks.

When searching for a file name with an extension, group the entire
string in double quotes (for example, “filename.ext”). Otherwise,
the period breaks the file name into two separate terms. The
default operation between terms is AND, which creates the logical
equivalent to filename AND ext.
VisualDSP++ 4.5 User’s Guide A-63

Online Help
Advanced Search Techniques

Use the following search techniques to narrow your searches for more
precise results.

• Wildcard expressions

• Boolean operators

• Nested expressions

Wildcard Expressions

Wildcard expressions let you search for one or more characters by using a
question mark or asterisk. Table A-28 describes the results of these differ-
ent kinds of searches.

Table A-28. How to Use Wildcard Expressions to Define a Search

Search Target Example Results

A single word project Locates topics that contain the word “project”.
Other grammatical variations, such as “projects”
are located.

A phrase “project window”
(note the quotation
characters)

project window

Locates topics that contain the literal phrase
“project window” and all its grammatical varia-
tions.

Without the quotation characters, the query is
equivalent to specifying “project AND window”,
which finds topics containing both of the individ-
ual words, instead of the phrase.

Wildcard
expressions

link*

-or-

.C??

Locates topics that contain the terms “linker”,
“linking”, “links”, and so on. The asterisk cannot
be the only character in the term.

Locates topics that contain the terms “.CPP” or
“.CXX”. The question mark cannot be the only
character in the term.
A-64 VisualDSP++ 4.5 User’s Guide

Reference Information
Boolean Operators

Use the Boolean AND, OR, NOT, and NEAR operators to precisely define your
search by creating a relationship between search terms.

Insert a Boolean operator by typing the operator (AND, OR, NOT, or NEAR) or
by clicking the arrow button.

When no operator is specified, AND is used. For example, the query
call stack is equivalent to call AND stack.

Table A-29 describes the results of using Boolean operators to define a
search.

Do not use the |, &, or ! characters as Boolean operators. You must use OR,
AND, or NOT.

Table A-29. Examples: Boolean Operators Used to Define a Search

Search Target Example Results

Both terms in the same
topic

new AND plot Locates topics that contain both the
words “new” and “plot”

Either term in a topic new OR plot Locates topics that contain either the
word “new” or the word “plot” or both

The first term without the
second term

new NOT plot Locates topics that contain the word
“new”, but not the word “plot”

Both terms in the same
topic, close together

new NEAR plot Locates topics that contain the word
“new” within eight words of the word
“plot”
VisualDSP++ 4.5 User’s Guide A-65

Online Help
Nested Expressions

Use nested expressions to create complex searches for information.
For example, new AND ((plot OR waterfall) NEAR window) finds topics
containing the word “new” along with the words “plot” and “window”
close together, or topics containing “new” along with the words “water-
fall” and “window” close together.

Rules for Advanced Searches

These rules apply to advanced searches:

• Expressions in parentheses are evaluated before the rest of the
query.

• If a query does not contain a nested expression, it is evaluated from
left to right. For example, “folder NOT file OR project” finds
topics containing the word “folder” without the word “file,” or
topics containing the word “project”. The expression
“folder NOT (file OR project)”, however, finds topics contain-
ing the word “folder” without either of the words “file” or
“project.”

• You cannot nest expressions deeper than five levels.
A-66 VisualDSP++ 4.5 User’s Guide

Reference Information
Glossary
The following terms are important toward understanding VisualDSP++.

Application Programming Interface (API) functions

A set of functions available to an applications programmer. These
functions, which are part of an application, can be accessed by
other applications. For VDK, API refers to a library of C/C++
functions and assembly macros that define VDK services. These
services are essential for kernel-based application programs. The
services include interrupt handling, thread management, and sema-
phore management.

archiver

The VisualDSP++ archiver, elfar.exe, combines object (.DOJ)
files into library (.DLB) files, which serve as reusable resources for
project development. The linker searches library files for routines
(library members) that are referred to by other objects, and links
them in your executable program.

breakpoint

User-defined halt in an executable program. Toggle breakpoints
(turn them on or off) by double-clicking on a location in a
Disassembly window or editor window.

break condition

Hardware condition under which the target breaks and returns
control of the target back to the user. For example, a break condi-
tion could be set up to occur when address 0x8000 is read from or
written to.
VisualDSP++ 4.5 User’s Guide A-67

Glossary
build

Performing a build (or project build) refers to the operations (pre-
processing, assembling, and linking) that VisualDSP++ performs
on projects and files. During a build, VisualDSP++ processes the
files in the project that have been modified (or depend on files that
have been modified) since the previous build. A build differs from
a rebuild all. During a rebuild all, VisualDSP++ processes all the
files in the project, regardless of whether they have been modified.

build type

Replaced by “configuration”

channel

A transmission path between two communicating locations, usually
the smallest subdivision of a transmission system. For VDK, chan-
nel refers to a FIFO queue into which messages sent to a thread are
placed. Each thread has 15 channels. Messages are received in
priority order from the lowest numbered channel to the highest.

COFF

Common Object File Format. VisualDSP++ does not support files
formatted in COFF.

configuration (or project configuration)

A project is developed in stages (configurations). By default, a
project includes two configurations: Debug and Release.
A configuration refers to the collection of options (tool chain and
individual options for files) specified for the configuration. You
can add a configuration to your project at any time. You can delete
a customized configuration that you created, but you cannot delete
the Debug or Release configurations.
A-68 VisualDSP++ 4.5 User’s Guide

Reference Information
connection type

A simulator, EZ-KIT Lite development system, or an emulator.
Previously called “session type”.

context switch

A process of saving/restoring the processor’s state. The scheduler
performs the context switch in response to the system change.

A hardware interrupt can occur and change the state of the system
at any time. Once the processor’s state has changed, the currently
running thread may be swapped with a higher-priority thread.
When the kernel switches threads, the entire processor’s state is
saved and the processor’s state for the thread being switched in is
restored.

critical region

A sequence of instructions whose execution cannot be interrupted
or swapped out. Suspending all interrupt service routines (ISRs)
before calling the critical region ensures that the execution of a crit-
ical region is not interrupted. Once the critical region routine
concludes, ISRs are enabled.

CROSSCORE®

Analog Devices processor development tools, which provide easier and
more robust methods for engineers to develop and optimize systems by
shortening product development cycles for faster time-to-market.
CROSSCORE components include the VisualDSP++ software devel-
opment environment and EZ-KIT Lite evaluation systems and
emulators for rapid on-chip debugging.
VisualDSP++ 4.5 User’s Guide A-69

Glossary
current directory

Directory where the .DPJ file is saved. The build tools use the
current directory for all relative file path searches. See also “default
directories.”

data set

A series of data values in processor memory used as input to a plot.
You can create data sets and configure the data for each data set.
You specify the memory location, the number of values, and other
options that identify the data. Additional specifications for row and
column counts are required for 3-D plots.

Debug configuration

For a debug configuration, you can accept the default options or
specify your own options and save them. The configuration refers
to the specified options for all the tools in the tool chain. See also
“configuration.”

debug session

The combination of a processor, connection type, and platform.
For example, a debug session might consist of an ADSP-21262
processor, an EZ-KIT Lite connection, and an ADSP-21262
EZ-KIT Lite board.

Processor projects being developed are run as debug sessions. The
two types of sessions are hardware and software. When setting up a
session, set the focus on a series of more specific elements.
A-70 VisualDSP++ 4.5 User’s Guide

Reference Information
debug target

See “target”.

default intermediate and output file directories

These file directories (folders) are \Debug (for the debug configura-
tion) and \Release (for the release configuration). By default,
VisualDSP++ creates these directories as children of the directory
where the .DPJ file is saved, which is called the project’s current
directory. See also “current directory.”

dependencies

VisualDSP++ uses dependency information to determine which
files, if any, are updated during a build. If an included header file is
modified, VisualDSP++ builds the source files that include
(#include) the header file, regardless of whether the source files
have been modified since the previous build.

dependency files

Usually user files or system header (*.H) files, these files are refer-
enced from a source file by a preprocessor #include command.

device

A single processor. With regard to JTAG emulation and the JTAG
EZ-ICE Configurator, a device refers to any physical chip in the
JTAG chain.

device driver

A user-written model that abstracts the hardware implementation
from the application code. User code accesses device drivers
through a set of device driver API functions.
VisualDSP++ 4.5 User’s Guide A-71

Glossary
DSP

(digital signal processor) or processor

DWARF-2

(Debug With Arbitrary Records Format) A format for debugging
source-level assembly code via improved line and symbol
information

editor window

(source window) A document window that displays a source file for
editing. When an editor window is active, you can move about
within the window and perform typical text editing activities such
as searching, replacing, copying, cutting, pasting, and so on.

ELF

Executable Linking Format

emulator

Hardware used to connect a PC to a processor target board. This
hardware allows application software to be downloaded and
debugged from within the VisualDSP++ environment. Emulator
software performs the communications that enable you to see how
your code affects processor performance.

event

A signal (similar to a semaphore or message) used to synchronize
multiple threads in a system. An event is a logical switch, having
two binary states (available/true and unavailable/false) that control
thread execution. When an event becomes available, all pending
(waiting) threads in the wait list are set to a ready-to-run state.
When an event is available and a thread pends on it, the thread
continues running and the event remains available.
A-72 VisualDSP++ 4.5 User’s Guide

Reference Information
To facilitate error handling, threads can specify a timeout period
when pending on an event.

An event is a code object of global scope, so any thread can pend
on any event. Event properties include the EventBit mask,
EventBit value, and combination type. Events are statically allo-
cated and enumerated at run time. An event cannot be destroyed,
but its properties can be changed.

event bit

A flag set or cleared to post the event. The event is posted (avail-
able) when the current values of the system Event Bits match the
event bit’s mask and event bits’ values defined by the event’s com-
bination type.

A system has only one Event Bits word, the size of a data word
minus one. For ADSP-TSxxx processors, the size is 31 bits.

executable file

A file or program written and built in VisualDSP++

EZ-KIT Lite evaluation system

A development board, software, and cable for evaluating a particular
processor. The kit includes fundamental debugging software to facili-
tate architecture evaluations via a PC-hosted tool set. Use the kit to
evaluate Analog Devices processors, learn about processor applications,
simulate and debug applications, and prototype applications.

focus

Refers to the active processor in a multiprocessor (MP) debugging
session
VisualDSP++ 4.5 User’s Guide A-73

Glossary
ICE

In-Circuit Emulator. Analog Devices offers emulators that provide
non-intrusive target-based debugging of processor systems. An
emulator can single-step or execute a processor at full speed to
facilitate viewing or altering a processor’s register and memory
contents.

IDDE

Integrated Development and Debugging Environment for Analog
Devices processor development tools

interrupt

An external or internal condition detected by the hardware inter-
rupt controller. In response to an interrupt, the kernel processes a
subroutine call to a predefined interrupt service routine (ISR).

Interrupts have the following specifications.

Latency – interrupt disable time. The period between the interrupt
occurrence and the first ISR’s executed instruction.

Response – interrupt response time. The period between the inter-
rupt occurrence and a context switch.

Recovery – interrupt recovery time. The period needed to restore
the processor’s context and to start the return-from-interrupt
(RTI) routine.

interrupt service routine (ISR)

A routine executed as a response to a software interrupt or hard-
ware interrupt. VDK supports nested interrupts, which means that
the kernel recognizes other interrupts, services interrupts, or both
A-74 VisualDSP++ 4.5 User’s Guide

Reference Information
with higher priorities while executing the current ISR. For VDK,
the ISRs are written in assembly language. VDK reserves the timer
and the lowest priority (reschedule) interrupt.

JTAG

Joint Test Action Group. This committee is responsible for imple-
menting the IEEE boundary scan specification, enabling in-circuit
emulation of ICs.

JTAG ICE configurator

See “VisualDSP++ configurator”.

kernel

The main module of a real-time operating system. The kernel loads
first and permanently resides in the main memory and manages
other modules of the real-time operating system. Typical services
include context switching and communication management
between OS modules.

keyboard shortcuts

The keyboard provides a quick means of running the commands
used most often, such as simultaneously typing the keyboard’s Ctrl
and G keys (indicated with the symbols Ctrl+G) to go to a line in a
file.

librarian

A utility that groups object files into library files. When linking
your program, specify a library file and the linker automatically
links any file in the library that contains a label used in your pro-
gram. Source code is provided so you can adapt the routines to
your needs.
VisualDSP++ 4.5 User’s Guide A-75

Glossary
library files

The VisualDSP++ archiver, elfar.ex, combines object (.DOJ) files
into library (.DLB) files, which serve as reusable resources for
project development. The linker searches library files for routines
(library members) that are referred to from other objects, and links
them into your executable program.

linear profiling

A debugging feature that samples the target’s PC register at every
instruction cycle. Linear profiling gives an accurate picture of
where instructions were executed, since every PC value is collected.
The trade-off, however, is that linear profiling is much slower than
statistical profiling. A display of the resulting samples appears in
the Linear Profiling window, which graphically indicates where
the application is spending its time. Simulator targets support lin-
ear profiling. See also “Statistical profiling.”

linker

The linker creates executable files, shared memory files, and overlay
files from separately assembled object and library files. It assigns
memory locations to code and data in accordance with a
user-defined .LDF file, which describes the memory configuration
of the target system.

Linker Description Files (.LDF files)

The .LDF files describe the target system and map your program code
within the system memory and processors. The .LDF file creates an
executable file using the target system memory map and defined seg-
ments in your source files.
A-76 VisualDSP++ 4.5 User’s Guide

Reference Information
loader

A utility that transforms an executable file into a boot file. The
loader creates a small kernel, which is booted into internal memory
at chip reset. A program of arbitrary size can then be loaded into
the processor’s internal and external memory.

makefile

VisualDSP++ can export a makefile (make rule file), based on your
project options. Use a makefile (.MAK or .MK) to automate builds
outside of VisualDSP++. The output make rule is compatible with
the gnumake utility (GNU Make V3.77 or higher) or other make
utilities.

memory pool

An area of memory containing a specified number of uniformly
sized blocks of memory available for allocation and subsequent use
in an application. The number and size of the blocks in a particular
memory pool are defined at pool creation.

message

For VDK, a signal (similar to an event or semaphore) used to syn-
chronize two threads in a system or to communicate information
between threads. A message is sent to a specified channel on the
recipient thread (and can optionally pass a reference to a payload to
facilitate the transfer of data between threads). Posting a message
takes a deterministic amount of time and may incur a context
switch.

mixed mode

One of the two editor window display formats (the other being
source mode). Mixed mode displays assembled code after the line
of the corresponding C code.
VisualDSP++ 4.5 User’s Guide A-77

Glossary
multiprocessor group

The assignment of one or more processors to a group, enabling a
single multiprocessor operation (MP Run, MP Halt, MP Step,
MP Reset, and MP Restart) to affect the processors in the cur-
rently selected group.

multiprocessor system

A system built with multiple processors. Often, performance-based
products require two or more processors. A system built with a
single processor is called a single-processor system. Debugging a
multiprocessor system requires that you synchronously run, step,
halt, and observe program execution operations in all the proces-
sors at once. The SHARC and TigerSHARC simulators do not
support this capability.

non-bootable PROM-image file

Splitter output, consisting of PROM files that cannot be used to
boot-load a system

outdated file

A file that has been edited since the last build

payload

For VDK, an arbitrary amount of data associated with a message.
A reference to the payload can be passed between threads as part of
a message to enable the recipient thread to access the data buffer
that contains the payload.

pinning a window

A technique that statically associates a window to a specific
processor
A-78 VisualDSP++ 4.5 User’s Guide

Reference Information
pipelining

A feature that helps you analyze and tune your code for optimal
performance. For TigerSHARC processors and Blackfin processors,
VisualDSP++ provides a simulation-only debugging window
(Pipeline Viewer) to help visualize the pipeline by displaying pipeline
stalls and aborts. For SHARC processors, the Disassembly window
displays symbols (F, D, or E) to indicate an instruction’s pipeline stage.

platform

The device with which a target communicates. For simulation, a
platform is typically one or more processors of the same type. For
emulation, you specify the platform with the VisualDSP++ config-
urator, and the platform can be any combination of devices.

The platform represents the hardware upon which one or more
devices reside. You typically define a platform for a particular tar-
get. For example, if three emulators are installed on your system, a
platform selection might be emulator two.

Several platforms may exist for a given debug target. For a simula-
tor, the platform defaults to the identical processor simulator.
When the debug target is a JTAG emulator, the platforms are the
individual JTAG chains. When the debug target is an EZ-KIT Lite
board, the platform is the board in the system on which you wish
to focus.

pre-emptive kernel

A priority-based kernel in which the currently running thread of
the highest priority is pre-empted, or suspended, to give system
resources to the new highest-priority thread
VisualDSP++ 4.5 User’s Guide A-79

Glossary
processor

(DSP) An individual chip contained on a specific platform within a
target system. When you create the executable file, the processor is
specified in the Linker Description File (.LDF file) and other source
files.

profile-guided optimization (PGO)

A process that involves setting up and executing data sets to produce
an optimized application. A data set is the association of zero or more
input streams with one .PGO output file. Refer to the VisualDSP++
Getting Started Guide for a tutorial and to VisualDSP++ Help for
“how-to” information.

profiling

A technique used during simulation to examine program execution
within selected ranges of code. Profiling helps you determine: percent-
age of time spent executing instructions, number of clock cycles spent
executing instructions, number of instructions executed, and the num-
ber of times memory is read or written.

The profiler is non-intrusive. It does not report on execution
within a called function (“daughter” function). Use profiling to
monitor program memory. By watching one or more profile
ranges, you can find areas of code that may be optimized for better
performance. A profile session must include one memory range at a
minimum. For each range, specify a start and end address. You can
use symbols or hexadecimal numbers to represent addresses.
A-80 VisualDSP++ 4.5 User’s Guide

Reference Information
project

This term refers to the collection of source files and tool configura-
tions used to create a processor program. Through a project, you
can add source files, define dependencies, and specify build options
related to producing your output executable program. A project
(.DPJ) file stores your program’s build information.

VisualDSP++ helps you manage projects from start to finish in an
integrated user interface. Within the context of a processor project,
you define project and tool configurations, specify project-wide
and individual file options for debug or release modes of project
builds, and create source files. VisualDSP++ facilitates easy move-
ment among editing, building, and debugging activities.

project configuration

This configuration includes all of the settings (options) for the
tools used to build a project.

project file tree display

See “Project window”.

Project window

This window displays your project’s files in a tree view, which can
include folders to organize your project files. Right-clicking on an
icon (the project itself, a folder, or a file) opens a menu of actions
that you can perform on the selected item. Double-clicking on the
project icon or a folder icon opens or closes the tree list.
Double-clicking a file icon opens the file in an editor window
VisualDSP++ 4.5 User’s Guide A-81

Glossary
Project wizard

Simplifies the creation of a new project by opening a series of pages
from which to specify options. For Blackfin processors, additional
pages facilitate the inclusion of startup code. You can modify
project options at a later time via the Project Options dialog box.

real-time operating system (RTOS)

A software executive that handles processor algorithms, peripherals,
and control logic. The RTOS comprises these components: kernel,
communication manager, support library, and device drivers. An
RTOS enables structured, scalable, and expandable processor
application development while hiding OS complexity.

rebuild all

See “build”.

registers

For information on available registers, see the corresponding pro-
cessor documentation or view the associated online Help.

release configuration

You can accept the default set of options, or you can specify the
options you want and save them. The configuration refers to the
specified options for all the tools in the tool chain. See also
“Configuration.”

reset

This command resets the processor to a known state and clears
processor memory.
A-82 VisualDSP++ 4.5 User’s Guide

Reference Information
restart

This command sets your program to the first address of the inter-
rupt vector table. Unlike a reset, a restart does not reload memory.

right-click

This action opens a right-click menu (sometimes called a context
menu, pop-up menu, or shortcut menu). The commands that
appear depend on the context (what you are doing). Right-click
menus provide access to many commonly used commands.

round-robin scheduling

For VDK, a scheduling scheme whereby all threads at a given pri-
ority are given processor time automatically in fixed duration
intervals. Round-robin priorities are specified at build time.

scheduler

For VDK, a kernel component responsible for scheduling system
threads and interrupt service routines. VDK is a priority-based
kernel in which the highest-priority thread is executed first.

scripting

You can interact with the IDDE by using a single command or a script
file. Scripting languages include VBScript, JavaScript, and Tcl. Output
displays in the Console view of the Output window. The output is
also logged to the VisualDSP_log.txt file.

semaphore

For VDK, a signal (similar to an event or message) used to synchro-
nize multiple threads in a system. A semaphore is a data object
whose value is zero or a positive integer (limited by the maximum
setup at creation time). The two states (available/greater than zero
and unavailable/zero) control thread execution. Unlike an event,
VisualDSP++ 4.5 User’s Guide A-83

Glossary
whose state is automatically calculated, a semaphore is directly
manipulated. Posting a semaphore takes a deterministic amount of
time and may incur a context switch.

serial port data

You can automatically transfer serial port (SPORT) data to and
from on-chip memory by using DMA block transfers. Each serial
port offers a time division multiplexed (TDM) multichannel mode.

session

See “debug session”.

session name

Although the choice of target, platform, and processor define the
session, you may want to further identify the session. To prevent
confusion later, modify the default session name when you first
create the debug session. A session name can be any string and can
include space characters. There is no limit to the number of charac-
ters in a session name, but the Session List dialog box can display
about 32 characters.

session type

See “connection type”.

shortcuts

See “keyboard shortcuts”.

signal

For VDK, a method of communicating between multiple threads.
VDK supports four types of signals: semaphores, events, messages,
and device flags.
A-84 VisualDSP++ 4.5 User’s Guide

Reference Information
simulator

The simulator is software that mimics the behavior of a processor
chip. Simulators are often used to test and debug code before the
processor chip is manufactured.

The way a simulator runs an executable program in software is
similar to the way a processor does in hardware. The simulator also
simulates the memory and I/O devices specified in the .LDF file.
VisualDSP++ lets you interactively observe and alter the data in the
processor and in memory. The simulator reads executable files. A
simulator’s response time is slower than that of an emulator.

source files

The C/C++ language and assembly language files that make up
your project. Other source files that a project uses, such as the .LDF
file, contain command input for the linker and dependency files
(data files and header files). View source files in editor windows.

source mode

One of the two editor window display formats (the other being
mixed mode). Source mode displays C code only.

splitter

A PROM splitter utility that transforms an executable file into a
non-boot-loadable image. This file is loaded onto external processor
memory.

statistical profiling

A debugging feature that provides a more generalized form of pro-
filing that is well suited to JTAG emulator debug targets. With
statistical profiling, VisualDSP++ randomly samples the target pro-
VisualDSP++ 4.5 User’s Guide A-85

Glossary
cessor’s program counter (PC) and presents a graphical display of
the resulting samples in the Statistical Profiling window. This win-
dow graphically indicates where the application is spending time.

JTAG sampling is completely non-intrusive, so the process does
not incur additional run-time overhead. See also “linear profiling.”

stepping

A technique for moving through source or assembly code to
observe instruction execution

streams

A debug tool used during simulation to drive other devices or take part
in processing a subset of data. Use streams to simulate data input and
output.

symbols

Labels for sections, subroutines, variables, data buffers, constants,
or port names. For more information, refer to the related build tool
documentation.

system configurator

For VDK, the system configuration control is accessible from the
Kernel page of the Project window. The Kernel page provides a
graphical representation of the data contained in the vdk.h and
vdk.cpp files.

target

(also called “debug target”) The communication channel between
VisualDSP++ and a processor (or group of processors). Targets
include simulators, emulators, and EZ-KIT Lite evaluation sys-
A-86 VisualDSP++ 4.5 User’s Guide

Reference Information
tems. Several targets may be installed on your system. Simulator
targets, such as the ADSP-TS101 cycle-accurate simulator, differ
from emulator targets in that the processor exists only in software.

The Summit-ICE emulator communicates with one or more physi-
cal devices over the host PC’s PCI bus. The USB-ICE emulator
communicates with a device through the PC’s USB port.

threads

For VDK, a kernel system component that performs a predeter-
mined function and has its own share of system resources. VDK
supports multithreading, a run-time environment with concur-
rently executed independent threads.

Threads are dynamic objects that can be created and destroyed at
runtime. Thread objects can be implemented in C, C++, or assem-
bly language. A thread’s properties include an ID, priority, and
current state (wait, ready, run, or interrupted). Each thread main-
tains its own C/C++ stack.

ticks

The system-level timing mechanism. Every system tick is a timer
interrupt.

tool chain

The collection of tools (utilities) used to build a project
configuration

trace

Provides a history of program execution. A trace is sometimes
called an execution trace or a program trace. Trace results show
how the program arrived at a certain point and show program
reads, writes, and memory fetches. Blackfin and TigerSHARC
processors do not support traces.
VisualDSP++ 4.5 User’s Guide A-87

Glossary
unscheduled regions

For VDK, a sequence of instructions whose execution can be inter-
rupted, but cannot be swapped out. The kernel acknowledges and
services interrupts when an unscheduled region routine is running.

VDK

See “VisualDSP++ Kernel (VDK).”

VisualDSP++

An Integrated Development and Debugging Environment (IDDE)
for Analog Devices processor development tools

VisualDSP++ Configurator

Previously called JTAG ICE Configurator or ICE Configurator, use
this utility to describe the hardware to VisualDSP++ when connecting
to a JTAG emulator session. VisualDSP++ requires this description to
set up the debug session. The VisualDSP++ Configurator also provides
access to ICE Test, a utility for testing the target.

VisualDSP++ Kernel (VDK)

The RTOS kernel from Analog Devices, a software executive
between processor algorithms, peripherals, and control logic. The ker-
nel is integrated with the Integrated Development and Debugging
Environment (IDDE), assembler, compiler, and linker programs
into the development tool chain.

Refer to the VisualDSP++ Kernel (VDK) User’s Guide for details.

watchpoints

For simulation only. Similar to breakpoints, watchpoints stop
program execution. Unlike breakpoints, which are attached to
specific addresses, watchpoints are attached to user-defined
A-88 VisualDSP++ 4.5 User’s Guide

Reference Information
conditions, such as memory reads or stack pops. The program halts
when the conditions are met. SHARC processors do not support
watchpoints.

workspace

You can open multiple windows, arrange them in any configura-
tion, and save the layout as a workspace setting that can be recalled
(loaded) at a later time. Each debug session’s default workspace is
automatically saved when you close the session and is automatically
restored when you load that session.

By default, each session includes two workspaces. You can create
any number of workspaces and switch among them. Suggested
workspaces include an edit workspace, a debug workspace, and a
plot workspace.
VisualDSP++ 4.5 User’s Guide A-89

Glossary
A-90 VisualDSP++ 4.5 User’s Guide

B SIMULATION OF SHARC
PROCESSORS

Depending on your selected target processor, several simulator options are

available on submenus under the Settings menu.

This appendix describes the options that help you simulate SHARC
processors.

The information is organized as follows.

• “Anomaly Options” on page B-2

• “Event Options” on page B-4

• “Recording a Simulator Anomaly or Event” on page B-7

• “Select Processor ID Options” on page B-9

• “Simulator Options” on page B-10

• “Load Sim Loader Options” on page B-11

• “SPI Simulation in Slave Mode” on page B-13
VisualDSP++ 4.5 User’s Guide B-1

Anomaly Options
Anomaly Options
The Anomalies submenu (under the Settings menu) provides commands
to help you determine where an anomaly might be affecting your code.
This submenu appears only when the simulator supports anomaly com-
mands for the selected processor.

ADSP-21x6x Processor Anomalies
If you know that your silicon has anomalies, the simulator lets you
configure reporting for the following anomaly events. By default, these
options are OFF (disabled).

• Shadow Write – This command opens the Configure Simulator
Event dialog box, from which to configure reporting for shadow
write anomalies.

• SIMD FIFO – This command opens the Configure Simulator
Event dialog box, from which to configure reporting for SIMD
FIFO anomalies.

Shadow Write FIFO Anomaly (ADSP-2116x Only)
For examples and workarounds, refer to anomaly 39 at the Analog Devices
embedded processors and DSPs Web site.

This anomaly has been identified in the shadow write FIFOs that exist
between the internal memory array of the ADSP-21160M and core I/O
processor (IOP) buses that access the memory. (Refer to the hardware doc-
umentation for more details on shadow register operation.) A particular
sequence of a core write followed by a read of the same internal memory
address (in conjunction with a certain type of IOP activity) can cause the
core read to return incorrect data.
B-2 VisualDSP++ 4.5 User’s Guide

Simulation of SHARC Processors
Under the circumstances described below, the read from Addr 1 incor-
rectly returns the data for Addr 2.

This problem is caused by the shadow write FIFO erroneously returning
data for a core read when data should have been returned from internal
memory. During write operations, data is placed in the first stage of a
two-stage shadow write FIFO. Data is moved from first to second stage
when a second write is performed (by processor core or IOP). Similarly,
data is moved from the second stage of the FIFO to internal memory
when neither the core nor the IOP accesses memory in a core cycle.

On read operations, address compare logic allows data to be fetched from
internal memory or from the FIFOs. Note that each memory block has
one shadow register FIFO, which all core and IOP accesses to internal
memory use. The internal memory clock (not visible to the user) runs at
twice the core clock frequency. So, each core cycle consists of two memory
cycles, with one memory cycle dedicated to the core and the other dedi-
cated to the IOP.

SIMD Read from Internal Memory With Shadow
Write FIFO Hit Anomaly (ADSP-2116x Only)

For examples and workarounds, refer to anomaly 40 at the Analog Devices
Web site.

This anomaly has been identified in the shadow write FIFOs that exist
between the internal memory array of the ADSP-21160M and core /IOP
buses that access the memory. (Refer to the hardware documentation for
details on shadow register operation.)

When SIMD reads cross long word address boundaries (that is, odd
normal word addresses or non-long word boundary-aligned short word
addresses) and the data for the read is in the shadow write FIFO, the result
is Revision 0.0 behavior for the read.
VisualDSP++ 4.5 User’s Guide B-3

Event Options
Event Options
The Events submenu provides the following options.

• FP Denorm – This command opens the Configure Simulator
Event dialog box, from which to configure the reporting of the
generation of a floating-point denormal result. By default, this
option is OFF (disabled).

• Short Word Anomaly (all ADSP-2106x processors except the
ADSP-21065L) – This command opens the Configure Simulator
Event dialog box, from which to configure reporting for
short-word accesses that fail. By default, this option is OFF
(disabled).

• Access to 21065L 9th column Even Address (ADSP-21065L
processors only) – This command opens the Configure Simulator
Event dialog box, from which to configure reporting for invalid
memory access. By default, this option is ON (enabled).

FP Denorm
You can configure what happens when an FP Denorm event occurs.
Denormal operands flush to zero when input to a computation unit and do
not generate an underflow exception. Refer to your processor’s hardware
documentation for more information about floating-point operations.

Short Word Anomaly
This option applies to all ADSP-2106x processors except the
ADSP-21065L processor.

Short-word accesses (read or write) fail following a stalled instruction. Any
access (read or write) to short-word memory space can fail if it follows a
stalled instruction or causes an instruction stall (see the example below).
B-4 VisualDSP++ 4.5 User’s Guide

Simulation of SHARC Processors
A DMA process cannot cause this anomaly. It is restricted to conditions
set up in the core processor. A DMA process is not impacted by this
anomaly (that is, the DMA will function correctly even if the anomaly
occurs). Refer to your processor's hardware documentation.

The occurrence of the failure varies with temperature, voltage, and
frequency.

An instruction can stall because of the following circumstances.

1. DAG stalls

An instruction that loads a DAG register followed by an instruc-
tion that uses the same DAG for a memory access causes the second
instruction to stall.

L2= 8;
DM(I0, M0) = R1; // Both L2 and I0 reside in DAG1,

// causing this instruction
// to stall.

Failure can occur if I0 points to a short-word space or if the above
instruction sequence is followed by a short word access.

2. PM memory data access (cache misses)

Any instruction that uses the PM bus to perform a data access
causes an instruction stall the first time it is executed.

PM(I8,M8) = R1;

3. Memory block conflicts

If an instruction requires two accesses to the same memory block,
the instruction stalls.

DM(I0, M0)=R0, PM (I8,M8) = R1;
// A stall will occur when both address
// pointers point to the same memory block.
VisualDSP++ 4.5 User’s Guide B-5

Event Options
4. Wait states for external memory accesses

An instruction that contains an external memory access where the
wait state setting for that memory bank is greater than 0 or the
access is held off because of the ACK signal or through bus arbitra-
tion causes that instruction to stall.

5. Multiple bus accesses to IOP registers in the same IOP register
group

An instruction may be stalled because of multiple buses trying to
access IOP registers in the same group. For this anomaly, the only
applicable case is if an external host or processor accesses the same
group of registers at the same time as the core.

DM(MSGR0) = R1; // Instruction executed while

// the host or another processor

// writes to MSGR2.

6. Executing instructions from external memory with wait states

Any instruction being executed from external memory where the
wait state setting for that memory bank is greater than 0 or the
access is held off because of the ACK signal causes that instruction to
stall.

A workaround for cases 1–5 above is to insert a NOP between the stallable
instruction and the short-word access (or remove the stall condition).

Case 6 has no workaround.

Ensure that a failing sequence does not occur when you use the
delayed branch (DB) option with jumps, calls, and returns. For
example, ensure that the two instructions in RTI (DB) do not cause
an instruction stall in a return to code that includes short-word
accesses.
B-6 VisualDSP++ 4.5 User’s Guide

Simulation of SHARC Processors
Access to ADSP-21065L Short-Word Internal
Memory 9th Column at Even Addresses

An Access to ADSP-21065L 9th column Even Address event is a simulator
anomaly. The event occurs during access to an ADSP-21065L short-word
internal memory 9th column even addresses. The simulator allows the event,
but the processor does not.

The simulator issues a warning when the event occurs. VisualDSP++ lets
you suppress the warning (in various ways). Selecting this option lets you
control the simulator’s behavior when the event occurs. When this option is
not selected, a message box pops up and a warning appears in the Output
window’s Console view.

Recording a Simulator Anomaly or Event
You can record various simulator anomalies and events for ADSP-21x6x
processors.

To record a simulator anomaly or event:

1. From the Settings menu, choose Anomalies or Events.

2. Choose the anomaly or event to record.

The anomalies are: Shadow Write or SIMD FIFO

The events are: FP Denorm, Short Word Anomaly, or Access to
21065L 9th column Even Address
VisualDSP++ 4.5 User’s Guide B-7

Recording a Simulator Anomaly or Event
The Configure Simulator Event dialog box (Figure B-1) appears,
displaying the selected anomaly or event (for example, FP
Denorm) in the title bar of the dialog box.

From this dialog box, configure the simulator to handle the
anomaly or event.

Figure B-1. Configure Simulator Event Dialog Box
B-8 VisualDSP++ 4.5 User’s Guide

Simulation of SHARC Processors
3. Specify options, described in Table B-1.

4. Click OK.

Select Processor ID Options
For ADSP-2106x or ADSP-2116x processors only, you can configure the
simulator processor ID. Select Single Processor or a particular processor in a
multiprocessor group (for example: Processor 1, Processor 2, and so on).

Table B-1. Options in the Configure Simulator Event Dialog Box

Item Purpose

Event Fire
Options

These options specify the frequency of reporting an event.
Fire Once logs the event only the first time it occurs.
Fire Unique logs the event once for each unique event (a unique set of occur-
rences which is specific to the event type). Select this option to prevent the
reporting of multiple messages for the same event.
Events (for example, FP Denorm) – If a PC has had this event before, it is
not unique and is not reported.
Anomalies (for example, Shadow Write, SIMD FIFO, or Short Word) – If
the PC at the time of the memory write and the PC at the time of the mem-
ory read taken as a pair have had this event before, it is not unique and is not
reported.
Fire All logs every occurrence of the event.

Severity This option specifies the degree of the event.
INFO writes a message in black typeface to the Output window.
WARN writes a message in black typeface to the Output window.
ERROR writes a message in red typeface to the Output window and rings a
bell.
FATAL writes a message in red typeface to the Output window and rings a
bell.

Event Actions Print writes messages to the Output window.
Halt stops processing after the event has occurred. This option is similar to
using a watchpoint.

Enabled Enables this event check

Verbose Specifies that multi-line messages are written to the Output window
When this option is not selected, messages are one line long.
VisualDSP++ 4.5 User’s Guide B-9

Simulator Options
Simulator Options
The Simulator submenu (under the Settings menu) provides the
CLKDBL command for ADSP-21161 processors only. Use this command
to double the clock speed circuitry.

Clock-doubling lets you set control bits, but it does not affect how
the simulator runs.

You can configure the processor’s CLKOUT pin to be 1x or 2x the rate of
CLKIN. The appearance of a check mark () beside the CLKDBL com-
mand on the Simulator submenu indicates that this option is selected.

No Boot Mode
(ADSP-2106x and ADSP-2116x processors only).
The Simulation submenu’s NoBootMode command is available for
ADSP-21x6x simulators to support development code in configurations
where the processor is in “NoBoot” mode (starting execution from exter-
nal memory for pre-ADSP-2126x processors, or starting execution from
internal ROM for ADSP-2126x and ADSP-2136x processors).

When this mode is selected, check mark () appears beside the NoBoot-
Mode command in the Simulation submenu. Also, a message displays,
reminding you to load a program or choose Debug -> Reset to complete
the mode change.

 Changing to NoBoot mode is not persistent. Each time you bring
up the simulator and/or change sessions, the mode reverts back to
its default state, which is Boot Mode.

The processor has a “boot” mode and a “NoBoot” mode. In boot mode,
the IIVT bit is ignored and the interrupt vector table (IVT) and starting
PC are in internal memory. In NoBoot mode, the IIVT bit is significant,
B-10 VisualDSP++ 4.5 User’s Guide

Simulation of SHARC Processors
and the initial location of the IVT and PC are in external memory (pre-
ADSP-2126x processors) and in internal ROM (ADSP-2126x processors
and later).

Before VisualDSP++ 4.0, all of the SHARC (ADSP-21x6x) simulators
supported “Boot” mode only, regardless whether an .LDF file was being
booted because most users develop code whose final form is booted into
the processor.

Load Sim Loader Options
Depending on the target processor, the Load Sim Loader submenu
provides these boot options:

• Boot from Host (32-bit Host, 16-bit Host, or 8-bit Host)

• Boot from PROM

• Boot from Link (ADSP-21060, ADSP-21062, and ADSP-2116x
processors only)

• Boot from SPI (32-bit Host, 16-bit Host, or 8-bit Host) for
ADSP-2116x processors only

• None of Above (disables boot mode)

Create a boot loader file (.LDR) based on the peripheral from which you
are loading. In a simulation target session, choose a peripheral (boot
option) and boot file as follows.
VisualDSP++ 4.5 User’s Guide B-11

Load Sim Loader Options
To create a boot loader file

1. From the Settings menu, choose Load Sim Loader and a boot
option (such as Boot from Host) to open the Open a Boot File
dialog box.

2. Navigate to the .LDR file and select it. Then click Open and OK.
A message instructs you to issue a reset instruction to execute the
loader.

3. From the Debug menu, choose Reset. The simulator runs and
boots in the boot-kernel (also called loader-kernel). A message
instructs you to issue a run instruction, which executes the loader.

4. From the Debug menu, choose Run (F5) to execute the loader.
The loader runs to completion and then displays a message,
indicating that the loader is finished and that it is OK to run the
application.

Before clicking Run, load the symbols for the program as follows.

a. From the File menu, choose Load Symbols to open
the Load a Processor Program's Symbols dialog box.

b. Select the .DXE file that was used to create the .LDR
file. A message indicates that the selected symbols are
loading.

5. From the Debug menu, choose Run (F5) to run the application.

For booting information, refer to the processor’s hardware documentation
or the VisualDSP++ Linker and Utilities Manual.
B-12 VisualDSP++ 4.5 User’s Guide

Simulation of SHARC Processors
SPI Simulation in Slave Mode
For ADSP-21161 processors, the external SPI is not modeled in simula-
tion. Since the master controls the timing, there is no timing information
for the transfers in slave mode. Except during booting, the BAUDR field of
the slave SPICTL is used for the timing of the external master. Since this
field has no effect in slave mode in the hardware, you can use it for
simulation.

When the SPI is enabled in slave mode and the SPITX buffer is not empty,
an SPI transmit/receive operation occurs. If the SPITX and the SPIRX buff-
ers are empty, a word is read speculatively into SPIRX buffer. The SPI
reads a maximum of one word ahead. Once the SPIRX buffer is emptied by
a DMA operation or a read, the SPI reads another word in the time speci-
fied by the BAUDR field of SPICTL.

During booting, the SPI operates at its fastest supported baud rate. When
you rely on the BAUDR field in slave mode, a maximum value of 0x5 is used
for this field. The “End of file” and “File not connected” errors are sup-
pressed until a read of SPIRX or a valid DMA is set up.

Refer to the ADSP-21161 SHARC DSP Hardware Reference for details.
VisualDSP++ 4.5 User’s Guide B-13

SPI Simulation in Slave Mode
B-14 VisualDSP++ 4.5 User’s Guide

C SIMULATION OF
TIGERSHARC PROCESSORS

This appendix describes how to simulate TigerSHARC processors.
The information is organized as follows.

• “ADSP-TS101 Processors” on page C-1

• “ADSP-TS20x Processors” on page C-13

ADSP-TS101 Processors
This section includes the following topics, which apply to ADSP-TS101
processors.

• “Simulator Timing Analysis Overview” on page C-2

• “Pipeline Stages” on page C-2

• “Stalls” on page C-3

• “Aborts” on page C-6

• “Pipeline Viewer and Disassembly Window Operations” on
page C-8

• “Simulator Options” on page C-12
VisualDSP++ 4.5 User’s Guide C-1

ADSP-TS101 Processors
Simulator Timing Analysis Overview

The ADSP-TS101 simulator is a cycle-accurate simulator. It not only
models the instruction set functionally, but also correctly models pipeline
effects (stalls and aborts).

Currently, the processor's external port and link ports are not
modeled in a cycle-accurate manner. The simulator cycle-counts
the code, but the cycle counts used for the external port or link
ports are rough estimates of cycle counts that you could obtain by
running the code on the chip. Do not rely on these counts for per-
formance evaluation.

The Pipeline Viewer window shows the flow of instructions through the
pipeline and any stalls due to sequencer or memory events. It helps you
understand how processor timing affects the execution of your program.
For information about configuring and using the Pipeline Viewer, see
“Pipeline Viewer Window” on page 2-79 or VisualDSP++ online Help.

Pipeline Stages
The ADSP-TS101 Pipeline Viewer window provides a representation of
instruction flow through the processor’s pipeline.Table C-1 lists the pipe-
line stages.

Table C-1. Pipeline Stages – ADSP-TS101 Processor

Stage Abbreviation in Pipeline Viewer

Instruction Fetch 1 F1

Instruction Fetch 2 F2

Instruction Fetch 3 F3

Decode DECODE

Integer INT
C-2 VisualDSP++ 4.5 User’s Guide

Simulation of TigerSHARC Processors
Pipeline stages F1 through F3 represent the fetch unit pipe. Stages
DECODE through EX2 represent the execution pipe. Fetch unit pipe
stages contain raw quads of 32-bit words fetched from memory, not valid
instruction lines.

When you view the Pipeline Viewer window in disassembly format (by
means of the right-click menu), instructions that appear in the fetch unit
pipe are not valid instruction lines, but merely bits and pieces. Valid
instruction lines appear in the execution pipe stages.

Stalls
The examples that follow illustrate how the Pipeline Viewer displays dif-
ferent types of stall events for ADSP-TS101 processors. For a complete list
of pipeline effects and memory transaction timing, refer to the processor’s
hardware specification.

Access ACCESS

Execute Stage 1 EX1

Execute Stage 2 EX2

Table C-1. Pipeline Stages – ADSP-TS101 Processor (Cont’d)

Stage Abbreviation in Pipeline Viewer
VisualDSP++ 4.5 User’s Guide C-3

ADSP-TS101 Processors
Stalls Due to IALU Dependency

The following sequence of instructions causes a 4-cycle stall at the Decode
stage.

J10=0x0;;

xr5 = [j10 + 1];; // This instruction is stalled in Decode

// until previous instruction reaches E2:

Figure C-1. Stall Due to IALU Dependency
C-4 VisualDSP++ 4.5 User’s Guide

Simulation of TigerSHARC Processors
Stalls Due to Compute Block Dependency
The following sequence of instructions causes a one-cycle stall at the Inte-
ger pipeline stage.

yr3 = r3 - r2;;

yr4 = r4 - r3;; // This instruction is stalled in Integer for

// 1 cycle. The source register (R2) is a

// destination in the previous instruction.

Figure C-2. Stall Due to Compute Block Dependency
VisualDSP++ 4.5 User’s Guide C-5

ADSP-TS101 Processors
Aborts
The following examples show how the Pipeline Viewer displays different
types of abort events for ADSP-TS101 processors. For a complete list of
pipeline effects and memory transaction timing, refer to the processor’s
hardware specification.

Aborts Due to an Unpredicted Change of Flow

In the following example, the abort at the Decode stage is due to an
unpredicted jump, predicated upon an IALU condition. Aborted stages in
the fetch unit pipe are marked with an , and aborted instructions in the
execution pipe are marked with an .

Figure C-3. Abort Due to an Unpredicted Change of Flow
C-6 VisualDSP++ 4.5 User’s Guide

Simulation of TigerSHARC Processors
Abort Due to Mispredicted Change of Flow

In the following example, an abort appears at pipeline stage E1 because of
a mispredicted change of flow at the end of a loop, predicated on a com-
pute block condition.

Figure C-4. Abort Due to Mispredicted Change of Flow
VisualDSP++ 4.5 User’s Guide C-7

ADSP-TS101 Processors
Branch Target Buffer Hits

In the following example, the jump instruction was found in the Branch
Target Buffer and is marked with . The branch is predicted and taken,
and no penalty is exacted for the change of flow.

Pipeline Viewer and Disassembly Window
Operations

This section includes the following topics.

• “Current Program Counter Value”

• “Stepping”

Figure C-5. Branch Target Buffer Hits
C-8 VisualDSP++ 4.5 User’s Guide

Simulation of TigerSHARC Processors
Current Program Counter Value

The program counter value, marked by in the Disassembly window, is
the address of the instruction at pipeline stage E1. When a breakpoint is
set at a certain address, the simulator halts after the instruction as this
address is executed at stage E1.

You can specify which instruction the simulator executes next by manually
changing the program counter (PC) value in the PC Register window.
Note, however, that the current instruction, indicated by in the Disas-
sembly window, is executed prior to the user-specified instruction. When you
change a PC value, the simulator flushes the pipeline and aborts all its instruc-
tions. After the pipeline is flushed, normal execution resumes from a memory
address indicated by the new PC value. The simulator continues to run until
an instruction at the new PC reaches stage E1 of the pipeline.

Manually changing the PC value during simulation can result in
unpredictable program behavior. VisualDSP++ does not safeguard
against invalid PC values. Ensure that the specified PC indicates a
valid instruction within program address space.

An example of an invalid PC is a data memory address whose con-
tents is not recognized as an instruction by the simulator. In this
case, the simulator generates an unhandled software exception.

Another example of an erroneous PC is the middle of an instruc-
tion line. Only part of the instruction line is executed, while
instructions in the beginning of the line are ignored.
VisualDSP++ 4.5 User’s Guide C-9

ADSP-TS101 Processors
Figure C-6 shows how the program counter value is used for the
ADSP-TS101 processor.

Figure C-6. Using the Program Counter Value (ADSP-TS101 Processor)
C-10 VisualDSP++ 4.5 User’s Guide

Simulation of TigerSHARC Processors
Stepping

When single-stepping through a program, the simulator performs an
instruction line step and skips invalid instructions (aborted, bubbles, or
slots occupied by an invalid fetch).

Sometimes a step takes more than one cycle, and the Pipeline Viewer win-
dow advances by several lines, while the yellow arrow , which marks
the current program counter location in the Disassembly window, moves
to the next instruction line.

While skipping invalid instructions (aborted, bubbles, or an invalid
fetch), the simulator still processes memory transactions. When the
step is completed and the memory window is updated, a surpris-
ingly large number of new values may appear. When debugging
DMA, be aware that a single step may cause several DMA transac-
tions to be completed.
VisualDSP++ 4.5 User’s Guide C-11

ADSP-TS101 Processors
Simulator Options
The Simulator submenu (under Settings menu) provides the Configure
DMA File I/O command, which opens the DMA File I/O Configuration
dialog box (Figure C-7). This is used to specify files as sources, destina-
tions, or both for DMA transfers.

Figure C-7. DMA File I/O Configuration Dialog Box
C-12 VisualDSP++ 4.5 User’s Guide

Simulation of TigerSHARC Processors
For information about dialog box options and simulating a DMA transfer
in the simulator, refer to VisualDSP++ online Help.

ADSP-TS20x Processors
This section includes the following topics, which apply to the
ADSP-TS201, ADSP-TS202, and ADSP-TS203 processors.

• “Simulator Timing Analysis Overview”

• “Pipeline Stages”

• “Stalls”

• “Aborts”

• “Pipeline Viewer and Disassembly Window Operations”

Simulator Timing Analysis Overview

The ADSP-TS20x simulator is a cycle-accurate simulator which not only
models the instruction set functionally, but also correctly models pipeline
effects (stalls and aborts) and internal memory transactions timing.

Currently, the processor’s external port and link ports are not mod-
eled in a cycle-accurate manner. The simulator cycle-counts the
code, but the cycle counts used for the external port or link ports
are rough estimates of cycle counts that you could obtain by run-
ning the code on the chip. Do not rely on these counts for
performance evaluation.

Use the Pipeline Viewer window to understand how processor timing
affects the execution of your program. For information about configuring
and using the Pipeline Viewer, see “Pipeline Viewer Window” on
page 2-79 or refer to VisualDSP++ online Help.
VisualDSP++ 4.5 User’s Guide C-13

ADSP-TS20x Processors
Pipeline Stages
The ADSP-TS20x Pipeline Viewer window provides a representation of
instruction flow through the processor’s pipeline. Table C-2 lists the pipe-
line stages.

Stages F1 through F4 represent the fetch unit pipe. Stages PD through
EX2 represent the execution pipe. Fetch unit pipe stages contain raw
quads of 32-bit words fetched from memory, not valid instruction lines.
When you view the Pipeline Viewer window in disassembly format (by
means of the right-click menu), instructions that appear in the fetch unit
pipe are not valid instruction lines, but merely bits and pieces. Valid
instruction lines appear in the execution pipe stages.

Table C-2. Pipeline Stages – ADSP-TS20x Processors

Stage Abbreviation in Pipeline Viewer

Instruction Fetch 1 F1

Instruction Fetch 2 F2

Instruction Fetch 3 F3

Instruction Fetch 4 F4

Predecode PD

Decode D

Integer I

Access A

Execute Stage 1 EX1

Execute Stage 2 EX2
C-14 VisualDSP++ 4.5 User’s Guide

Simulation of TigerSHARC Processors
Stalls
The examples that follow illustrate the way that the Pipeline Viewer dis-
plays different types of stall events for ADSP-TS20x processors. For a
complete list of pipeline effects and memory transaction timing, refer to
the processor’s hardware specification.

Stalls Due to IALU Dependency

The following sequence of instructions causes a 4-cycle stall at the
PreDecode stage.

J0 = 0x40000;;

J1 = j31 + j0;; // This instruction is stalled in PreDecode

// until the previous instruction reaches E2:

Figure C-8. Stall Due to IALU Dependency
VisualDSP++ 4.5 User’s Guide C-15

ADSP-TS20x Processors
Stalls Due to Compute Block Dependency

The following sequence of instructions causes a one-cycle stall at the
Decode stage.

xr2 = r0 + r1;;

xr3 = r0 + r2;; // This instruction is stalled in Decode for

// 1 cycle. The source register (R2) is a

// destination in the previous instruction.

Figure C-9. Stall Due to Compute Block Dependency
C-16 VisualDSP++ 4.5 User’s Guide

Simulation of TigerSHARC Processors
Stalls Due to a Cache Miss

The following register load transaction causes a six-cycle stall because of a
cache miss.

xr0=[j0 + j31];;

Aborts
The examples that follow illustrate how the Pipeline Viewer displays
different types of abort events for ADSP-TS20x processors. For a com-
plete list of pipeline effects and memory transaction timing, refer to the
processor’s hardware specification.

Figure C-10. Stall Due to a Cache Miss
VisualDSP++ 4.5 User’s Guide C-17

ADSP-TS20x Processors
Aborts Due to an Unpredicted Change of Flow

In the following example, the abort at the PreDecode stage is due to an
unpredicted jump, predicated upon an IALU condition. The jump is
unpredicted because the branch target buffer is disabled in this particular
example.

Aborted stages in the fetch pipe are marked with an , and aborted
instructions in the execution pipe are marked with an .

Figure C-11. Abort Due to an Unpredicted Change of Flow
C-18 VisualDSP++ 4.5 User’s Guide

Simulation of TigerSHARC Processors
Abort Due to Mispredicted Change of Flow

In the following example, an abort appears at stage E2 because of a
mispredicted change of flow at the end of a loop, predicated on a compute
block condition.

Figure C-12. Abort Due to Mispredicted Change of Flow
VisualDSP++ 4.5 User’s Guide C-19

ADSP-TS20x Processors
Branch Target Buffer Hits

In the following example, the first iteration of the loop causes a four-cycle
penalty because of the unpredicted change of flow. On the second itera-
tion, the change of flow instruction was found in the branch target buffer
and is marked with an . The branch is predicted and taken, and no
penalty is exacted for the change of flow.

Pipeline Viewer and Disassembly Window
Operations

This section includes the following topics.

• “Current Program Counter Value”

• “Stepping”

Figure C-13. Branch Target Buffer Hits
C-20 VisualDSP++ 4.5 User’s Guide

Simulation of TigerSHARC Processors
Current Program Counter Value

The program counter (PC) value, marked by in the Disassembly win-
dow, is the address of the instruction at stage E2. When a breakpoint is set
at a certain address, the simulator halts after the instruction at this address
is executed at stage E2.

You can specify which instruction the simulator executes next by manually
changing the program counter value in the PC Register window. Note,
however, that the current instruction, indicated by in the Disassembly
window, is executed prior to the user-specified instruction. When you change
a PC value, the simulator flushes the pipeline and aborts all its instructions.
After the pipeline is flushed, normal execution resumes from a memory
address indicated by the new PC value. The simulator continues to run until
an instruction at the new PC reaches stage E2 of the pipeline.

Manually changing the PC value during simulation can result in
unpredictable program behavior. VisualDSP++ does not safeguard
against invalid PC values. Ensure that the specified PC indicates a
valid instruction within program address space.

An example of an invalid PC is a data memory address whose con-
tents is not recognized as an instruction by the simulator. In this
case, the simulator generates an unhandled software exception.

Another example of an erroneous PC is the middle of an instruc-
tion line. Only part of the instruction line is executed, while
instructions in the beginning of the line are ignored.
VisualDSP++ 4.5 User’s Guide C-21

ADSP-TS20x Processors
Figure C-14 shows how the program counter value is used for
ADSP-TS20x processors.

Figure C-14. Using the Program Counter Value (ADSP-TS20x Processors)
C-22 VisualDSP++ 4.5 User’s Guide

Simulation of TigerSHARC Processors
Stepping

When single-stepping through a program, the simulator performs an
instruction line step and skips invalid instructions (aborted, bubbles, or
slots occupied by an invalid fetch).

Sometimes a step takes more than one cycle, and the Pipeline Viewer win-
dow advances by several lines, while the yellow arrow , which marks
the current program counter location in the Disassembly window, moves
to the next instruction line.

While skipping invalid instructions (aborted, bubbles, or an invalid
fetch), the simulator still processes memory transactions. When the
step is completed and the memory window is updated, a surpris-
ingly large number of new values may appear. When debugging
DMA, be aware that a single step may cause several DMA transac-
tions to be completed.

Simulator Options

The Simulator submenu under Settings provides the Select Loader
Program command. This command opens the Open File dialog box, from
which to specify a custom loader program. Once selected, the loader pro-
gram automatically runs before a user program is loaded. The simulator
defaults to a standard loader program (TS20x_prom.dxe, where x is 1, 2,
or 3), but you can define your own loader by compiling a program into a
.DXE file. If you create your own loader, your code must contain the label
_init_debug_end to ensure that the loader is executed.
VisualDSP++ 4.5 User’s Guide C-23

ADSP-TS20x Processors
C-24 VisualDSP++ 4.5 User’s Guide

D SIMULATION OF BLACKFIN
PROCESSORS

This appendix provides Blackfin simulator-specific information.
The information is organized as follows:

• “Peripheral Support in Simulators” on page D-2

Note that VisualDSP++ online Help includes the most recent
information about Blackfin processor simulation support.

• “Special Considerations for Peripherals” on page D-7

• “Simulator Instruction Timing Analysis for ADSP-BF535 Proces-
sors” on page D-9

• “Simulator Instruction Timing Analysis for ADSP-BF531,
ADSP-BF532, ADSP-BF533, and ADSP-BF561 Processors” on
page D-19

• “Multicycle Instructions and Latencies” on page D-22

• “Compiled Simulation” on page D-44
VisualDSP++ 4.5 User’s Guide D-1

Peripheral Support in Simulators
Peripheral Support in Simulators
Use the following key for the tables in this section.

Table D-2 summarizes peripheral support in the ADSP-BF535 simulator.

Table D-1.

Symbol

Implemented

NA Not applicable

NP Not planned for implementation

FR Planned for a future release

Table D-2. Peripheral Support in the ADSP-BF535 Simulator

Peripheral Support Modeled Streamable Bootable

SPORT NA

UART NA

PCI NP NP NP

USB NP NP NP

Flags NA

System Timers NA

RTC NA NA

EBIU NP NA NA
D-2 VisualDSP++ 4.5 User’s Guide

Simulation of Blackfin Processors
Table D-3 summarizes peripheral support in the ADSP-BF535 compiled
simulator.

SPI NP

Watch Unit NP NA NA

Trace Unit NP NA NA

Core Timer NA

MEMDMA NA

PROM FR NA FR

Table D-3. Peripheral Support in the ADSP-BF535 Compiled Simulator

Peripheral Support Modeled Streamable Bootable

SPORT FR

UART FR FR FR

PCI NP NP NP

USB NP NP NP

Flags NA

System Timers FR FR NA

RTC FR NA NA

EBIU NP NA

SPI FR FR NP

Watch Unit FR NA NA

Trace Unit FR NA NA

Table D-2. Peripheral Support in the ADSP-BF535 Simulator (Cont’d)

Peripheral Support Modeled Streamable Bootable
VisualDSP++ 4.5 User’s Guide D-3

Peripheral Support in Simulators
Core Timer FR NA

MEMDMA NA

PROM NP NA NP

Table D-3. Peripheral Support in the ADSP-BF535 Compiled Simulator

Peripheral Support Modeled Streamable Bootable
D-4 VisualDSP++ 4.5 User’s Guide

Simulation of Blackfin Processors
Table D-4 summarizes peripheral support in the ADSP-BF533 simulator.

Table D-5 summarizes peripheral support in the ADSP-BF533 compiled
simulator.

Table D-6 summarizes peripheral support in the ADSP-BF561 simulator.

Table D-4. Peripheral Support in the ADSP-BF533 Simulator

Peripheral Support Modeled Streamable Bootable

SPORT FR

UART FR FR FR

Flags FR FR NA

System Timers NA

RTC FR NA NA

EBIU FR NA NA

PPI NP

SPI FR FR NP

Watch Unit NA NA

Trace Unit NA NA

Core Timer FR NA

Watch Dog Timer FR NA NA

PROM NP NA NP
VisualDSP++ 4.5 User’s Guide D-5

Peripheral Support in Simulators
Table D-5. Peripheral Support in the ADSP-BF533 Compiled Simulator

Peripheral Support Modeled Streamable Bootable

SPORT FR FR FR

UART FR FR FR

Flags NP NP NA

System Timers FR FR NA

RTC NP NP NA

EBIU NP NP NA

PPI FR FR NP

SPI FR FR NP

Watch Unit FR NA NA

Trace Unit FR NA NA

Core Timer FR NA

Watch Dog Timer FR NA NA

PROM NP NA FR

Table D-6. Peripheral Support in the ADSP-BF561 Simulator

Peripheral Support Modeled Streamable Bootable

SPORT FR FR FR

UART FR FR FR

Flags FR FR NA

System Timers NA

RTC FR NA NA

EBIU FR NA NA

PPI NP
D-6 VisualDSP++ 4.5 User’s Guide

Simulation of Blackfin Processors
Special Considerations for Peripherals
This section describes the limitations of the simulation software models.

Universal Asynchronous Receiver/Transmitter
Peripheral

You can manipulate all the UART configuration bits. Currently, you can-
not simulate the data error (Framing Error, Parity Error, Break Interrupt)
conditions or the Modem Status register status bits (Data Carrier Detect,
Ring Indicator, Data Set Ready, Clear To Send). You can specify Set
Break in the Line Control register, but this setting has no effect. The cur-
rent simulator does not model the IRCR register.

Timer (TMR) Peripheral
In Width Capture (WDTH_CAP) mode, the timer counts the number of
clocks in both the width and period. The waveform that the timer reads is
attached via the Streams dialog box in VisualDSP++.

SPI FR FR NP

Watch Unit FR NA NA

Trace Unit FR NA NA

Core Timer FR NA

Watch Dog Timer FR NA NA

PROM FR NA FR

Table D-6. Peripheral Support in the ADSP-BF561 Simulator

Peripheral Support Modeled Streamable Bootable
VisualDSP++ 4.5 User’s Guide D-7

Special Considerations for Peripherals
You can attach a file to the following device names.

• TIMER0_WDTH_CAP

• TIMER1_WDTH_CAP

• TIMER2_WDTH_CAP

The format of the input file is as follows.

PERIOD_COUNT

WIDTH_COUNT

PERIOD_COUNT

WIDTH_COUNT

In WDTH_CAP mode, the timer reads two 32-bit values from the input file.
The first value is the number of pulses (clocks) in the period. The second
value is the number of pulses in the width.

When PULSE_HI is set, the timer delivers high widths and low periods.
When PULSE_HI is not set, the timer delivers low widths and high periods.
D-8 VisualDSP++ 4.5 User’s Guide

Simulation of Blackfin Processors
Simulator Instruction Timing Analysis for
ADSP-BF535 Processors

The ADSP-BF535 Family Simulator is a core cycle-accurate simulator
with an eight-stage pipeline. The simulator models all the sequencer and
memory events of the ADSP-BF535 processor.

The Pipeline Viewer shows the flow of instructions through the pipeline
and any stalls due to sequencer or memory events. It enables you to
understand the execution timing of your program. For information about
configuring and using the Pipeline Viewer, see “Pipeline Viewer Window”
on page 2-79 or VisualDSP++ online Help.

The Pipeline Viewer for the ADSP-BF535 processor displays stages
Decode through Writeback. The first two stages of the pipeline,
(IF1 and IF2) are not displayed because the information, provided
by the simulator, in those stages is not significant.

Stall Reasons
The stall reasons are grouped into three categories:

• Multicycle instructions latencies (see “Multicycle Instructions and
Latencies” on page D-22)

• Instructions latencies (see “Instruction Latencies” on page D-26)

• L1 data memory latencies (see “L1 Data Memory Stalls” on
page D-34)

They are reported in the Pipeline Viewer as:

• Data address generator (DAG) read-after-write (RAW) hazard

• Data register (dreg) hazard: two cycle
VisualDSP++ 4.5 User’s Guide D-9

Simulator Instruction Timing Analysis for ADSP-BF535 Processors
• Dreg register (dreg) hazard: one cycle

• Memory stall

• Memory-mapped register (MMR) stall

• CSYNC stall

• SSYNC or IDLE SYNC stall

• Raise stall

• Single-step (SS) mode

• RET read after write

• Unidentified stall

Kill Reasons
The kill reasons are as follows.

• Branch Kill – change of flow

• Mispredict – mispredicted conditional change of flow

• Refetch – refetch, such as following an IDLE instruction

• Interrupt – interrupt/exception
D-10 VisualDSP++ 4.5 User’s Guide

Simulation of Blackfin Processors
Pipeline Viewer Window Examples
Figure D-1 shows a RAW hazard stall.

These stalls are detected in the Decode stage. The instruction stalls there
until all DAG registers required and updated in later pipeline stages are
available.

In this example, the instruction “I0 = R0;” in the Execute1 stage (cycle
16), Execute2 stage (cycle 17) and Execute3 stage (cycle 18) is stalling the
“R4 = [I0++];” instruction in the Decode stage. This stall is caused by
the first instruction because it updates the value of I0 in the Writeback
stage, while the second instruction needs the value of I0 in the Address
stage to increment I0.

Figure D-2 shows a fetch stall.

Figure D-1. RAW Hazard Stall

Figure D-2. Fetch Stall
VisualDSP++ 4.5 User’s Guide D-11

Simulator Instruction Timing Analysis for ADSP-BF535 Processors
Fetch stalls are detected in the Decode stage and are caused by memory
latencies when an instruction is fetched.

In this example, two fetch stalls appear in the Decode stage (cycles 14 and
15) because of a memory latency when the “R1 = 0;” instruction is
fetched. These fetch latencies are then propagated in the pipeline:
“Address” stage (cycles 15 and 16), “Execute 1” stage (cycles 16 and 17),
and so on.

Pipeline Viewer Window Messages
When you hold down the Ctrl key and pause the mouse over a pipeline
viewer event icon indicating instructions, the Pipeline Viewer window
displays informational messages. An example is shown in Figure D-4 on
page D-20.

These types of messages may appear:

• Stalls detected

• Kills detected

• Multicycle instruction messages

Pipeline Viewer Detail View Stall Event Messages

Table D-7 shows the messages that occur when a stall is detected.

Table D-7. Stalls Detected Messages (ADSP-BF535 Processor)

Message Explanation Example

ICache miss Instruction cache miss

IAU empty Instruction alignment unit empty

DCache miss Data cache miss

DCache store buffer
full

Data cache buffer overflow. The processor stalls
until the FIFO moves forward and a space is free.
D-12 VisualDSP++ 4.5 User’s Guide

Simulation of Blackfin Processors
DCache load while
store pending

A load access collides with a pending store access
in the store buffer. (They are tying to access the
same address.)

DCache load while
store pending w/ size
mismatch

Load access size is different from that of the store
access. The buffer must be flushed before the
load can be carried out.

DCache bank collision The addresses in a dual- memory access com-
mand are accessing the same minibank. It does
not matter whether both are loads, or load and
store.

SYNC with store pend-
ing

SYNC instructions force all speculative, transient
in the core/system to be completed before pro-
ceeding.

SSYNC;

EU->MUL/MAC RAW
hazard

Execution unit, Multiply or Multiply accumulate
with a read after write hazard

R0 = R1 + R0;
P0 = R0;

RETx RAW hazard Writing to one of the RETx (RETS, RETI,
RETX, RETN, or RETE) registers immediately
followed by the corresponding return instruc-
tions.

RETX = R0;
RTX;

Dagreg WAW hazard Writing to one of the DAG registers, and imme-
diately writing to it again.

I3 = R3;
I3 += M0;

Dagreg RAW hazard Writing to one of the DAG registers, and imme-
diately reading

I3 = R3;
[I3] = R7;

dsp32alu implied ireg
dependency RAW haz-
ard

ccMV preg->dreg RAW
hazard

A conditional move of a preg into a dreg, fol-
lowed by a read of the dreg

If CC R0 = P1;
R0 = R1;

ccMV dreg->dreg RAW
hazard

A conditional move of a dreg into a dreg, fol-
lowed by a read of the source dreg

If CC R0 = R1;
R2 = R0;

ccMV dpreg->preg
RAW hazard

A conditional move of a dreg into a preg, fol-
lowed by a read of the preg

If CC P0 = R1;
P1 = P0 ;

Table D-7. Stalls Detected Messages (ADSP-BF535 Processor) (Cont’d)

Message Explanation Example
VisualDSP++ 4.5 User’s Guide D-13

Simulator Instruction Timing Analysis for ADSP-BF535 Processors
loopsetup WAW hazard A LSETUP instruction followed by another
LSETUP, both writing to the same LC reg

LSETUP
(LS,LE)LC0=P0;
LSETUP
(LS,LE)LC0=P1;

loopsetup while lc is
nonzero

Using an LSETUP instruction and writing a
value other than zero to the Lcreg

LSETUP
(LS,LE)LC0=P0;
Nop;

loop top/bot RAW haz-
ard

Writing to a loop top/bottom register, followed
by a read of the same register

LT0 = R0;
R2 = LT0;

write to loop cnt stall A write to a LCreg, followed by any op LC0 = R0;
Nop; (any op)

multicycle ALU2op
instruction

A two-operand ALU instruction requiring more
than one cycle to complete

R0 *= R1;

multicycle DAG
instruction

[--SP] =
(R7:0,P5:0);

CC2dreg RAW hazard Reading the CC register into a dreg, and then
reading that register

R0 = CC;
CC = R0;

Mac/video after regmv
sysreg to dreg raw haz-
ard

Register move of a system register to a dreg, fol-
lowed by a MAC or video instruction

R0 = LC0;
R2.H = R1.L * R0.H;

Regmv sysreg to dreg
followed by ALU op
dreg raw hazard

Writing a system register to a dreg, followed by
an ALU operation using that dreg as an operand

R0 = LC0;
R2 = R1 + R0;

Video after extracted
3-input add dreg raw
hazard

Extracted 3-input add
followed by special
dsp32 instruction

Search followed by exu
operation dreg raw haz-
ard

A search instruction followed by any execution
instruction with an operand of a dreg used in the
search instruction

(R3,R0) = search R1
(LE);
R2.H =R1.L * R0.H;

Table D-7. Stalls Detected Messages (ADSP-BF535 Processor) (Cont’d)

Message Explanation Example
D-14 VisualDSP++ 4.5 User’s Guide

Simulation of Blackfin Processors
Regmv hazard: preg to
dreg -> dreg to sys/preg
RAW

A register move of a preg to a dreg, followed by
another register move of that same dreg to a sys-
tem register or preg

R0 = P0;
ASTAT = R0;

Regmv hazard: sysreg
to dreg -> dreg to dreg
RAW

A register move of a system register to a dreg, fol-
lowed by another register move of that same dreg
to a dreg

R0 = ASTAT;
R1 = R0;

Regmv hazard: sysreg
to dreg -> dreg to sysreg
RAW

A register move of a system register to a dreg, fol-
lowed by another register move of that same dreg
to a system register

R0 = LC0;
ASTAT = R0;

Regmv hazard: sysreg
to areg -> dreg to areg
WAW

A register move of a system register to an accu-
mulator register, followed by another register
move of a dreg to the same accumulator register

A0.w = LC0;
A0 =R0;

Regmv hazard: sysreg
to areg -> preg to areg
WAW

A register move of a system register to an accu-
mulator register, followed by another register
move of a preg to that same accumulator register

A0.w = LC0;
A0 =P0;

Regmv hazard: sysreg
to areg -> areg to areg
WAW

A register move of a system register to an accu-
mulator register, followed by another register
move of an accumulator register to that same
accumulator register

A0.w = LC0;
A0 =A1;

Regmv hazard: sysreg
to areg -> areg to dreg
RAW

A register move of a system register to an accu-
mulator register, followed by another register
move of that same accumulator register to a dreg

A0.w = LC0;
R0 =A0;

Regmv hazard: sysreg
to areg -> areg to sysreg
RAW

A register move of a system register to an accu-
mulator register, followed by another register
move of that same accumulator register to a sys-
tem register

A0.w = LC0;
ASTAT = A0.w;

Regmv hazard: sysreg
to areg -> load to areg
WAW

A register move of a system register to an accu-
mulator register, followed by a load to the same
accumulator register

A0.w = LC0;
A0.w = [I0];

Regmv hazard: sysreg
to areg -> exu op using
areg RAW

A register move of a system register to an accu-
mulator register, followed by any execution unit
operation using that accumulator register as an
operand

A0.w = LC0;
A0 = A0(S);

Table D-7. Stalls Detected Messages (ADSP-BF535 Processor) (Cont’d)

Message Explanation Example
VisualDSP++ 4.5 User’s Guide D-15

Simulator Instruction Timing Analysis for ADSP-BF535 Processors
Kills Detected Messages

Table D-8 shows the messages that occur when a kill is detected.

AQreg hazard: move to
AQ -> exu op using AQ
RAW

CCreg hazard: move to
CC -> exu op using CC
RAW

Table D-8. Kills Detected Messages (ADSP-BF535 Processor)

Message Explanation Example

change-of-flow kill A branch CALL (P0);

rti change-of-flow kill Return from interrupt kills RTI;

mispredicted
change-of-flow kill

Kills due to mispredicted
branches

R0 = 0; CC = R0;
If CC JUMP next (bp);

hardware loop bottom kill

interrupt kill Instructions in the pipeline are
killed due to an interrupt

RAISE 1

sync kill SYNC instructions force all
speculative, transient in the
core/system to be completed
before proceeding, killing
instructions in the pipe

SSYNC;

Table D-7. Stalls Detected Messages (ADSP-BF535 Processor) (Cont’d)

Message Explanation Example
D-16 VisualDSP++ 4.5 User’s Guide

Simulation of Blackfin Processors
Multicycle Instructions

Multicycle instructions are a category of instructions that cannot complete
in fewer than two cycles. Consequently, the extra cycles generated by such
an instruction cannot be removed without removing the multicycle
instruction itself.

In Figure D-3, multicycle instruction “[--SP] = (R7:6, P5:3)” enters the
pipeline Decode stage at cycle 16 and takes five cycles to complete (1 cycle
per register to push on the stack SP). The next instruction “R7 = 0” takes
only one cycle.

For details about multicycle instructions, see “Multicycle Instructions and
Latencies” on page D-22.

Abbreviations in Pipeline Viewer Messages
Table D-9 shows abbreviations that may appear in the Pipeline Viewer
window.

Figure D-3. Example of a Multicycle Instruction in the Pipeline Viewer
VisualDSP++ 4.5 User’s Guide D-17

Simulator Instruction Timing Analysis for ADSP-BF535 Processors
Table D-9. Abbreviations in the Pipeline Viewer Window

Abbreviation Meaning

ALU Arithmetic Logic Unit operations (Logical ops, Bit ops, Shift/Rotate ops,
Arithmetic ops excluding Mult, Vector ops excluding Mult/MAC)

ALU2op A two-operand ALU instruction

AQreg

CC2dreg CC register move to a dreg

ccMV Conditional move

CCreg CC register. This multipurpose flag typically holds the result of an arithmetic
comparison.

DAG Data Address Generator unit

Dagreg A DAG register (for example, P5-0, I3-0, M3-0, B3-0, and L3-0)

dreg Data register (for example, R7-0 or A1-0)

Dsp32alu A 32-bit DSP ALU instruction

EXU Execution unit

IAU Instruction Alignment Unit

MAC Multiplier/Accumulator Unit

MUL Multiplier Unit operations (for example, Vector Multiply, 32-bit Multiply,
Vector MAC)

preg Pointer register (for example, P5-0, FP, USP, or SSP)

RAW Read after write

regmv A register move

sysreg System Register (for example, LC1/0, LB1/0, LT1/0, SYSCFG, SEQSTAT,
ASTAT, RETS, RETI, RETX, RETN, RETE, CYCLES, and CYCLE2)

WAW Write after write

Video Video operations (video pixel operations)
D-18 VisualDSP++ 4.5 User’s Guide

Simulation of Blackfin Processors
Simulator Instruction Timing Analysis for
ADSP-BF531, ADSP-BF532, ADSP-BF533,
and ADSP-BF561 Processors

The simulator for the ADSP-BF531, ADSP-BF532, ADSP-BF533, and
ADSP-BF561 processors is a core cycle-accurate simulator with a ten-stage
pipeline. The simulator models all sequencer and memory events.

The Pipeline Viewer shows the flow of instructions through the pipeline
and any stalls due to sequencer or memory events. It enables you to under-
stand the execution timing of your program. For information about
configuring and using the Pipeline Viewer, see “Pipeline Viewer Window”
on page 2-79 or VisualDSP++ online Help.

Stall Reasons
The stall reasons are as follows.

• Data address generator (DAG) read-after-write (RAW) hazard

• Memory stall

• Memory-mapped register (MMR) stall

• Unidentified stall

• Data register (dreg) hazard: two cycle

• Dreg hazard: one cycle

• CSYNC stall

• SSYNC or IDLE SYNC stall

• LSETUPO and not LPO_ALLOWED

• Awkward loop
VisualDSP++ 4.5 User’s Guide D-19

Simulator Instruction Timing Analysis for ADSP-BF531,
ADSP-BF532, ADSP-BF533, and ADSP-BF561 Processors
• Raise stall

• SS mode

• RET read after write

Kill Reasons
The kill reasons are as follows.

• Branch Kill – change of flow

• Mispredict – mispredict conditional change of flow

• Interrupt – interrupt/exception

• Refetch – refetch, such as following an IDLE instruction

Pipeline Viewer Window Examples
Figure D-4 shows a RAW hazard stall.

These stalls are detected in the Decode stage. The instruction stalls until
all the required DAG registers, which are updated in later pipeline stages,
are available.

Figure D-4. RAW Hazard Stall
D-20 VisualDSP++ 4.5 User’s Guide

Simulation of Blackfin Processors
In the example, I0=R5 in the Execute3 stage is stalling the instruction in
decode, which wants to increment I0.

Figure D-5 shows an MMR stall.

MMR stalls occur in E1 while the MMR value is being returned.

Figure D-6 shows a branch kill.

In this example, an unconditional control transfer kills several stages that
were behind it. Fetching begins at the destination of the control transfer
instruction after the killed stages.

Figure D-5. MMR Stall

Figure D-6. Branch Kill
VisualDSP++ 4.5 User’s Guide D-21

Multicycle Instructions and Latencies
Multicycle Instructions and Latencies
This section contains a description of all Blackfin processor multicycle
instructions and latencies.

Multicycle behavior exists when an instruction, sometimes only under cer-
tain circumstances, is completed in more than one cycle. This cycle loss
cannot be avoided without removing the instruction that caused it.

A latency condition exists when a pair of instructions incur extra cycles
between them because of their proximity to each other in the code. Avoid
a latency condition’s cycle loss by separating the two instructions by as
many instructions as the cycles lost. Each multicycle and latency entry
indicates whether it is currently supported in the simulation environment.

All multicycle and latency conditions described here are native to the first
implementation of the Blackfin processor architecture. Future implemen-
tations may be different. The tables in this section show the cycle latencies
of the 10x core processors, represented by the ADSP-BF532 and the
ADSP-BF535 processor.

Multicycle Instructions
All instructions not mentioned here are completed in one cycle. This sec-
tion describes instructions that take more than one cycle. Instruction
names are consistent with the Blackfin Processor Instruction Set Reference.
The cycle counts in the following examples represent the entire cycle time
of the instruction shown.

Push Multiple or Pop Multiple

PushPopMultiple is completed in n cycles, where n is the number of regis-
ters pushed or popped.
D-22 VisualDSP++ 4.5 User’s Guide

Simulation of Blackfin Processors
32-Bit Multiply (modulo 232)

Table D-11 lists bit multiply instructions and cycles.

Call and Jump

Table D-12 lists call and jump instructions and cycles.

Conditional Branch

The number of cycles that a branch takes depends on the prediction as
well as the actual outcome.

Table D-10. PushPopMultiple Instructions and Cycles

Instruction ADSP-BF532 ADSP-BF535

[--SP] = (R7:0,P5:0); 14 cycles 14 cycles

(R7:0,P5:3) = [SP++]; 11 cycles 11 cycles

Table D-11. Bit Multiply Instruction and Cycles

Instruction ADSP-BF532 ADSP-BF535

R0 *= R1; 3 cycles 5 cycles

Table D-12. Call and Jump Instructions and Cycles

Instruction ADSP-BF532 ADSP-BF535

CALL 0x22; 5 cycles 4 cycles

CALL (PC + P0); 5 cycles 4 cycles

CALL (P0); 5 cycles 4 cycles

JUMP 0x22; 5 cycles 4 cycles

JUMP (PC + P0); 5 cycles 4 cycles

JUMP (P0); 5 cycles 4 cycles
VisualDSP++ 4.5 User’s Guide D-23

Multicycle Instructions and Latencies
Return

Table D-14 lists return instructions and cycles.

Core and System Synchronization

Table D-15 lists core and system synchronization instructions and cycles.

Table D-13. Conditional Branch Cycles

Prediction taken not taken

Outcome taken not taken taken not taken

Cycle
Time

BF532 BF535 BF532 BF535 BF532 BF535 BF532 BF535

4 cycles 4 cycles 8 cycles 7 cycles 8 cycles 7 cycles 1 cycle 1 cycle

Table D-14. Return Instructions and Cycles

Instruction ADSP-BF532 ADSP-BF535

RTX; 5 cycles 7 cycles1

1 Best case

RTE; 5 cycles 7 cycles1

RTN; 5 cycles 7 cycles1

RTI; 5 cycles 7 cycles

RTS; 5 cycles 4 cycles

Table D-15. Core and System Synchronization Instructions and Cycles

Instruction ADSP-BF532 ADSP-BF535

CSYNC; 10 cycles 7 cycles

SSYNC; 10 cycles 7 cycles
D-24 VisualDSP++ 4.5 User’s Guide

Simulation of Blackfin Processors
Linkage

Table D-16 lists linkage instructions and cycles.

Interrupts and Emulation

Table D-17 lists interrupts and emulation instructions and cycles.

TESTSET

The TESTSET instruction is a multicycle instruction that is executed in a
variable number of cycles. It depends on the cycles needed for a read
acknowledge from off-core L2 memory and whether the address being
tested is both in the cache and dirty. The number of cycles is determined
as follows.

cycles = 1 (instruction) + 1 (stall) + x (read ack) + y (cache penalty)

Table D-16. Linkage Instructions and Cycles

Instruction ADSP-BF532 ADSP-BF535

LINK 8; 3 cycles 4 cycles

UNLINK; 2 cycles 3 cycles

Table D-17. Interrupts and Emulation Instructions and Cycles

Instruction ADSP-BF532 ADSP-BF535

RAISE 10; 3 cycles 3 cycles

EXCPT 3; 3 cycles 7 cycles

EMUEXCPT; 3 cycles 3 cycles1

1 Best case as determined by physical characteristics of external memory

STI R4; 3 cycles 3 cycles1
VisualDSP++ 4.5 User’s Guide D-25

Multicycle Instructions and Latencies
In an optimal environment, x would be 5 and y would be zero. If the
address resides in a dirty line, y is determined by the cycles to fill the dirty
line plus any core boundary latencies. The address should not reside dirty
in the cache as the address contents are meant to be updated across multi-
ple processors and not be a local variable. This instruction depends on
off-core conditions, so it is not modeled by the simulation environment.

Instruction Latencies
In addition to being based on instructions, instruction latencies are con-
tingent on placement of specific instruction pairs relative to one another.
Avoid latencies by separating them by as many instructions as the number
of cycles incurred between them. For example, if a pair of instructions
incur a 2-cycle latency, separate them by two instructions to eliminate that
latency.

In the tables that follow, note that bold typeface identifies register depen-
dencies within the instruction pairs. Non-bold typface in an entry means
that the latency condition occurs regardless of the registers used.

For a list of accumulator-to-data register (Areg2Dreg), math, video, multi-
ply, and ALU operations, as well as register groupings, see “Instruction
Groups” on page D-41 and “Register Groups” on page D-42. Instruction
names are consistent with the Blackfin Processor Instruction Set Reference.

Calculate the total cycle time of each entry by adding the cycles taken by
the instruction to the number of stall cycles for the instruction.

Table D-18. TESTSET Instruction

Instruction ADSP-BF535

TESTSET (P0); 7+ cycles1

1 Best case as determined by physical characteristics of external memory
D-26 VisualDSP++ 4.5 User’s Guide

Simulation of Blackfin Processors
Accumulator to Data Register Latencies

Table D-19. Accumulator to Data Register Latencies

Description Example
<cycles + stalls > instruction

BF532 BF535

dreg = Areg2Dreg op
video op using dreg
as src

1
1 + 1

< 1 > R1 = R6.L * R4.H (IS);
< 1 + 2 > R5 = BYTEOP1P (R3:2, R1:0);

dreg = Areg2Dreg op
rnd12/rnd20 using
dreg as src

1
1

< 1 > R4.L = (A0 = R3.H*R1.H);
< 1 + 1 > R0.H = R2 + R4 (RND12);

dreg = Areg2Dreg op
shift/rotate op using
dreg as src

1
1

< 1 > R4.L = (A0 = R3.H*R1.H);
< 1 + 1 > R1 = ROT R2 BY R4.L;

dreg = Areg2Dreg op
add on sign using
dreg as src

1
1

< 1 > R0.H=R0.L=SIGN(R2.H)*R3.H+SIGN(R2.L)*R3.L;
< 1 + 1 > R6.H=R6.L= SIGN(R0.H)*R1.H+SIGN(R0.L)*R1.L;

dreg = math op
Areg2Dreg op using
dreg as src

1
1

< 1 > R2 = R3 + R1;
< 1 + 1 > R4.H = R2.L * R0.H;
VisualDSP++ 4.5 User’s Guide D-27

Multicycle Instructions and Latencies
Register Move Latencies

In each of the following cases, the stall condition occurs when the same
register is used in both instructions.

Table D-20. Register Move Latencies

Description Example
<cycles + stalls > instruction

ADSP-BF532 ADSP-BF535

dreg = sysreg
ALU op using dreg as src
(or vector ALU op)

1
1
1
1

< 1 > R0 = LC0;
< 1 + 1 > R2 = R1 + R0;
< 1 > R2 = LC0;
< 1 + 1 > R1.L = R2 (RND);

dreg = preg
sysreg = dreg

1
1

< 1 > R0 = P0;
< 1 + 1 > ASTAT = R0;

dreg = sysreg
dreg = dreg

1
1

< 1 > R0 = ASTAT;
< 1 + 1 > R1 = R0;

dreg = sysreg
multiply/video op with dreg as src

1
1 + 1

< 1 > R0 = LC0;
< 1 + 2 > R2.H = R1.L * R0.H;

dreg = sysreg
accreg = dreg

1
1

< 1 > R0 = LC0;
< 1 + 1 > A0 = R0;

preg = dreg
any processor op using preg

1
1 + 4

< 1 > P0 = R3;
< 1 + 3 > R0 = P0;

dagreg = dreg
any processor op using dagreg

1
1 + 4

< 1 > I3 = R3;
< 1 + 3 > R0 = I3;

dreg = sysreg
sysreg = dreg

1
1

< 1 > R0 = LC0;
< 1 + 1 > ASTAT = R0;

accreg = sysreg
accreg = dreg

1
1

< 1 > A0.w = LC0;
< 1 + 1 > A0 = R0;

accreg = sysreg
accreg = preg

1
1

< 1 > A0.w = LC0;
< 1 + 1 > A0.w = P0;

accreg = sysreg
accreg = accreg

1
1

< 1 > A0.w = LC0;
< 1 + 1 > A1 = A0;
D-28 VisualDSP++ 4.5 User’s Guide

Simulation of Blackfin Processors
accreg = sysreg
dreg = accreg

1
1

< 1 > A0.w = LC0;
< 1 + 1 > R0.L = A0.x;

accreg = sysreg
sysreg = accreg

1
1

< 1 > A0.w = LC0;
< 1 + 1 > ASTAT = A0.w;

accreg = sysreg
math op using accreg as src

1
1

< 1 > A1.x = LC0;
< 1 + 1 > R1.H = (A0+=A1);

accreg = sysreg
POP to accreg

1
1

< 1 > A0.w = LC0;
< 1 + 1 > A0.w = [SP ++];

POP to dagreg
any processor op using dagreg

1
1 + 3

< 1 > I3 = [SP++];
< 1 + 3 > R0 = I3;

LOAD/POP to preg
any processor op using preg

1
1 + 3

< 1 > P3 = [SP++];
< 1 + 3 > R0 = P3;

R0.L = R1.L+R2.L
R3 = R0.H*R4.L

The 10x core considers register halves to be independent, so
this condition is not a register hazard.

Table D-20. Register Move Latencies (Cont’d)

Description Example
<cycles + stalls > instruction

ADSP-BF532 ADSP-BF535
VisualDSP++ 4.5 User’s Guide D-29

Multicycle Instructions and Latencies
Move Conditional and Move CC Latencies

In each of the following cases, the stall condition occurs when the same
register is used in both instructions.

Table D-21. Move Conditional and Move CC Latencies

Description Example(s)
<cycles + stalls > instruction

ADSP-BF532 ADSP-BF535

dreg = CC
if CC dreg = dreg

1
1

< 1 > R0 = CC;
< 1 + 1 > if CC R1 = R0;

if CC dreg = dreg
multiply/video op using dreg as src

1
1 + 1
1
1 + 1

< 1 > if CC R0 = R1;
< 1 + 1 > R2.H = R1.L * R0.H;
< 1 > if CC R1 = R3;
< 1 + 1 > SAA (R3:2, R1:0);

if CC dreg = preg
math op using dreg as src

1
1
1
1

< 1 > if CC R0 = P0;
< 1 + 1 > R2 = R1 + R0;
< 1 > if CC R3 = P1;
< 1 + 1 > SAA (R3:2, R1:0);

dreg = CC
math op using dreg as src

1
1
1
1

< 1 > R0 = CC;
< 1 + 2 > R2.H = R1.L * R0.H;
< 1 > R1 = CC;
< 1 + 2 > SAA (R3:2, R1:0);

dreg = CC
CC = dreg

1
1

< 1 > R0 = CC;
< 1 + 2 > CC = R0;

if CC preg = dpreg
any op using preg

1
1 + 4

< 1 > if CC P0 = R1;
< 1 + 3 > R4 = P0;

if CC dreg = dpreg
CC = dreg

1
1

< 1 > if CC R0 = R1;
< 1 + 1 > CC = R0;
D-30 VisualDSP++ 4.5 User’s Guide

Simulation of Blackfin Processors
Loop Setup Latencies

Table D-22. Loop Setup Latencies

Description Example
<cycles + stalls > instruction

BF532 BF535

loop setup
loop setup with same LC

1
1 + 6

< 1 > LSETUP (top1, bottom1) LC0 = P0;
< 1 + 1 > LSETUP (top2, bottom2) LC0 = P1;

modification of LT or LB
loop setup with same loop registers

1
1 + 9

< 1 > LT0 = [SP++];
< 1 + 3 > LSETUP (top, bottom) LC0 = P0;

loop setup with LC0 and LC0 != 0
any processor op

1
1

< 1 > LSETUP (top, bottom) LC0 = P0;
< 1 + 1 > NOP;

loop setup with LC1 and LC1 != 0
any processor op

1
1

< 1 > LSETUP (top, bottom) LC1 = P0;
< 1 + 1 > NOP;

LC0/LC1 reg written to
any processor op

1
1 + 9

< 1 > LC0 = R0;
< 1 + 4 > NOP;

LT0/LB0 written to and LC0 != 0
any processor op

1
1 + 9

< 1 > LT0 = [SP++];
< 1 + 4 > NOP;

LT1/LB1 written to and LC1 != 0
any processor op

1
1 + 9

< 1 > LB1 = P0;
< 1 + 4 > NOP;

kill while loop buffer is being
written due to: interrupt, exception,
NMI, emulation events

0 3-cycle stall
VisualDSP++ 4.5 User’s Guide D-31

Multicycle Instructions and Latencies
Latencies Due to Instructions Within Hardware Loops

The following stall conditions occur when the listed instruction or condi-
tion within a hardware loop results in a 3-cycle stall at the next iteration of
the loop.

• A move conditional or POP into any of the LC/LB/LT registers

• A loop setup through the use of the same loop count registers in
the first three instructions of the loop

• A branch in the first three instructions of the loop (JUMP, CALL,
conditional branch)

• An interrupt or exception in the first four instructions of the loop

• CSYNC or SSYNC

• The inner hardware loop’s bottom is strictly within the outer hard-
ware loop’s first four instructions.

• If the inner hardware loop’s bottom is equal to the outer hardware
loop’s bottom, a 3-cycle stall applies to each iteration of the inner
loop in addition to the 3-cycle stall of the outer loop.

• RTS, RTN, RTE, RTX, RTI

• If the loop’s top instruction is not executed in the first iteration of
the loop, a one-time 3-cycle stall penalty is incurred at the begin-
ning of the second iteration (for example, a jump into the hardware
loop to any instruction but the first).
D-32 VisualDSP++ 4.5 User’s Guide

Simulation of Blackfin Processors
• None of the above applies to the 10x core. The 10x core stalls when
the loop start does not directly follow the LSETUP. This condition
causes a one-time 3-cycle stall while the loop buffer is filled at the
beginning of the second loop iteration.

• LSETUP to the same loop count register in the shadow of a previous
LSETUP is held in D code until the first LSETUP commits.

Instruction Alignment Unit Empty Latencies

If the instruction alignment unit (IAU) is empty of the next instruction,
that next instruction incurs a 1-cycle stall while the IAU is being filled.
The following conditions can result in an IAU empty stall.

• An instruction cache miss or SRAM fetch miss

• A change of flow to an instruction address aligned across a 64-bit
boundary

• The second instruction after a hardware loop is aligned across a
64-bit boundary

• The sixth instruction within a hardware loop is aligned across a
64-bit boundary

Table D-23. Instruction Alignment Unit Empty Latencies

Description Example(s)
<cycles + stalls > instruction

BF532 BF535

Move register or POP to I0 or I1
SAA,BYTEOP2P,BYTEOP3P

1
1 + 4

< 1 > I1 = [SP++];
< 1 + 5 > R0 = BYTEOP3P (R1:0, R1:0)
(HI);

Move register or POP to I0 or I1
BYTEOP1P/16P/16M, BYTEUNPACK

1
1 + 4

< 1 > I0 = R0;
< 1 + 5 > R3 = BYTEOP1P (R3:2, R1:0);
VisualDSP++ 4.5 User’s Guide D-33

Multicycle Instructions and Latencies
L1 Data Memory Stalls
L1 data memory (DM) stalls are incurred through reading from or writing
to L1 data memory. Accesses can be direct (to or from DM SRAM) or
indirect (to or from DM cache). Some of these stalls are multicycle
instruction conditions (they occur as a result of a specific instruction).

Some stalls are latency conditions (they occur only when the two offend-
ing instructions are too close). The specifics are described in each entry.
The following memory configurations apply to the ADSP-BF535 proces-
sor. Note that the causal factors in offending instructions and the stall
consequences appear in bold typeface.

Write to return register (RT[S,N,E,X,I])
return op

1
1 + 4
1
1 + 4

< 1 > RETI = P0;
< 1 + 4 > RTI;
< 1 > RETS = P3;
< 1 + 4 > RTS;

math op
video op with RAW data dependency

1
1 + 1

< 1 > R3 = R2 + R4;
< 1 + 1 > SAA (R3:2, R1:0);

dreg = search
math op using dreg

1
1 + 2

< 1 > (R3, R0) = SEARCH R1 (LE);
< 1 + 2 > R2.H = R1.L * R0.H;

core and system MMR access < 1 + 2 > R0 = [P0]; // P0 = MMR address

L0/B0 = dreg
I0 modulo update

In general, any length and base dagreg
assignment to a dreg followed by the
corresponding index dagreg modulo
update

1 + 4
1 + 4
1 + 4
1 + 4
1 + 4
1 + 4
1 + 4
1 + 4

< 1 > L0 = R0;
< 1 + 3 > R1 = [I0++];
< 1 > B1 = R2;
< 1 + 3 > I1 += 4;
< 1 > L2 = R3;
< 1 + 3 > R4 = [I2++M2];
< 1 > B3 = R5;
< 1 + 3 > I3 += M2;

Table D-23. Instruction Alignment Unit Empty Latencies (Cont’d)

Description Example(s)
<cycles + stalls > instruction

BF532 BF535
D-34 VisualDSP++ 4.5 User’s Guide

Simulation of Blackfin Processors
Minibank Access Collision

This section describes the following stalls.

• SRAM access

• Cache access

SRAM Access (1-Cycle Stall)

This stall can occur only when an instruction accesses a bank configured
as SRAM. The memory regions associated with SRAM banks are calcu-
lated when an offset is added to the value of SRAM_BASE_ADDRESS MMR. The
start addresses for banks A and B are:

• Bank A: (SRAM_BASE_ADDRESS << 22) + 0x000000

• Bank B: (SRAM_BASE_ADDRESS << 22) + 0x100000

The minibanks are contiguous 4096-byte (4-KB) chunks within the A and
B address space. With two simultaneous accesses (via a multi-issue instruc-
tion) to the same minibank, a 1-cycle stall is incurred. For example:

(I0 is address 0x001348, I1 is address 0x001994)

R1 = R4.L * R5.H (IS), R2 = [I0++], [I1++] = R3;

<1 cycle stall> (due to a collision in the second minibank

in superbank A)

A collision occurs regardless of whether the accesses are both loads, or a
load and a store. If the first access is a load (DAG0) and the second is a
store (DAG1), the cycles incurred are seen by the store buffer (see “Store
Buffer Overflow” on page D-39). Since the SRAM_BASE_ADDRESS value
must be 4-MB aligned (thus each minibank starts at 0xXXXXX000), it is easy
to determine whether two addresses are going to collide in a minibank. If
((addr1>>12)==(addr2>>12)), a collision occurs.
VisualDSP++ 4.5 User’s Guide D-35

Multicycle Instructions and Latencies
Cache Access (1-Cycle Stall)

This stall can occur only when one or both banks are configured as cache.

Only One Bank is Configured as Cache

In this case, data memory accesses are cached to the same superbank, so
you have to determine only the cache minibank. First, you must find out
how much data bank memory is modeled in the implementation of the
Blackfin processor that you are using.

The standard Blackfin processor architecture model is 16KB, thus four
4-KB minibanks. In this case, you have to look at bits 13 and 12 only of
the address to see which minibank the data memory access is cached.

Every time the available bank memory is doubled, another bit must be
used. For example, if an implementation of Blackfin processor architec-
ture has 32KB of data bank memory (eight 4-KB memory banks), bits 14,
13, and 12 must be used.

Table D-24. Minibanks Selected for 16KB of Data Bank Memory

Addr[13:12] Minibank Selected

00 minibank 1 (0x0000–0x1000)

01 minibank 2 (0x1000–0x2000)

10 minibank 3 (0x2000–0x3000)

11 minibank 4 (0x3000–0x4000)

Table D-25. Minibanks Selected for 32KB of Data Bank Memory

Addr[14:12] Minibank Selected

000 minibank 1 (0x0000–0x1000)

001 minibank 2 (0x1000–0x2000)

010 minibank 3 (0x2000–0x3000)
D-36 VisualDSP++ 4.5 User’s Guide

Simulation of Blackfin Processors
For simplicity, this document assumes the standard 16-KB data memory
model. If the addresses in a dual-memory access (multi-issue) instruction
is cached to the same minibank, a 1-cycle stall is incurred.

(I0 is address 0x002348, I1 is address 0x002994)

R1 = R4.L * R5.H (IS), R2 = [I0++], [I1++] = R3;

<1 cycle stall> (due to a collision in minibank 3)

A collision occurs regardless of whether the accesses are both loads, or a
load and a store. If the first access is a load (DAG0) and the second is a
store (DAG1), the cycles incurred are seen by the store buffer (see “Store
Buffer Overflow” on page D-39). If (Addr1[13:12]== Addr2[13:12]), a
collision occurs.

Both Banks Are Configured as Cache

If both banks are cacheable, you must determine which superbank the
accesses are cached to (in addition to the minibank) to determine whether
a stall exists. This information depends on the value of the DCBS bit of the
DMEM_CONTROL memory-mapped register. If DCBS is 1, address bit 23 is used
as bank select. If DCBS is 0, address bit 14 is used as bank select.

(Note that these values are used for the 16-KB implementation of Blackfin
processor data memory). Refer to “Cache Access (1-Cycle Stall)” on
page D-36 for details about how to determine the minibank. The follow-
ing table assumes that DCBS is 0.

011 minibank 4 (0x3000–0x4000)

100 minibank 5 (0x4000–0x5000)

101 minibank 6 (0x5000–0x6000)

110 minibank 7 (0x6000–0x7000)

111 minibank 8 (0x7000–0x8000)

Table D-25. Minibanks Selected for 32KB of Data Bank Memory

Addr[14:12] Minibank Selected
VisualDSP++ 4.5 User’s Guide D-37

Multicycle Instructions and Latencies
If the addresses in a dual-memory access (multi-issue) instruction is
cached to the same superbank and minibank, a 1-cycle stall is incurred.

(I0 is address 0x002348, I1 is address 0x002994)

R1 = R4.L * R5.H (IS), R2 = [I0++], [I1++] = R3;

<1 cycle stall> (due to a collision in minibank 3)

A collision occurs regardless of whether the accesses are both loads, or a
load and a store. If the first access is a load (DAG0) and the second is a store
(DAG1), the cycles incurred are seen by the store buffer (see “Store Buffer
Overflow” on page D-39).

When DCBS is 0 and (Addr1[14:12]== Addr2[14:12]), a collision occurs.
When DCBS is 1 and (Addr1[23,13:12]== Addr2[23,13:12]), a collision
occurs.

Table D-26. Superbank, Minibank Selected When DCBS is 0

Addr[14:12] Superbank, Minibank Selected

000 superbank A, minibank 1 (0x0000–0x1000)

001 superbank A, minibank 2 (0x1000–0x2000)

010 superbank A, minibank 3 (0x2000–0x3000)

011 superbank A, minibank 4 (0x3000–0x4000)

100 superbank B, minibank 1 (0x0000–0x1000)

101 superbank B, minibank 2 (0x1000–0x2000)

110 superbank B, minibank 3 (0x2000–0x3000)

111 superbank B, minibank 4 (0x3000–0x4000)
D-38 VisualDSP++ 4.5 User’s Guide

Simulation of Blackfin Processors
Memory-Mapped Register (MMR) Access

A read from any MMR space (on-core and off-core) results in a 2-cycle
stall because the Blackfin processor architecture must wait for acknowl-
edgement from the peripherals mapped to the MMRs being accessed.

(I0 contains an address between 0xFFC00000 and 0xFFE00000)

R2 = [I0++]; (In Supervisor Mode)

<2 cycle stall>

System Minibank Access Collision

A system access occurs when an external device, such as another processor
in a multiple core system, accesses the Blackfin processor’s L1 memory.
Whenever the system accesses a minibank currently being accessed by the
core, a <1-cycle stall> is incurred because system memory accesses have
higher priority than core accesses.

Store Buffer Overflow

The store buffer is a 5-entry FIFO that manages Blackfin processor
instruction stores to L1 and L2 memory. All instruction stores must go
through the store buffer. Thus, if the buffer is full, the Blackfin processor
stalls until the FIFO moves forward and a space is freed.

The earliest time that a store can leave the buffer is four instructions (not
cycles necessarily) after it was entered. Consequently, under ideal circum-
stances a continuous series of stores will take up four out of the five slots
in the store buffer. If only one of the stores is delayed by an extra cycle, no
penalty is imposed as the store buffer has five slots. Many scenarios can
cause the store buffer to become full. To account for them, you must keep
track of the proximity of stores and how many cycles they each take.
VisualDSP++ 4.5 User’s Guide D-39

Multicycle Instructions and Latencies
If a multicycle store is required, you must ensure that it is not followed
too closely by other stores as they may become backed up. Multicycle
stores include:

• Stores to non-cacheable memory (for example, MMR space)

• Stores to external L2 memory (memory addressed beyond L1
SRAM)

• Minibank conflict where the store is from DAG1 (the second
access in a load/store multi-issue instruction—see “Minibank
Access Collision” on page D-35)

Store Buffer Load Collision

This section describes cases in which a load access collides with a pending
store access in the store buffer because they have the same address (refer to
section “Store Buffer Overflow” on page D-39 for a description of the
store buffer).

Load/Store Size Mismatch

If the load access’s size (8-bit, 16-bit, 32-bit) is different from that of the
store access, the store buffer must be flushed before the load can be carried
out. The stall time depends on how many stores are currently in the buffer
and how long they each take to complete.

W [PO] = R0;

<N cycle stall as the buffer is flushed>

R1 = B [P0];
D-40 VisualDSP++ 4.5 User’s Guide

Simulation of Blackfin Processors
Store Data Not Ready

The data portion of a store does not necessarily have to be ready when it is
entered into the store buffer. Store data coming from the DAG registers
and pregs has no delay, but all other store data is delayed by three instruc-
tions. If a load access collides with a store whose data is not ready, the
Blackfin processor stalls for four cycles.

Instruction Groups
All instruction group members conform to naming conventions used in
the Blackfin Processor Instruction Set Reference. Instruction groups
described are not necessarily mutually exclusive in that the same instruc-
tion can belong to multiple groups.

W [P0] = R0;
<3 cycles>
R1 = W [P0];

[P0] = P3;
<0 cycles>
R1 = [P0];

Table D-27. Math Ops Instruction Groups

Math Ops

Video Ops Mult Ops ALU Ops

Video Pixel Ops Vector Multiply Logical Ops

32-bit Multiply Bit Ops

Vector MAC Shift/Rotate Ops

Arithmetic Ops (except Mult)

Vector Ops (except Mult/MAC)
VisualDSP++ 4.5 User’s Guide D-41

Multicycle Instructions and Latencies
Register Groups
Table D-29 lists register groups.

Table D-28. Areg2Dreg Ops Instruction Groups

Areg2Dreg Ops

MAC to half reg MAC to data reg Vector Multiply

RND12 RND20 Add on Sign

Modify – Increment, only this case: [dreg|dreg_hi|dreg_lo] = (A0 += A1);

Table D-29. Allreg Register Groups

allreg

Dreg Preg sysreg dagreg

R0 P0 ASTAT I0

R1 P1 RETS I1

R2 P2 RETX I2

R3 P3 RETI I3

R4 P4 RETN M0

R5 P5 RETE M1

R6 FP LC0 M2

R7 SP LT0 M3

statbits accreg LB0 L0

ASTAT [0]: AZ A0 LC1 L1

ASTAT [1]: AN A0.x LT1 L2

ASTAT [2]: AC A0.w LB1 L3

ASTAT [3]: AV0 A1 CYCLES B0

ASTAT [4]: AV1 A1.x CYCLES2 B1
D-42 VisualDSP++ 4.5 User’s Guide

Simulation of Blackfin Processors
ASTAT [5]: CC A1.w SEQSTAT B2

ASTAT [6]: AQ SYSCFG B3

Table D-29. Allreg Register Groups

allreg
VisualDSP++ 4.5 User’s Guide D-43

Compiled Simulation
Compiled Simulation
A traditional simulator decodes and interprets one instruction at a time.
Each executed instruction often requires repeated decoding. Compiled
simulation removes the overhead of having to decode each instruction
repeatedly.

In VisualDSP++ 3.5, compiled simulation required you to first build a
compiled simulation .EXE file from a .DXE program file and then load and
execute the program in a compiled simulation debug target.

In VisualDSP++ 4.0, the intermediate step is no longer required. You can
load the .DXE program into the compiled simulation debug target directly.
When you run, the debug target compiles the processor code into native
code and executes the native code.

Specifying a Session for Compiled Simulation
(Blackfin processsors only). You must configure the debug session for
compiled simulation.

1. From the VisualDSP++ Session menu, choose New Session. The
New Session dialog box appears.

2. In Debug target, select Blackfin Family Compiled Simulator.

3. In Platform, select Blackfin Family Compiled Simulator.

4. In Processor, select ADSP-BF535, ADSP-BF531, ADSP-BF532,
or ADSP-BF533.

5. In Session name, enter a name for this session.

6. Click OK.
D-44 VisualDSP++ 4.5 User’s Guide

I INDEX

Numerics API
3-D waterfall plots, See waterfall plots

A
abbreviations

Pipeline Viewer messages
(ADSP-BF535), D-17

aborts
Pipeline Viewer for ADSP-TS101, C-6
Pipeline Viewer for ADSP-TS20x, C-17

About VisualDSP++ dialog box, A-2
Access to ADSP-21065L 9th column Even

Address event, B-7
.ACH files, A-13
ActiveX

script support, 2-36
address bar

Disassembly windows, 2-41
memory window, 2-60

ADSP-21x6x processors
reporting anomalies, B-2

anomalies
ADSP-2116x processors, B-10
ADSP-21x6x processors, B-2
recording events, B-7
shadow write FIFO, B-2
short word, B-4
SIMD FIFO, B-3

Anomalies submenu (SHARC), B-2
Shadow Write, B-2
SIMD FIFO, B-3

defined, A-67
application

estimated energy profile, 3-31
archiver, 1-44
.ASM files, 2-11, A-12
assembler, 1-33

file associations for tools, 2-11
input files, 2-11
options, 1-33
terms, 1-33

assembling
language files into object files, 1-33

assembly instructions
profiling statistics, 2-56

auto-completion
scripts, 2-38

automatic breakpoints, 3-15
automatic file loading, 1-29
automatic file placement, 2-12
automation

Image Viewer, 2-111
Automation API, 2-37

B
background telemetry channels, See BTCs
batches

building, 1-59
Blackfin processors

peripherals supported in simulators, D-2
.BNM files, A-13
VisualDSP++ 4.5 User’s Guide I-1

INDEX
bookmarks
editor windows, 2-17
Help, A-59
keyboard shortcuts, A-35
Output window, 2-27

Boolean operators
searching Help, A-65

boot
kernel, 1-45
loading or booting, B-12
options, B-11

booting, 1-46
simulating, 1-19

boot-loadable files, B-11
boot loading, 1-46
break condition

defined, A-67
breakpoints

about, 3-13
automatic, 3-15
conditional, 3-14
Disassembly windows, 2-43
hardware, 3-3
icons, 3-13
keyboard shortcuts, A-37
MP sessions, 3-11
simulation vs. emulation, 3-3
symbols, 3-13
unconditional, 3-14
using, 3-13

BTC_MAP_ENTRY_ASM macro, 2-66
BTC_MAP_ENTRY macro, 2-66
BTC Memory window

about, 2-68
right-click menu, 2-70

BTCs
about background telemetry channels,

2-65
BTC Memory window, 2-68
changing BTC priority, 2-68
channel definitions, 2-65
defining channels, 2-65
list of defined channels, 2-69
streams, 3-17

build date, A-2
building projects, See projects
build options

about, 1-58
custom, 1-58
files, 1-28
individual file, 1-58
projects, 1-28
project wide, 1-58
specifying, 1-27

Build page
about, 2-26

build status
viewing, 2-26

build type, See configuration
buttons

appearance on toolbars, A-27
built-in toolbars, A-20
standard Windows functions, A-45

C
cache events, 2-84

log, 2-86
cache hits, 2-85
cache misses, 2-85
cache thrashing, 2-85
I-2 VisualDSP++ 4.5 User’s Guide

INDEX
Cache Viewer
about, 2-84
Address View page, 2-93
cache events log file, 2-86
Configuration page, 2-87
Detailed View page, 2-88
Histogram page, 2-92
History page, 2-89
Performance page, 2-91
right-click menu, 2-86

cache ways, 2-85
Call Stack window, 2-59
.C files, 2-11, A-12
channels

BTC, 2-66
definition, A-68

CLKOUT pin, configuring, B-10
clock doubling, ADSP-21161 processors,

B-10
code analysis tools, 3-7
code development tools

about, 1-2
batch processing messages, 2-27
list of, 1-30

COFF
defined, A-68

colors
Output window, 2-26
plots, 3-26

command-line parameters
idde.exe, A-7

commands
control menu, A-18
DOS, 1-60
program execution, 3-11
single-stepping, 3-11
stepping, 3-11
user tools, A-22

comments
rules for, A-50
start and stop strings, A-50

compiled simulation, D-44
preparing a program from an existing

.DXE file, D-44
compiler, 1-31

file associations for tools, 2-11
input files, 2-11
options, 1-31, 1-34
suppressing warnings and remarks, 2-33

compiling
C programs, 1-31
C++ programs, 1-31

compression
zLib, 1-9

conditional breakpoints, 3-14
configurations

customized, 1-57
project, 1-56

configurators
VisualDSP++ Configurator, 1-20

Configure Simulator Event dialog box, B-8
connection type

specifying, 3-2
Console page

about, 2-26
constellation plots

about, 3-23
context switch

defined, A-69
control menu, A-17, A-18
.CPP files, 2-11, A-12
C programs, compiling, 1-31
C++ programs, compiling, 1-31
critical region

defined, A-69
CROSSCORE

defined, A-69
C++ run-time libraries, 1-32
VisualDSP++ 4.5 User’s Guide I-3

INDEX
current program counter value
ADSP-TS101 DSPs, C-9
ADSP-TS20x DSPs, C-21

custom-build options, 1-28, 1-58
customizing

Output window, 2-34
plot windows, 2-107
register windows, 2-74
toolbars, A-21

.CXX files, 2-11, A-12

D
data

files, 1-33
I/O simulation, 3-17
plotting, 3-19
simulating transfers, 1-19

data collection
methods, 3-18

data logging
displaying status in plot windows, 2-102

data sets, 2-106
definition, 2-106

data streams
purpose, 3-17

data structures, 1-16
.DAT files, A-12
Debug configuration, 1-56
debugging

IDDE features, 1-5
multiple processors, 3-4
overview of, 1-23
programs, 1-29
tools list, 1-23
VisualDSP++ features, 1-5

debugging windows
control menu, A-19
list of, 2-39

debug sessions, 1-23
about, 3-2
compiled simulation, D-44
defined, A-70
definition, 3-2
management, 3-3
managing, 3-3
multiple, 3-3
selecting a new session at startup, 3-10
selection at startup, 3-10
setting up, 3-2
specifying, A-7
specifying for multiprocessing, 3-4
switching, 3-3
types, 3-2
viewing list of, 3-3

debug target, See targets
demoting

error messages, 2-29
dependencies, project, 1-58
device drivers

defined, A-71
Dinkum abridged C++ library, 1-32
Disassembly windows, 2-42

address bar, 2-41
examples, 2-40
features, 2-42, 2-43
going to an address, 2-43
invoking, 2-40
opening multiple, 2-42
pipeline stages, 2-46
right-click menu, 2-43
symbols, 2-45

discretionary errors, 2-28
discretionary messages, 2-29
.DLB files, 2-11, A-12
.DLO files, A-12
docked windows, A-41
docking

toolbars, A-28
I-4 VisualDSP++ 4.5 User’s Guide

INDEX
documentation
printing, A-52

.DOJ files, 1-31, 1-33, 1-34, 2-11, A-12
DOS commands

running, 1-60
.DPG files, 1-50, A-14
.DPJ files, 1-47, A-12
.DSP files, 2-11, A-13
DSPs, See processors
dumping

memory, 2-60
DWARF-2, 1-30

defined, A-72
.DXE files, 1-34, A-12

automatic loading, 1-29

E
editing

features, 1-3
files, 1-27
keyboard shortcuts, A-34

editor files
comments in, A-50

Editor Tab mode, 2-19
editor windows

about, 2-13
bookmarks, 2-17
breakpoints, 3-13
Editor Tab mode, 2-19
expression evaluation, 2-22
operations, 2-15
parts of, 2-13
program icon, A-18
right-click menu, 2-23
source mode vs. mixed mode, 2-18
switching among, 2-21
symbols, 2-16
syntax coloring, 2-17

ELF
defined, 1-30

ELF/DWARF format, A-12
elfloader.exe, 1-45
Embedded Processing & DSP

Knowledgebase, -xxxii
emulation

available tools, 1-23
debug session management, 3-3
restarting programs, 3-12
targets, 1-20
vs. simulation, 3-3

emulator
defined, A-72
when to use, 1-18

emulator targets
statistical profiling, 3-8

energy
calculating for functions, 3-33

energy-aware programming, 3-31
error messages, 2-39

demoting, 2-29
displaying offending code, 2-26
log file, 2-34, 2-35
Output window, 2-24, 2-27
promoting, 2-29
scrolling in Output window, 2-26
severity hierarchy, 2-28
suppressing, 2-29
syntax, 2-28

errors
discretionary, 2-28

estimated energy profile, 3-31
evaluating

expressions in editor windows, 2-21
evaluation

available tools, 1-23
event bit

defined, A-73
VisualDSP++ 4.5 User’s Guide I-5

INDEX
events
cache, 2-84
defined, A-72
Pipeline Viewer, 2-82
thread, 2-98
using data cursor, 2-98

events log
cache, 2-86

Events submenu (SHARC), B-4
Access to ADSP-21065L 9th column

Even Address, B-7
FP Denorm, B-4
Short Word Anomaly, B-4

Excel
data files, 3-17
plot window data, 3-17

executables
automatic loading, 1-29
loading, 3-11

execution traces, 2-48, 3-9
.EXE files, A-13
Expert Linker

about, 1-37
overview, 1-37
stack and heap usage, 1-42
window, 1-38

expressions
C expressions, 2-48
context-sensitive evaluation, 2-21
evaluating in editor windows, 2-21
Expressions window, 2-47
memory windows, 2-64
nested, searching Help, A-66
register, 2-48
regular, A-46
tagged, A-49
tracking, 2-63
tracking in memory windows, 2-59
viewing value of, 2-22

Expressions window
about, 2-46
valid expressions, 2-47

external interrupts
generating, 3-17
simulating, 1-19

eye diagrams
about, 3-24
example of, 3-24

EZ KIT Lite evaluation systems
license status, 1-12

EZ-KIT Lite evaluation systems
as targets, 1-20
flash drivers, 3-30
planning, 1-18
specifying as platform, 3-2

F
fatal errors, 2-28
features

new in VisualDSP++ 4.5, 1-7
project management, 1-4
VDK, 1-6
VisualDSP++, 1-2

file building options, 1-28
I-6 VisualDSP++ 4.5 User’s Guide

INDEX
files
.ASM, 2-11
assembler, 1-33
association with tools, 2-11
automatic placement, 2-12
building, 1-59
.C, 2-11
cache events log, 2-86
compiler, 1-31
.CPP, 2-11
.CXX, 2-11
data, 1-33
.DLB, 2-11
.DOJ, 1-34, 2-11
.DPG, 1-50
.DPJ, 1-47
.DSP, 2-11
DSP project, A-12
executable, 1-35
extensions in VisualDSP++, A-12
keyboard shortcuts, A-32, A-33, A-37
language, 1-33
.LDF, 1-33, 1-35, 2-11
linker, 1-34, 1-35
list of, A-12
log, 2-34, 2-35
.MAK, 1-52
.MK, 1-52
nested folders in Project window, 2-4
object, 1-34
options, 1-28
overlay, 1-34
placing into folders automatically, 2-4
project, 2-6
project group, 1-50
Project window rules, 1-61
PROM, 1-44, 1-45
.S, 2-11
vdk_config.cpp, 2-13
vdk_config.h, 2-13

VisualDSP_Log.txt, 2-35
.VPS, 2-101, 2-107

file tree, 2-2
icons, 2-2
Project window, 2-2

filling
memory, 2-60

filtering
PC samples, 2-56

finding
regular expressions in find/replace

operations, A-46
tagged expressions, A-49

find/replace operations
regular expressions, A-46

Flag IO (FIO) peripheral
Blackfin, D-2

flash
programming, 3-29

flash algorithm
loading, 3-29

flash devices
changing data, 3-28

flash drivers
loading, 3-29

flash memory
about, 3-29
erasing, 3-29
filling, 3-29
programming, 3-28
resetting, 3-29

Flash Programmer
about, 3-28
flash driver, 3-30
functions, 3-29
user interface, 3-30

Flash Programmer window, 3-30
floating toolbars, A-28
floating windows, A-41, A-43
VisualDSP++ 4.5 User’s Guide I-7

INDEX
focus
definition, 3-6
multiprocessor debug session, 2-75

folders
automatic file placement, 2-12
project, 2-4
Project window, 2-2, 2-4
Project window rules, 1-61

font color in Output window, 2-26
FP Denorm, B-4
functions

displaying, 2-55
displaying local variables, 2-50

G
global build options, 1-28
glossary, A-67
graphing

processor memory, 3-19
grouping

processors, 2-77
groups

multiprocessor, 2-77

H
halting

programs, 3-12
hardware

specifying, 3-5
hardware breakpoints, 3-3

about, 3-16
latency, 3-16
restrictions, 3-16
use, 3-16

Hardware Breakpoints dialog box, 3-16
hardware conditions

simulating, 1-19
header files, 1-33

heaps
usage in Expert Linker, 1-42

Help
about, 1-62
bookmarking, A-59
context-sensitive, A-55
copying example code, A-58
features and operations, A-54
invoking, A-53
keyboard shortcuts, A-37
navigating, A-55, A-60
printing, A-58
searching, A-61
window, A-54

.H files, A-12, A-13

.H_# files, A-13

.HPP files, A-12

.HXX files, A-12

I
ICE

defined, A-74
ICEs

specifying as platform, 3-2
ICE Test, 1-21, A-88
icons

editor windows, 2-16
Pipeline Viewer events, 2-82
Project window, 2-4

IDDE, 1-2
command-line parameters, A-7
invoking with command-line

parameters, A-7
source code control, 1-51
version, A-2

idde.exe
command-line parameters, A-7

Idle thread
time spent in, 2-99

ID. processor, B-9
I-8 VisualDSP++ 4.5 User’s Guide

INDEX
ILEE, 3-31
images

displaying, 2-109
Image Viewer window

automation interface, 2-111
features, 2-109
right-click menu, 2-112
status bar, 2-112
toolbar, 2-111

instruction groups, Blackfin processors,
D-41

instruction latencies, Blackfin processors,
D-26

accumulator to data register, D-27
instruction alignment unit empty, D-33
instructions within hardware loops,

D-32
loop setup, D-31
move conditional and move CC, D-30
register move, D-28

instruction timing analysis
ADSP-TS101 DSPs, C-2
ADSP-TS20x DSPs, C-13

interrupts
about, 3-17
defined, A-74
simulating, 1-19

interrupt service routines
defined, A-74

I/O
simulating data transfer, 1-19

.IS files, A-12
ISRs

exercising, 1-19

J
JScript

scripting with, 2-37
.JS files, A-13

JTAG emulator
breakpoints, 3-13
debug sessions, 3-3
exchanging data without halting, 2-65
platforms, 3-2
project development, 1-18
statistical profiles, 3-8
statistical profiling, 2-51

JTAG interface
exchanging data, 2-65

K
kernel

defined, A-75
kernel, See VDK
Kernel page

about, 2-13
keyboard shortcuts, A-32
kills detected messages, Pipeline Viewer

(ADSP-BF535), D-16

L
L1 data memory stalls, D-34

cache access (1-cycle stall), D-36
minibank access collision, D-35
MMR access, D-39
SRAM access (1-cycle stall), D-35
store buffer load collision, D-40
store buffer overflow, D-39
system minibank access collision, D-39

latencies, D-22
.LDF files, 1-34, 2-11, A-12
.LDR files, A-13, B-11
legends

in plots, 3-26
librarian

defined, A-75
VisualDSP++ 4.5 User’s Guide I-9

INDEX
libraries
C++ run-time, 1-32
Dinkum abridged C++, 1-32

library functions
displaying, 2-55

licenses
installation, 1-13
list of, A-3
management, 1-10
product serial numbers, 1-14
product upgrades, 1-14
software, 1-12
status, 1-12, A-3
temporary, 1-12
types, 1-11
valid vs. expired, 1-12

linear profiling
features, 3-8
minimizing energy, 3-31

Linear Profiling window, 2-53, 3-8
about, 2-51
power savings, 3-32

line plots
about, 3-21

linker
file associations for tools, 2-11
input files, 2-11
overview, 1-34

Linker Description Files, See .LDF files
linking, object files, 1-34, 1-35
loader

about, 1-45
specifying options, 1-45
terms, 1-45

loading
executable programs, 3-11
programs, 3-11
scripts, 2-38
scripts from a shortcut, A-11

Load Sim Loader submenu options, B-11
local build options, 1-28
Locals window

about, 2-50
Locate button, A-56
log file, VisualDSP++, 2-34
.LST files, A-13

M
main window

program icon, A-18
status bar, A-30

makefiles, 1-52, A-14
example of, 1-54
Output window, 1-54
rules, 1-53

.MAK files, See makefiles
manuals

online, A-51
printing, A-52

.MAP files, A-13
MATLAB

data files, 3-17
plot window data, 3-17

measuring
performance, 3-8

memory
displaying an address’s value, 2-59
dumping, 2-42, 2-60
filling, 2-42, 2-60

memory map
defining, 1-36
using Expert Linker, 1-43

memory plots, 2-100
memory pool

defined, A-77
memory segments, 1-15
I-10 VisualDSP++ 4.5 User’s Guide

INDEX
memory windows
customization, 2-65
expression tracking, 2-64
locking columns, 2-59
number format examples, 2-60
number formats, 2-60
right-click menu, 2-62
tracking an expression, 2-59
tracking expressions, 2-63

menu bar
about, A-19

menus
application menu bar, A-19
control menu, A-17, A-18
right-click, A-40
system, A-18
title bar right-click, A-17

messages
Console page of Output window, 2-27
demoting to remarks, 2-33
kills detected (ADSP-BF535), D-16
Pipeline Viewer (ADSP-BF535), D-12,

D-17
stalls detected (ADSP-BF535), D-12
suppressing, 2-33
VDK defined, A-77
VisualDSP_Log.txt file, 2-34

Microsoft Script Debugger
enabling, 2-37

mixed mode, 2-18
editor window, 2-18
pipeline symbols, 2-19

.MK files, See makefiles
multicycle behavior, D-22

multicycle instructions, D-22
32-bit multiply, D-23
ADSP-BF535, D-17
call and jump, D-23
conditional branch, D-23
core and system synchronization, D-24
interrupts and emulation, D-25
linkage, D-25
push or pop multiple, D-22
return, D-24
TESTSET, D-25

multiprocessor debug sessions, 3-4
debugging, 3-5
focus and pinning, 2-78, 3-6
managing, 2-75
program execution, 3-11
setting up, 3-4

multiprocessor groups, 2-77
multiprocessor systems, See multiprocessor

debug sessions
Multiprocessor window, 2-75

debugging with, 3-5
Groups page, 2-77
Status page, 2-76

N
nested expressions

defining Help searches, A-66
nested folders, 2-4
No Boot Mode command, B-10
nodes, Project window, 2-2

O
object files, See .OBJ files
.OBJ files, 1-33, A-13
online Help, See Help
operations

program execution, 3-11
program execution commands, 3-11
VisualDSP++ 4.5 User’s Guide I-11

INDEX
optimizing
programs, 2-85

Output window, 2-24, 2-39
bookmarks, 2-27
Build page, 2-26
capturing messages to log file, 2-34
Console page, 2-26

scripting, 2-37
customization, 2-34
error messages, 2-27
loading scripts, 2-35
makefile errors, 1-54
parts of, 2-26
printing, 2-36
right-click menu, 2-35
scripts, 2-35
scrolling previous commands, 2-26

overlays, 1-16, 1-35
overriding

project-wide options, 1-58
.OVL files, 1-34, A-12

P
PC samples

filtering, 2-56
performance

measuring, 3-8
optimizing, 2-85

peripherals
Blackfin, simulating, D-1
limitations in simulation for Blackfin,

D-7
support in simulators for Blackfin, D-2
Timer (TMR), Blackfin, D-7
UART for Blackfin, D-7

PGO
defined, A-80

physical memory
defining, 1-36

pinning
definition, 3-6

pipeline
kill reasons (ADSP-BF531,

ADSP-BF532, ADSP-BF533,
ADSP-BF561), D-20

kill reasons (ADSP-BF535), D-10
stage event icons in Pipeline Viewer, 2-82
stall reasons (ADSP-BF531,

ADSP-BF532, ADSP-BF533,
ADSP-BF561), D-19

stall reasons (ADSP-BF535), D-9
pipeline stages

ADSP-TS101 DSPs, C-2
ADSP-TS20x DSPs, C-14
Disassembly windows, 2-46

pipeline symbols
mixed mode, 2-19

Pipeline Viewer
aborts (ADSP-TS101), C-6
aborts (ADSP-TS20x), C-17
current program counter value

(ADSP-TS101), C-9
current program counter value

(ADSP-TS20x), C-21
event details, 2-83
event icons, 2-82
message abbreviations (ADSP-BF535),

D-17
pipeline stages (ADSP-TS101), C-2
pipeline stages (ADSP-TS20x), C-14
specifying properties, 2-81
stalls (ADSP-TS101), C-3
stalls (ADSP-TS20x), C-15
stepping (ADSP-TS101), C-11
stepping (ADSP-TS20x), C-23
window, 2-79, C-21
window messages (ADSP-BF535), D-12

Pipeline Viewer window, 2-79, C-2
I-12 VisualDSP++ 4.5 User’s Guide

INDEX
pipelining
defined, A-79

platforms
about, A-79
definition, 1-20
specifying, 3-2

plots
See also plot windows
buffer capacity, 2-101
colors, 3-26
configuring, 2-100, 2-107
constellation, 3-23
data logging status, 2-102
data sets, 2-106
DSP memory, 3-19
eye diagram, 3-24
legends, 3-26
line, 3-21
presentation options, 2-109
spectrogram, 3-27
types of, 3-20
viewing statistics, 2-105
waterfall, 3-25
X-Y, 3-22

plot windows, 2-100
See also plots
BTC mode, 2-101
configuring, 2-106
features, 2-101
operations in, 2-104
presentation of, 2-107
right-click menu, 2-103
status bar, 2-101
streams, 3-17
toolbar, 2-102
types of, 3-20
viewing statistics, 2-105

positioning
windows, A-44

post-build options, 1-59
command syntax, 1-60

power
minimizing, 3-31

power profiling
setting up, 3-31

.PP files, A-12
pragmas, 2-30
pre-build options, 1-59
preferences

load file and advance to main, 1-29
VisualDSP++ and tool output color,

2-26
Preferences dialog box, 1-29, 2-26
printing

hardware manuals, A-52
online Help, A-58
VisualDSP++ manuals, A-52

processor
loading into simulator, B-9
specifying, 3-2

processor ID
configuring, B-9

product information, A-2
product serial numbers, 1-14
profile-guided optimization

defined, A-80
profiling

about, 3-8
assembly instructions, 2-56
defined, A-80
functions, 2-55

profiling windows, 2-51
Program Counter (PC) register

setting, 3-12
VisualDSP++ 4.5 User’s Guide I-13

INDEX
program development steps
adding and editing project source files,

1-26
building a debug version of the project,

1-29
building a release version of project, 1-29
creating a project, 1-26
setting project options, 1-26

program execution
commands, 3-11
halting, 3-11
keyboard shortcuts, A-36

program icons, A-18
programming tips, 1-15
program operations

breakpoints, 3-13
execution commands, 3-11
hardware breakpoints, 3-16
restarting programs, 3-12
selecting a debug session at startup, 3-10
unconditional & conditional

breakpoints, 3-14
watchpoints, 3-15

programs
debugging, 1-29
optimizing, 2-85
running, 1-29

program sections, 1-15
program traces, 2-48, 3-9
Project box (showing active project), 1-50
project build

specifying options, 1-27
project dependencies

example of, 1-60
project group files, 1-50
project groups, 1-49
project management

features, 1-4
Project Options dialog box, 1-15

projects
adding files, 1-26
build options, 1-28, 1-58
configurations, 1-56
customized configurations, 1-57
debugging, 1-5, 1-23
defined, A-81
dependencies, 1-27
development overview, 1-15
development stages, 1-17
files, 2-6
folders, 2-2
keyboard shortcuts, A-36
loading, A-7
managing, 1-4
nodes, 2-2
programming overview, 1-15
project groups, 1-49
specifying tool options, 1-48
subfolders, 2-2
VisualDSP++, 1-47

project-wide file and tool options, 1-28
Project window, 2-2

about, 2-2
files, 2-2
folders, 2-4
Kernel page, 1-25, 2-13
makefiles, 1-52
nodes, 2-3, 2-4
Project view, 2-3
right-click menu, 2-8
rules, 1-61
source code control icons, 2-7

Project wizard, 1-26, A-82
PROM files, 1-44, 1-45
promoting

error messages, 2-29
property pages, 1-26

definition, 1-15
pull-tabs, A-40
I-14 VisualDSP++ 4.5 User’s Guide

INDEX
R
ranking, 3-31
register expressions, 2-48
register groups, Blackfin processors, D-42
register windows

about, 2-71
custom, 2-74

regression tests, 1-17
regular expressions, A-46

reference texts, A-49
special characters, A-47

Release configuration, 1-56
remarks, 2-28
replace operations

tagged expressions, A-49
replacing

tagged expressions, A-49
restarting

programs, 3-12
running

programs, 1-29, 3-12
running to cursor, 3-12

S
SCC, See source code control (SCC)
scripting

about, 2-36
specifying the language, 2-38

scripts
auto-completion, 2-38
examples, 2-38
issuing, 2-27
loading, 2-38
loading from a shortcut, A-11
loading from Output window, 2-35
running, A-7
viewing script command status, A-9

scroll bars
using, A-40

searches
normal, A-46
regular expressions vs. normal, A-46
special character rules, A-48

searching
Help, A-61

Select Processor ID submenu options, B-9
semaphores

defined, A-83
sequences

special characters, A-48
serial numbers, 1-14
sessions

configuring, 3-5
sessions, See debug sessions
Session Wizard, 3-5, 3-10
.S files, 2-11, A-12
.S_# files, A-13
shadow write FIFO anomaly, B-2
shortcut keys, See keyboard shortcuts
short word anomaly, B-4
SIMD FIFO, B-3
simulating

See also simulation
booting, 1-19
data transfers, 1-19
external interrupts, 1-19
hardware, 1-19
input/output data, 3-17
random interrupts, 1-19
SHARC processors, B-1
TigerSHARC processors, C-1
VisualDSP++ 4.5 User’s Guide I-15

INDEX
simulation
See also simulating
Blackfin processors, D-1
compiled (Blackfin), D-44
debug session management, 3-3
limitations of software models (Blackfin),

D-7
loading a processor, B-9
options, B-1
platforms, 1-20
restarting programs, 3-12
SPI in slave mode, B-13
targets, 1-19
Timer (TMR) peripheral, Blackfin, D-7
UART peripheral in Blackfin, D-7
vs. emulation, 3-3

simulator
ADSP-21065L processors, B-4, B-7
ADSP-2106x processors, B-4, B-9
ADSP-21161 processors, B-10, B-13
ADSP-2116x processors, B-2, B-3, B-9
ADSP-21x6x processors, B-2, B-7, B-11
ADSP-TS101 processors, C-1
ADSP-TS20x processors, C-13
Blackfin peripheral support, D-2
instruction timing analysis

(ADSP-TS101 processors), C-2
instruction timing analysis

(ADSP-TS20x processors), C-13
sampling PC, 3-8

simulator instruction timing analysis
ADSP-BF531, ADSP-BF532,

ADSP-BF533, ADSP-BF561
processors, D-19

ADSP-BF535 processors, D-9
simulators

as targets, 1-19
Simulator submenu options (SHARC),

B-10

simulator targets
linear profiling, 3-8

single-stepping, available commands, 3-11
.SM files, 1-34, A-12
software

serial numbers, 1-14
upgrades, 1-14

software versions, A-5
source code control (SCC)

about, 1-51
Project window symbols, 2-7

source files
comments in, A-50
editing features, 1-3
management, 1-4
project, 2-6
source code control, 1-51

source mode, 2-18
spectrogram plots, 3-27

example of, 3-27
FFT output, 3-27

SPI simulation in slave mode, B-13
splitter

about, 1-44
specifying options, 1-44

stacks
usage in Expert Linker, 1-42

stack windows, 2-74
stalls, Pipeline Viewer

ADSP-TS101, C-3
ADSP-TS20x, C-15

stalls detected messages
(ADSP-BF535), D-12

standard output
viewing, 2-26

startup code, 2-2
statistical profiling, 3-8

samples, 3-9
Statistical Profiling window, 2-51, 2-53,

3-8
I-16 VisualDSP++ 4.5 User’s Guide

INDEX
statistics
viewing in plots, 2-105

status bar
examples, A-30
Image Viewer window, 2-112
plot windows, 2-101

status icons
editor window, 2-16
Pipeline Viewer, 2-82

status messages, log file, 2-34
stepping

available commands, 3-11, 3-12
cache events log, 2-86
into instructions, 3-12
out of instructions, 3-12
over instructions, 3-12
Pipeline Viewer

ADSP-TS101, C-11
ADSP-TS20x, C-23

.STK files, A-13
streams

simulating data I/O, 3-17
used with interrupts, 3-17

subfolders, project tree, 2-2
support

VisualDSP++, A-6
support information, A-2
suppressing

error messages, 2-29
switching

among editor windows, 2-19
symbols

Disassembly window, 2-45
editor window, 2-16

syntax coloring
editor windows, 2-17

system components, A-4
system configurator

VDK defined, A-86
system menu, A-18

T
tagged expressions

finding and replacing, A-49
Target Load window, 2-99
targets, 1-19

defined, A-86
emulators, 1-20
EZ-KIT Lite evaluation systems, 1-20
platforms, 1-20
simulation, 1-19

target status messages
Output window, 2-26

.TC8 files, A-13
Tcl

interpreter, 2-37
menu issuance, A-9
running commands, A-8

.TCL files, A-13
technical documentation

locating, -xxxii
terms

VisualDSP++, A-67
text

locating using regular expressions, A-46
text manipulation

keyboard shortcuts, A-34
text selection

keyboard shortcuts, A-34
third-party tools, 1-2
threads, 2-94

defined, A-87
idle, 2-99
status, 2-94, 2-98
tracing, 2-97

Timer (TMR) peripheral
Blackfin, D-7

title bar, A-17
components, A-16
indicating focus, 3-6

TMR (see Timer peripheral), D-7
VisualDSP++ 4.5 User’s Guide I-17

INDEX
toggling
breakpoints, 3-13

toolbars, A-20
built-in, A-20
button appearance, A-27
customization, A-21
docked vs. floating, A-28
Image Viewer window, 2-111
list of buttons, A-22
plot windows, 2-102
shape, A-27

tools
code analysis, 3-7
code development, 1-2
command-line invocation, 1-48
context-sensitive Help, A-21
debugging, 1-23
documentation, A-52
file associations, 2-11
options, 1-28
third-party, 1-2
user configured, A-22

Tools menu, user tools, A-22
traces, 2-48

about, 3-9
Trace windows, 2-48, 3-9
tracking

expressions, 2-63, 2-64
.TXT files, A-13

U
UART peripheral in Blackfin, D-7
unconditional breakpoints, 3-14
user tools, A-22
utilities

ICE Test, 1-21, A-88

V
variables

global vs. local, 2-47
.VBS files, A-13
VDK

about, 1-25
defined, A-88
features, 1-6
Kernel page, 2-13
load, 2-99
overview of, 1-6
Project window, 2-13
VDK State History window, 2-96
VDK Status window, 2-94

vdk_config.cpp, 2-13
vdk_config.h, 2-13
.VDK files, A-13
VDK State History window, 2-96

right-click menu, 2-98
VDK Status window, 2-94
Visual Basic

scripting with, 2-37
I-18 VisualDSP++ 4.5 User’s Guide

INDEX
VisualDSP++
Automation API, 2-37
control menu, A-18
debugging facilities, 1-24
debugging features, 1-5
editing features, 1-3
editor windows, 2-13
environment, 1-2
features, 1-2
file association for tools, 2-11
files, A-12
glossary, A-67
Help system, 1-62, A-54
IDDE, 1-2
kernel, 1-25
keyboard shortcuts, A-32
licenses, 1-10, A-3
log file, 2-27, 2-34
main window parts, A-16
menu bar, A-19
new features, 1-7
Output window, 2-24
overview of, 1-1
printing documentation, A-52
product serial numbers, 1-14
product upgrades, 1-14
programming overview, 1-15
project development, 1-17
projects, 1-47
Project window, 2-2
software versions, A-5
source code control, 1-51
source file editing features, 1-3
support, A-6
system components, A-4
toolbar buttons, A-22
user interface, A-15

VisualDSP++ Configurator
about, 1-20
multiprocessor debug sessions, 3-4

VisualDSP_Log.txt, 2-35
script output, 2-37

.VPS files, 2-107

W
warnings, 2-28

promoting to errors, 2-32
watchpoints

about, 3-4, 3-15
MP sessions, 3-11
used with interrupts, 3-17
using, 3-15

waterfall plots
about, 3-25
grid of sampled data, 3-26
rotating, 3-25

ways
cache, 2-85

Windows
standard buttons, A-45
VisualDSP++ 4.5 User’s Guide I-19

INDEX
windows
BTC Memory, 2-68
buttons, A-45
Call Stack, 2-59
custom register, 2-74
debugging, 2-39
Disassembly, 2-40, 2-42
docked, A-41
Expert Linker, 1-38
Expressions, 2-46
Flash Programmer, 3-30
floating, A-41, A-43
focus in an MP debug session, 3-6
Help, A-54
Image Viewer, 2-109
keyboard shortcuts, A-37
Linear Profiling, 2-51, 3-8
Locals, 2-50
MDI, A-40
Multiprocessor, 2-75
operating on, A-39
Output, 2-24
Pipeline Viewer, See Pipeline Viewer

window
plot, 2-100
positions, A-43
profiling, 2-51
Project, 2-2
pull-tabs, A-40
register, 2-71
right-click menus, A-40
scroll bars, A-40
stack, 2-74
Statistical Profiling, 2-51, 3-8
Target Load, 2-99
Trace, 2-48, 3-9
VDK State History, 2-96
VDK Status, 2-94
VisualDSP++, A-15

wizards
Project, 1-26, A-82

workspaces
keyboard shortcuts, A-37

X
X-Y plots, 3-22

Z
zLib compression, 1-9
I-20 VisualDSP++ 4.5 User’s Guide

	Preface
	Purpose of This Manual
	Intended Audience
	Manual Contents
	What’s New in This Manual
	Technical or Customer Support
	Supported Processors
	Product Information
	MyAnalog.com
	Processor Product Information
	Related Documents
	Online Technical Documentation
	Accessing Documentation From VisualDSP++
	Accessing Documentation From Windows
	Accessing Documentation From the Web
	Embedded Processing & DSP Knowledge Base

	Printed Manuals
	VisualDSP++ Documentation Set
	Hardware Tools Manuals
	Processor Manuals
	Data Sheets

	Notation Conventions

	1 Introduction to VisualDSP++
	VisualDSP++ Features
	Integrated Development and Debugging
	Code Development Tools
	Source File Editing Features
	Project Management Features
	Debugging Features
	VDK Features
	VisualDSP++ 4.5 Features

	License Management
	Licensing Options
	Table 1-1. VisualDSP++ Licenses

	License Status
	Temporary Licenses
	Valid Versus Expired Licenses
	Client Licenses

	License Installation
	VisualDSP++ Product Upgrades
	Product Serial Numbers

	Project Development
	Overview of Programming With VisualDSP++
	Project Development Stages
	Figure 1-1. Project Development Stages

	Targets
	Simulation Targets
	EZ-KIT Lite Targets
	Emulator Targets

	Platforms
	Table 1-2. Development Stages and Supported Platforms
	Figure 1-2. VisualDSP++ Configurator
	Figure 1-3. ICE Test Utility

	Debugging Overview
	Table 1-3. Tools Available During Simulation, Evaluation, and Emulation

	VisualDSP++ Kernel
	Program Development Steps
	Step 1: Create a Project
	Step 2: Configure Project Options
	Step 3: Add and Edit Project Source Files
	Adding Files to Your Project
	Creating Files to Add to Your Project
	Editing Files
	Managing Project Dependencies

	Step 4: Specifying Project Build Options
	Configuration
	Project-Wide File and Tool Options
	Individual File and Tool Options

	Step 5: Build a Debug Version of the Project
	Step 6: Create a Debug Session and Load the Executable
	Step 7: Run and Debug the Program
	Step 8: Build a Release Version of the Project

	Code Development Tools
	Compiler
	Table 1-4. Compiler Option Subpages

	C++ Run-Time Libraries
	Dinkum Abridged C++ Library

	Assembler
	Set of assembly instructions that pertain to a specific processor. For information about the instruction set, refer to your processor’s hardware documentation.
	Commands that direct the preprocessor to include files, perform macro substitutions, and control conditional assembly
	Directives that tell the assembler how to process source code and set up processor features. Use directives to structure your program into logical segments or sections that support the use of a Linker Description File (.LDF) to construct an image suited

	Linker
	Functionality that enables the linker to resolve symbols to which multiple executables refer. For instance, shared memory (.SM) executable files contain sections of code that other processor executable (.DXE) files link against. Through this process, a
	Object files (.DOJ) that become linked and other items, such as executable (.DXE, .SM, .OVL) files, that are linked against
	File that contains the commands, macros, and expressions that control how the linker arranges your program in memory
	Definitions that provide a description of your target processor system to the linker
	Files that your overlay manager swaps in and out of run-time memory, depending on code operations. The linker produces overlay (.OVL) files.
	Declarations that identify the content for each executable file that the linker produces

	Expert Linker
	Expert Linker Window
	Figure 1-4. Expert Linker Window

	Memory Map Pane Right-Click Menu
	Table 1-5. Memory Map Pane Right-Click Menu

	Stack and Heap Usage
	Figure 1-5. Memory Map Example After Running a SHARC Program

	Archiver
	Splitter
	The splitter’s output, which consists of PROM files that cannot be used to boot-load a system
	The splitter application, such as elfspl21k.exe, contained in the software release

	Loader
	The executable file that performs memory initialization on the target
	The loader’s output (.LDR), which contains the boot loader and the formatted system configurations. This is a bootable image file.
	The process of loading the boot loader, initializing system memory, and starting the application on the target
	The loader application, such as elfloader.exe, contained in the software release

	Processor Projects
	Project Options
	Figure 1-6. Project Options Dialog Box Showing Project Page

	Project Groups
	Figure 1-7. Project Window
	Figure 1-8. Project Box Showing the Active Project
	Project Group Files

	Source Code Control (SCC)
	Makefiles
	Figure 1-9. Makefile in Project Window
	Figure 1-10. Makefile in Configuration Box
	Rules
	Output Window
	Example Makefile

	Project Configurations
	Table 1-6. Default Project Configurations
	Figure 1-11. Configuration Box

	Customized Project Configurations
	Figure 1-12. Selecting a Project Configuration

	Project Build
	Build Options
	Table 1-7. Build Options

	File Building
	Batch Builds
	Pre-Build and Post-Build Options
	Command Syntax
	Project Dependencies
	Project Window Rules
	Figure 1-13. Example of Project Files

	VisualDSP++ Help System

	2 Environment
	Project Window
	Figure 2-1. Example Project Window With Kernel Tab
	Project View
	Figure 2-2. Project View

	Project Dependencies
	Figure 2-3. Projects Dependencies Indicated in the Project View

	Project Nodes
	Table 2-1. Types of Nodes in the Project Window
	Project Folders
	Project Files
	Table 2-2. File Icons in the Project Window

	Project Window Icons for Source Code Control (SCC)
	Table 2-3. SCC Status Icons

	Project Page Right-Click Menus
	Project Group Icon Right-Click Menu
	Figure 2-4. Project Group Icon’s Right-Click Menu

	Project Icon Right-Click Menu
	Figure 2-5. Project Icon’s Right-Click Menu

	Folder Icon Right-Click Menu
	Figure 2-6. Folder Icon Right-Click Menu

	File Icon Right-Click Menu
	Figure 2-7. File Icon Right-Click Menu

	File Associations
	Table 2-4. File Associations

	Automatic File Placement
	Table 2-5. Default Files Associations in Project Folders
	File Placement Rules
	Example

	Kernel Page
	Figure 2-8. Expanded View of Elements on the Kernel Page

	Editor Windows
	Figure 2-9. Customizable Items in Editor Windows
	Editor Window Symbols
	Table 2-6. Editor Window Symbols

	Bookmarks
	Syntax Coloring
	Table 2-7. File Types That Support Syntax Coloring

	Viewing Modes: Source Mode vs. Mixed Mode
	Source Mode
	Figure 2-10. Example: Editor Window in Source Mode

	Mixed Mode
	Figure 2-11. Example: Editor Window in Mixed Mode

	Editor Tab Mode
	Figure 2-12. Switching Between Editor Windows Using Editor Tab Mode

	Context-Sensitive Expression Evaluation
	Viewing an Expression
	Highlighting an Expression

	Right-Click Menu
	Figure 2-13. Example: Editor Window Right-Click Menu

	Output Window
	Figure 2-14. Viewing Build Status Information in the Output Window
	Viewing Error Message Details
	Figure 2-15. Example: Viewing Details of an Error Message in Help

	Output Window Tabs
	Build Page
	Figure 2-16. Example: Error Messages in the Output Window

	Console Page

	Code Development Tools Batch Processing Messages
	Message Severity Hierarchy
	Table 2-8. Message Severity Levels

	Syntax of Help for Error Messages
	Table 2-9. Syntax for Error Message Help

	Promoting, Demoting, and Suppressing Error Messages
	Suppressing Compiler Warnings and Remarks

	Log File
	Figure 2-17. Portion of a Sample Log File

	Output Window Customization
	Figure 2-18. Messages in the Output Window’s Console Page

	Right-Click Menu
	Figure 2-19. Output Window’s Right-Click Menu

	Script Command Output
	Figure 2-20. Scripting Language Displayed in Status Bar

	Debugging Windows
	Table 2-10. Debugging Windows
	Disassembly Windows
	Figure 2-21. Example: Disassembly Window Showing Address Bar
	Figure 2-22. Example: Disassembly Window Without Address Bar
	Figure 2-23. Example: Current Source Line in the Disassembly Window
	Other Disassembly Window Features
	Table 2-11. Disassembly Window Operations

	Right-Click Menu
	Figure 2-24. Disassembly Window Right-Click Menus

	Disassembly Window Symbols
	Table 2-12. Disassembly Window Symbols

	Expressions Window
	Figure 2-25. Expressions Window
	Expressions Permitted in an Expression Window
	Table 2-13. Types of Expressions Permitted in an Expressions Window

	Trace Windows
	Figure 2-26. Example of Data in a Trace Window

	Locals Window
	Figure 2-27. Example: Locals Window

	Statistical/Linear Profiling Window
	Figure 2-28. Example of a Linear Profiling Window
	Window Components
	Left Pane
	Table 2-14. Left Pane Information

	Right Pane
	Table 2-15. Information in the Right Pane

	Status Bar
	Right-Click Menu
	Table 2-16. Right-Click Menu Commands in Profiling Windows

	Window Operations
	Changing the Window View
	Displaying a Source File
	Figure 2-29. Example: Code Displayed for a Function

	Displaying Functions in Libraries
	Figure 2-30. Profiling Window Showing Library Functions

	Working With Ranges
	Switching Display Modes
	Figure 2-31. Source Mode View
	Figure 2-32. Mixed Mode View
	Figure 2-33. Profiling Data for Each Assembly Line (Mixed Mode)

	Filtering PC Samples With No Debug Information
	Figure 2-34. Profiling Results Before Filtering
	Figure 2-35. Profiling Results After Filtering

	Call Stack Window
	Figure 2-36. Call Stack Window

	Memory Windows
	Number Formats in Memory Windows
	Figure 2-37. SHARC Memory Window in Binary Format
	Figure 2-38. SHARC Memory Window in Octal Format
	Figure 2-39. SHARC Memory Window in Hexadecimal Format
	Figure 2-40. SHARC Memory Window in Unsigned Integer Format

	Memory Window Right-Click Menu
	Figure 2-41. Example: Memory Window Formats for SHARC Processors

	Expression Tracking in a Memory Window
	Figure 2-42. Expression Tracking in a Memory Window

	Memory Window Display Customization
	Figure 2-43. Example: Memory Window Sized to Display Five Columns

	Background Telemetry Channels (BTCs)
	BTC Definitions in Your Program
	Table 2-17. Parameters for the BTC_MAP_ENTRY_ASM Macro

	Enabling BTC on ADSP-2126x and ADSP-BF36x Processors
	BTC Priority
	BTC Memory Window
	Figure 2-44. Example: Viewing Contents of a Specified Channel Only
	Figure 2-45. Defined Channels and Contents of a Selected Channel

	BTC Memory Window Right-Click Menu
	Table 2-18. BTC Memory Window Right-Click Menu

	Register Windows
	Figure 2-46. Example: Register Windows for a SHARC Processor
	Figure 2-47. Example: Register Windows for a TigerSHARC Processor
	Figure 2-48. Example Register Window

	Stack Windows
	Custom Registers Windows
	Figure 2-49. Example: A Customized Registers Window

	Multiprocessor Window
	Figure 2-50. Example: Multiprocessor Window
	Multiprocessor Window Pages
	Status Page
	Figure 2-51. Multiprocessor Window - Status Page

	Groups Page
	Figure 2-52. Example: Multiprocessor Window - Groups Page

	Operating on Multiprocessor Groups
	Focus
	Right-Click Menu
	Figure 2-53. Multiprocessor Window’s Right-Click Menu

	Pipeline Viewer Window
	Figure 2-54. Pipeline Viewer Window
	Right-Click Menu
	Table 2-19. Pipeline Viewer Right-Click Menu

	Pipeline Viewer Properties Dialog Box
	Table 2-20. Pipeline Viewer Properties

	Pipeline Viewer Window Event Icons
	Table 2-21. Pipeline Viewer Event Icons

	Pipeline Instruction Event Details
	Figure 2-55. Example: Tool Tip Box Showing Pipeline Event Details
	Table 2-22. Pipeline Event Details

	Cache Viewer Window
	Figure 2-56. Viewing a Cache Event’s Details in the Cache Viewer
	Table 2-23. Cache Viewer Window Pages
	Table 2-24. Cache Viewer Window’s Right-Click Menu
	Configuration Page
	Figure 2-57. Example: Configuration Page

	Detailed View Page
	Figure 2-58. Example: Detailed View Page

	History Page
	Figure 2-59. Example: History Page
	Table 2-25. History Information for Cache Events

	Performance Page
	Figure 2-60. Example: Performance Page

	Histogram Page
	Figure 2-61. Example: Histogram Page

	Address View Page
	Figure 2-62. Example: Address View Page - Address Range View

	VDK Status Window
	Figure 2-63. Example: VDK Status Window

	VDK State History Window
	Figure 2-64. VDK State History Window
	Thread Status and Event Colors
	Window Operations
	Right-Click Menu

	Target Load Window
	Figure 2-65. Target Load Window Plot

	Plot Windows
	Figure 2-66. Plot Window
	Plot Window Features
	Status Bar
	Figure 2-67. Status Bar Information for Plots
	Table 2-26. Data Logging Status Indicators in a Plot Window

	Tool Bar
	Figure 2-68. Plot Window’s Toolbar

	Right-Click Menu
	Figure 2-69. Plot Window’s Right-Click Menu
	Table 2-27. Plot Window Operations

	Plot Window Statistics
	Figure 2-70. Statistics Displayed for a Portion of Audio Data

	Plot Configuration
	Figure 2-71. Plot Configuration Dialog Box

	Plot Window Presentation
	Figure 2-72. Tabs in the Plot Setting Dialog Box
	Figure 2-73. Specifying Line Styles
	Figure 2-74. Zooming in on a Selected Area

	Plot Presentation Options
	Table 2-28. Plot Settings Options by Page

	Image Viewer
	Figure 2-75. Image Viewer Window
	Automation Interface
	Toolbar
	Table 2-29. Image Viewer Window Toolbar Buttons

	Status Bar
	Right-Click Menu
	Table 2-30. Right-Click Menu Commands

	3 Debugging
	Debug Sessions
	Table 3-1. Specifying a Debug Session
	Debug Session Management
	Simulation vs. Emulation
	Breakpoints
	Watchpoints

	Multiprocessor (MP) System Debugging
	Setting Up a Multiprocessor Debug Session
	Debugging a Multiprocessor System
	Focus and Pinning
	Window Title Bar Information
	Figure 3-1. Pinned Window in a Multiprocessor Debug Session

	Additional Focus Indication

	Code Analysis Tools
	Statistical Profiles and Linear Profiles
	Simulation: Linear Profiling
	Emulation: Statistical Profiling

	Traces

	Program Execution Operations
	Selecting a New Debug Session at Startup
	Loading the Executable Program
	Program Execution Commands
	Table 3-2. Commands Used to Control Program Execution

	Restarting the Program
	Performing a Restart During Simulation
	Performing a Restart During Emulation

	Breakpoints
	Table 3-3. Breakpoint Status Symbols

	Unconditional and Conditional Breakpoints
	Automatic Breakpoints
	Watchpoints
	Hardware Breakpoints
	Latency
	Restrictions

	Simulation Tools
	Interrupts
	Input/Output Simulation (Data Streams)

	Plots
	Figure 3-2. Plot Window Displaying Processor Memory
	Plot Types
	Table 3-4. Available Plot Types

	Line Plots
	Figure 3-3. Line Plot

	X-Y Plots
	Figure 3-4. X-Y Plot

	Constellation Plots
	Figure 3-5. Constellation Plot

	Eye Diagrams
	Figure 3-6. Eye Diagram Plot

	Waterfall Plots
	Figure 3-7. Waterfall Plot
	Figure 3-8. Grid of Sampled Data

	Spectrogram Plots
	Figure 3-9. Spectrogram Plot

	Flash Programmer
	Flash Devices
	Flash Programmer Functions
	Flash Driver
	Flash Programmer Window
	Figure 3-10. Flash Programmer Window in Driver View

	Energy-Aware Programming
	Ranking
	Example
	Figure 3-11. Power Savings On
	Figure 3-12. Power Savings Off

	A Reference Information
	Support Information
	Figure A-1. Example of the General Page
	Figure A-2. Example of the Licenses Page

	Figure A-3. Example of the Components Page
	Figure A-4. Example of the Versions Page
	Figure A-5. Example of the Support Page

	IDDE Command-Line Parameters
	Table A-1. idde.exe Command-Line Parameters

	Extensive Scripting
	Figure A-6. Running a Script in an Editor Window
	Figure A-7. Example: Loading a Script From a Shortcut

	File Types
	Table A-2. Files Used With VisualDSP++

	Parts of the User Interface
	Figure A-8. VisualDSP++ Main Window
	Title Bar
	Figure A-9. Title Bar (Split into Three Parts to Fit the Page)
	Additional Information in Title Bars
	Title Bar Right-Click Menu
	Figure A-10. Right-Clicking in the VisualDSP++ Window’s Title Bar

	Control Menu
	Figure A-11. VisualDSP++ Control Menu
	Program Icons
	Editor Windows
	Debugging Windows

	Menu Bar
	Figure A-12. VisualDSP++ Menu Bar

	Toolbars and User Tools
	Built-In Toolbars
	Table A-3. Built-In Toolbars

	Toolbar Customization
	User Tools
	Figure A-13. Default User Tools

	Toolbar Buttons
	Table A-4. Toolbar Buttons

	Toolbar Operation
	Toolbar Button Appearance
	Table A-5. Toolbars in Different Viewing Options

	Toolbar Shape
	Table A-6. Toolbars in Two Orientations

	Toolbars: Docked vs. Floating
	Figure A-14. Floating Help Toolbar

	Toolbar Rules

	Status Bar
	Figure A-15. Status Bar Appearance Depends on Context
	Table A-7. Status Bar Information While Editing

	Keyboard Shortcuts
	Working With Files
	Table A-8. Keyboard Shortcuts for Working With Files

	Moving Within a File
	Table A-9. Keyboard Shortcuts for Moving Within a File

	Cutting, Copying, Pasting, Moving Text
	Table A-10. Keyboard Shortcuts for Editing Text

	Selecting Text Within a File
	Table A-11. Keyboard Shortcuts for Selecting Text Within a File

	Working With Bookmarks in an Editor Window
	Table A-12. Keyboard Shortcuts for Bookmarks

	Building Projects
	Table A-13. Keyboard Shortcuts for Building Projects

	Using Keyboard Shortcuts for Program Execution
	Table A-14. Keyboard Shortcuts for Program Execution

	Working With Breakpoints
	Table A-15. Keyboard Shortcuts for Breakpoints

	Obtaining VisualDSP++ Help
	Table A-16. Keyboard Shortcuts for Obtaining Online Help

	Miscellaneous
	Table A-17. Miscellaneous Keyboard Shortcuts

	Window Operations
	Window Manipulation
	Figure A-16. Window Menu Commands

	Right-Click Menu Options
	Table A-18. Window Right-Click Menu Commands

	Scroll Bars and Resize Pull-Tab
	Figure A-17. Scrolling the View Area

	Windows: Docked vs. Floating
	Docked Windows
	Figure A-18. Example of a Docked Project Window

	Floating Windows
	Figure A-19. Project Window Floating in Main Window (1 of 2)
	Figure A-20. Project Window Floating in Main Window (2 of 2)
	Figure A-21. Example: Project Window is Not Floating in Main Window

	Window Position Rules
	Standard Windows Buttons
	Figure A-22. Example: Title Bar Showing Standard Window Buttons
	Table A-19. Standard Windows Buttons

	Text Operations
	Regular Expressions vs. Normal Searches
	Specific Special Characters
	Table A-20. Special Search Characters

	Special Rules for Sequences
	Repetition and Combination Characters
	Table A-21. Match Characters

	Match Rules

	Tagged Expressions in Replace Operations
	Table A-22. Using Tagged Expressions in Replace Operations
	Table A-23. Examples of Replace Operations

	Comment Start and Stop Strings
	Table A-24. Start and Stop Comment Strings

	Online Documentation
	Table A-25. Types of User Documentation
	Printing Online Documentation
	Viewing Online Help

	Online Help
	Help Window
	Figure A-23. Parts of the VisualDSP++ Help Window
	Figure A-24. Help Window Navigational Aids
	Table A-26. Standard Microsoft HTML Help Buttons

	Context-Sensitive Help
	Viewing Menu, Toolbar, or Window Help
	Viewing Dialog Box Help
	Viewing Window Help

	Copying Example Code From Help
	Printing Help
	Table A-27. How to Print Help Topics

	Bookmarking Frequently Used Help Topics
	Navigating in Online Help
	Figure A-25. Contents Page - Online Manual Topics
	Figure A-26. Index Entries on the Index Page

	Searching Help
	Full-Text Searches
	Figure A-27. Boolean Search for “new AND plot”
	Rules for Full-Text Searches

	Advanced Search Techniques
	Wildcard Expressions
	Table A-28. How to Use Wildcard Expressions to Define a Search

	Boolean Operators
	Table A-29. Examples: Boolean Operators Used to Define a Search

	Nested Expressions
	Rules for Advanced Searches

	Glossary
	A set of functions available to an applications programmer. These functions, which are part of an application, can be accessed b...
	The VisualDSP++ archiver, elfar.exe, combines object (.DOJ) files into library (.DLB) files, which serve as reusable resources for project development. The linker searches library files for routines (library members) that are referred to by other object
	User-defined halt in an executable program. Toggle breakpoints (turn them on or off) by double-clicking on a location in a Disassembly window or editor window.
	Hardware condition under which the target breaks and returns control of the target back to the user. For example, a break condition could be set up to occur when address 0x8000 is read from or written to.
	Performing a build (or project build) refers to the operations (preprocessing, assembling, and linking) that VisualDSP++ perform...
	Replaced by “configuration”
	A transmission path between two communicating locations, usually the smallest subdivision of a transmission system. For VDK, cha...
	Common Object File Format. VisualDSP++ does not support files formatted in COFF.
	A project is developed in stages (configurations). By default, a project includes two configurations: Debug and Release. A confi...
	A simulator, EZ-KIT Lite development system, or an emulator. Previously called “session type”.
	A process of saving/restoring the processor’s state. The scheduler performs the context switch in response to the system change.
	A sequence of instructions whose execution cannot be interrupted or swapped out. Suspending all interrupt service routines (ISRs...
	Analog Devices processor development tools, which provide easier and more robust methods for engineers to develop and optimize s...
	Directory where the .DPJ file is saved. The build tools use the current directory for all relative file path searches. See also “default directories.”
	A series of data values in processor memory used as input to a plot. You can create data sets and configure the data for each da...
	For a debug configuration, you can accept the default options or specify your own options and save them. The configuration refers to the specified options for all the tools in the tool chain. See also “configuration.”
	The combination of a processor, connection type, and platform. For example, a debug session might consist of an ADSP-21262 processor, an EZ-KIT Lite connection, and an ADSP-21262 EZ-KIT Lite board.
	See “target”.
	These file directories (folders) are \Debug (for the debug configuration) and \Release (for the release configuration). By default, VisualDSP++ creates these directories as children of the directory where the .DPJ file is saved, which is called the proj
	VisualDSP++ uses dependency information to determine which files, if any, are updated during a build. If an included header file is modified, VisualDSP++ builds the source files that include (#include) the header file, regardless of whether the source f
	Usually user files or system header (*.H) files, these files are referenced from a source file by a preprocessor #include command.
	A single processor. With regard to JTAG emulation and the JTAG EZ-ICE Configurator, a device refers to any physical chip in the JTAG chain.
	A user-written model that abstracts the hardware implementation from the application code. User code accesses device drivers through a set of device driver API functions.
	(digital signal processor) or processor
	(Debug With Arbitrary Records Format) A format for debugging source-level assembly code via improved line and symbol information
	(source window) A document window that displays a source file for editing. When an editor window is active, you can move about w...
	Executable Linking Format
	Hardware used to connect a PC to a processor target board. This hardware allows application software to be downloaded and debugg...
	A signal (similar to a semaphore or message) used to synchronize multiple threads in a system. An event is a logical switch, hav...
	A flag set or cleared to post the event. The event is posted (available) when the current values of the system Event Bits match the event bit’s mask and event bits’ values defined by the event’s combination type.
	A file or program written and built in VisualDSP++
	A development board, software, and cable for evaluating a particular processor. The kit includes fundamental debugging software ...
	Refers to the active processor in a multiprocessor (MP) debugging session
	In-Circuit Emulator. Analog Devices offers emulators that provide non-intrusive target-based debugging of processor systems. An ...
	Integrated Development and Debugging Environment for Analog Devices processor development tools
	An external or internal condition detected by the hardware interrupt controller. In response to an interrupt, the kernel processes a subroutine call to a predefined interrupt service routine (ISR).
	A routine executed as a response to a software interrupt or hardware interrupt. VDK supports nested interrupts, which means that...
	Joint Test Action Group. This committee is responsible for implementing the IEEE boundary scan specification, enabling in-circuit emulation of ICs.
	See “VisualDSP++ configurator”.
	The main module of a real-time operating system. The kernel loads first and permanently resides in the main memory and manages o...
	The keyboard provides a quick means of running the commands used most often, such as simultaneously typing the keyboard’s Ctrl and G keys (indicated with the symbols Ctrl+G) to go to a line in a file.
	A utility that groups object files into library files. When linking your program, specify a library file and the linker automati...
	The VisualDSP++ archiver, elfar.ex, combines object (.DOJ) files into library (.DLB) files, which serve as reusable resources for project development. The linker searches library files for routines (library members) that are referred to from other objec
	A debugging feature that samples the target’s PC register at every instruction cycle. Linear profiling gives an accurate picture...Linear Profiling window, which graphically indicates where the application is spending its time. Simulator targets support
	The linker creates executable files, shared memory files, and overlay files from separately assembled object and library files. It assigns memory locations to code and data in accordance with a user-defined .LDF file, which describes the memory configur
	The .LDF files describe the target system and map your program code within the system memory and processors. The .LDF file creates an executable file using the target system memory map and defined segments in your source files.
	A utility that transforms an executable file into a boot file. The loader creates a small kernel, which is booted into internal memory at chip reset. A program of arbitrary size can then be loaded into the processor’s internal and external memory.
	VisualDSP++ can export a makefile (make rule file), based on your project options. Use a makefile (.MAK or .MK) to automate builds outside of VisualDSP++. The output make rule is compatible with the gnumake utility (GNU Make V3.77 or higher) or other ma
	An area of memory containing a specified number of uniformly sized blocks of memory available for allocation and subsequent use in an application. The number and size of the blocks in a particular memory pool are defined at pool creation.
	For VDK, a signal (similar to an event or semaphore) used to synchronize two threads in a system or to communicate information b...
	One of the two editor window display formats (the other being source mode). Mixed mode displays assembled code after the line of the corresponding C code.
	The assignment of one or more processors to a group, enabling a single multiprocessor operation (MP Run, MP Halt, MP Step, MP Reset, and MP Restart) to affect the processors in the currently selected group.
	A system built with multiple processors. Often, performance-based products require two or more processors. A system built with a single processor is called a single-processor system. Debugging a multiprocessor system requires that you synchronously run,
	Splitter output, consisting of PROM files that cannot be used to boot-load a system
	A file that has been edited since the last build
	For VDK, an arbitrary amount of data associated with a message. A reference to the payload can be passed between threads as part of a message to enable the recipient thread to access the data buffer that contains the payload.
	A technique that statically associates a window to a specific processor
	A feature that helps you analyze and tune your code for optimal performance. For TigerSHARC processors and Blackfin processors, VisualDSP++ provides a simulation-only debugging window (Pipeline Viewer) to help visualize the pipeline by displaying pipeli
	The device with which a target communicates. For simulation, a platform is typically one or more processors of the same type. For emulation, you specify the platform with the VisualDSP++ configurator, and the platform can be any combination of devices.
	A priority-based kernel in which the currently running thread of the highest priority is pre-empted, or suspended, to give system resources to the new highest-priority thread
	(DSP) An individual chip contained on a specific platform within a target system. When you create the executable file, the processor is specified in the Linker Description File (.LDF file) and other source files.
	A process that involves setting up and executing data sets to produce an optimized application. A data set is the association of zero or more input streams with one .PGO output file. Refer to the VisualDSP++ Getting Started Guide for a tutorial and to V
	A technique used during simulation to examine program execution within selected ranges of code. Profiling helps you determine: p...
	This term refers to the collection of source files and tool configurations used to create a processor program. Through a project....DPJ) file stores your program’s build information.
	This configuration includes all of the settings (options) for the tools used to build a project.
	See “Project window”.
	This window displays your project’s files in a tree view, which can include folders to organize your project files. Right-clicking on an icon (the project itself, a folder, or a file) ...
	Simplifies the creation of a new project by opening a series of pages from which to specify options. For Blackfin processors, additional pages facilitate the inclusion of startup code. You can modify project options at a later time via the Project Optio
	A software executive that handles processor algorithms, peripherals, and control logic. The RTOS comprises these components: ker...
	See “build”.
	For information on available registers, see the corresponding processor documentation or view the associated online Help.
	You can accept the default set of options, or you can specify the options you want and save them. The configuration refers to the specified options for all the tools in the tool chain. See also “Configuration.”
	This command resets the processor to a known state and clears processor memory.
	This command sets your program to the first address of the interrupt vector table. Unlike a reset, a restart does not reload memory.
	This action opens a right-click menu (sometimes called a context menu, pop-up menu, or shortcut menu). The commands that appear depend on the context (what you are doing). Right-click menus provide access to many commonly used commands.
	For VDK, a scheduling scheme whereby all threads at a given priority are given processor time automatically in fixed duration intervals. Round-robin priorities are specified at build time.
	For VDK, a kernel component responsible for scheduling system threads and interrupt service routines. VDK is a priority-based kernel in which the highest-priority thread is executed first.
	You can interact with the IDDE by using a single command or a script file. Scripting languages include VBScript, JavaScript, and Tcl. Output displays in the Console view of the Output window. The output is also logged to the VisualDSP_log.txt file.
	For VDK, a signal (similar to an event or message) used to synchronize multiple threads in a system. A semaphore is a data objec...
	You can automatically transfer serial port (SPORT) data to and from on-chip memory by using DMA block transfers. Each serial port offers a time division multiplexed (TDM) multichannel mode.
	See “debug session”.
	Although the choice of target, platform, and processor define the session, you may want to further identify the session. To prev...Session List dialog box can display about 32 characters.
	See “connection type”.
	See “keyboard shortcuts”.
	For VDK, a method of communicating between multiple threads. VDK supports four types of signals: semaphores, events, messages, and device flags.
	The simulator is software that mimics the behavior of a processor chip. Simulators are often used to test and debug code before the processor chip is manufactured.
	The C/C++ language and assembly language files that make up your project. Other source files that a project uses, such as the .LDF file, contain command input for the linker and dependency files (data files and header files). View source files in editor
	One of the two editor window display formats (the other being mixed mode). Source mode displays C code only.
	A PROM splitter utility that transforms an executable file into a non-boot-loadable image. This file is loaded onto external processor memory.
	A debugging feature that provides a more generalized form of profiling that is well suited to JTAG emulator debug targets. With ...Statistical Profiling window. This window graphically indicates where the application is spending time.
	A technique for moving through source or assembly code to observe instruction execution
	A debug tool used during simulation to drive other devices or take part in processing a subset of data. Use streams to simulate data input and output.
	Labels for sections, subroutines, variables, data buffers, constants, or port names. For more information, refer to the related build tool documentation.
	For VDK, the system configuration control is accessible from the Kernel page of the Project window. The Kernel page provides a graphical representation of the data contained in the vdk.h and vdk.cpp files.
	(also called “debug target”) The communication channel between VisualDSP++ and a processor (or group of processors). Targets inc...
	For VDK, a kernel system component that performs a predetermined function and has its own share of system resources. VDK supports multithreading, a run-time environment with concurrently executed independent threads.
	The system-level timing mechanism. Every system tick is a timer interrupt.
	The collection of tools (utilities) used to build a project configuration
	Provides a history of program execution. A trace is sometimes called an execution trace or a program trace. Trace results show h...
	For VDK, a sequence of instructions whose execution can be interrupted, but cannot be swapped out. The kernel acknowledges and services interrupts when an unscheduled region routine is running.
	See “VisualDSP++ Kernel (VDK).”
	An Integrated Development and Debugging Environment (IDDE) for Analog Devices processor development tools
	Previously called JTAG ICE Configurator or ICE Configurator, use this utility to describe the hardware to VisualDSP++ when conne...
	The RTOS kernel from Analog Devices, a software executive between processor algorithms, peripherals, and control logic. The kern...
	For simulation only. Similar to breakpoints, watchpoints stop program execution. Unlike breakpoints, which are attached to speci...
	You can open multiple windows, arrange them in any configuration, and save the layout as a workspace setting that can be recalle...

	B Simulation of SHARC Processors
	Anomaly Options
	ADSP-21x6x Processor Anomalies
	Shadow Write FIFO Anomaly (ADSP-2116x Only)
	SIMD Read from Internal Memory With Shadow Write FIFO Hit Anomaly (ADSP-2116x Only)

	Event Options
	FP Denorm
	Short Word Anomaly
	Access to ADSP-21065L Short-Word Internal Memory 9th Column at Even Addresses

	Recording a Simulator Anomaly or Event
	Figure B-1. Configure Simulator Event Dialog Box
	Table B-1. Options in the Configure Simulator Event Dialog Box

	Select Processor ID Options
	Simulator Options
	No Boot Mode

	Load Sim Loader Options
	SPI Simulation in Slave Mode

	C Simulation of TigerSHARC Processors
	ADSP-TS101 Processors
	Simulator Timing Analysis Overview
	Pipeline Stages
	Table C-1. Pipeline Stages - ADSP-TS101 Processor

	Stalls
	Stalls Due to IALU Dependency
	Figure C-1. Stall Due to IALU Dependency

	Stalls Due to Compute Block Dependency
	Figure C-2. Stall Due to Compute Block Dependency

	Aborts
	Aborts Due to an Unpredicted Change of Flow
	Figure C-3. Abort Due to an Unpredicted Change of Flow

	Abort Due to Mispredicted Change of Flow
	Figure C-4. Abort Due to Mispredicted Change of Flow

	Branch Target Buffer Hits
	Figure C-5. Branch Target Buffer Hits

	Pipeline Viewer and Disassembly Window Operations
	Current Program Counter Value
	Figure C-6. Using the Program Counter Value (ADSP-TS101 Processor)

	Stepping

	Simulator Options
	Figure C-7. DMA File I/O Configuration Dialog Box

	ADSP-TS20x Processors
	Simulator Timing Analysis Overview
	Pipeline Stages
	Table C-2. Pipeline Stages - ADSP-TS20x Processors

	Stalls
	Stalls Due to IALU Dependency
	Figure C-8. Stall Due to IALU Dependency

	Stalls Due to Compute Block Dependency
	Figure C-9. Stall Due to Compute Block Dependency

	Stalls Due to a Cache Miss
	Figure C-10. Stall Due to a Cache Miss

	Aborts
	Aborts Due to an Unpredicted Change of Flow
	Figure C-11. Abort Due to an Unpredicted Change of Flow

	Abort Due to Mispredicted Change of Flow
	Figure C-12. Abort Due to Mispredicted Change of Flow

	Branch Target Buffer Hits
	Figure C-13. Branch Target Buffer Hits

	Pipeline Viewer and Disassembly Window Operations
	Current Program Counter Value
	Figure C-14. Using the Program Counter Value (ADSP-TS20x Processors)

	Stepping
	Simulator Options

	D Simulation of Blackfin Processors
	Peripheral Support in Simulators
	Table D-1.
	Table D-2. Peripheral Support in the ADSP-BF535 Simulator
	Table D-3. Peripheral Support in the ADSP-BF535 Compiled Simulator
	Table D-4. Peripheral Support in the ADSP-BF533 Simulator
	Table D-5. Peripheral Support in the ADSP-BF533 Compiled Simulator
	Table D-6. Peripheral Support in the ADSP-BF561 Simulator

	Special Considerations for Peripherals
	Universal Asynchronous Receiver/Transmitter Peripheral
	Timer (TMR) Peripheral

	Simulator Instruction Timing Analysis for ADSP-BF535 Processors
	Stall Reasons
	Kill Reasons
	Pipeline Viewer Window Examples
	Figure D-1. RAW Hazard Stall
	Figure D-2. Fetch Stall

	Pipeline Viewer Window Messages
	Pipeline Viewer Detail View Stall Event Messages
	Table D-7. Stalls Detected Messages (ADSP-BF535 Processor)

	Kills Detected Messages
	Table D-8. Kills Detected Messages (ADSP-BF535 Processor)

	Multicycle Instructions
	Figure D-3. Example of a Multicycle Instruction in the Pipeline Viewer

	Abbreviations in Pipeline Viewer Messages
	Table D-9. Abbreviations in the Pipeline Viewer Window

	Simulator Instruction Timing Analysis for ADSP-BF531, ADSP-BF532, ADSP-BF533, and ADSP-BF561 Processors
	Stall Reasons
	Kill Reasons
	Pipeline Viewer Window Examples
	Figure D-4. RAW Hazard Stall
	Figure D-5. MMR Stall
	Figure D-6. Branch Kill

	Multicycle Instructions and Latencies
	Multicycle Instructions
	Push Multiple or Pop Multiple
	Table D-10. PushPopMultiple Instructions and Cycles

	32-Bit Multiply (modulo 232)
	Table D-11. Bit Multiply Instruction and Cycles

	Call and Jump
	Table D-12. Call and Jump Instructions and Cycles

	Conditional Branch
	Table D-13. Conditional Branch Cycles

	Return
	Table D-14. Return Instructions and Cycles

	Core and System Synchronization
	Table D-15. Core and System Synchronization Instructions and Cycles

	Linkage
	Table D-16. Linkage Instructions and Cycles

	Interrupts and Emulation
	Table D-17. Interrupts and Emulation Instructions and Cycles

	TESTSET
	Table D-18. TESTSET Instruction

	Instruction Latencies
	Accumulator to Data Register Latencies
	Table D-19. Accumulator to Data Register Latencies

	Register Move Latencies
	Table D-20. Register Move Latencies

	Move Conditional and Move CC Latencies
	Table D-21. Move Conditional and Move CC Latencies

	Loop Setup Latencies
	Table D-22. Loop Setup Latencies

	Latencies Due to Instructions Within Hardware Loops
	Instruction Alignment Unit Empty Latencies
	Table D-23. Instruction Alignment Unit Empty Latencies

	L1 Data Memory Stalls
	Minibank Access Collision
	SRAM Access (1-Cycle Stall)
	Cache Access (1-Cycle Stall)
	Only One Bank is Configured as Cache
	Table D-24. Minibanks Selected for 16KB of Data Bank Memory
	Table D-25. Minibanks Selected for 32KB of Data Bank Memory

	Both Banks Are Configured as Cache
	Table D-26. Superbank, Minibank Selected When DCBS is 0

	Memory-Mapped Register (MMR) Access
	System Minibank Access Collision
	Store Buffer Overflow
	Store Buffer Load Collision
	Load/Store Size Mismatch
	Store Data Not Ready

	Instruction Groups
	Table D-27. Math Ops Instruction Groups
	Table D-28. Areg2Dreg Ops Instruction Groups

	Register Groups
	Table D-29. Allreg Register Groups

	Compiled Simulation
	Specifying a Session for Compiled Simulation

	I Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

