
The latest version of this document is here: www.keil.com/appnotes/docs/apnt_273.asp 

 

Tutorial        Version 1.0.3 
Creating a USB Data Logger Application using Middleware and CMSIS 

Abstract  
This tutorial shows how to implement a data logger application that collects information from A/D channels and digital I/O 

ports, recording the data into files inside a micro SD card. When connected to a computer it’s enumerated as an USB 

Composite Device, allowing the access to the files and the transmission of a command to start/stop recording. The tutorial 

explains the required steps to create the application on an Infineon XMC4500 Relax Kit board but can be easily ported to 

other underlying hardware as it is using MDK-Professional Middleware and CMSIS, the Cortex Microcontroller Software 

Interface Standard. 

Contents 
Abstract ...................................................................................................................................................................................... 1 

Introduction ............................................................................................................................................................................... 2 

Software Stack ........................................................................................................................................................................... 3 

Prerequisites ............................................................................................................................................................................... 4 

Set up the Workshop Environment .......................................................................................................................................... 4 

Step 1: Create a Project............................................................................................................................................................. 5 

Create a New Project for the Evaluation Board ....................................................................................................................... 5 

Setup the Debug Adapter ......................................................................................................................................................... 6 

Step 2: Add CMSIS-RTOS Thread and Timer ....................................................................................................................... 7 

Add and configure CMSIS-RTOS Thread and Timer ............................................................................................................. 7 

RTX Kernel Awareness ........................................................................................................................................................... 8 

Step 3: Add Interfaces to the Board Components................................................................................................................... 9 

Step 4: Add File System Support ............................................................................................................................................ 10 

Add the File System component to the project ...................................................................................................................... 10 

Configure the SPI pins for the CMSIS-Driver ....................................................................................................................... 10 

Configure the stack and thread memory resources ................................................................................................................ 11 

Step 5: Add the USB device classes ........................................................................................................................................ 12 

Add the USB components to the project ................................................................................................................................ 12 

Step 6: Implement the Data Logger Functions...................................................................................................................... 14 

Implement a real time clock ................................................................................................................................................... 14 

Add the user code to the thread.............................................................................................................................................. 14 

Add the USB command handling .......................................................................................................................................... 17 

Using the Data Logger ........................................................................................................................................................... 17 

Step 7: Improve Data Recording Operations ........................................................................................................................ 18 

Serial Wire Viewer Summary ................................................................................................................................................. 20 

Document Resources ............................................................................................................................................................... 21 

Books ..................................................................................................................................................................................... 21 

Application Notes .................................................................................................................................................................. 21 

Useful ARM Websites ........................................................................................................................................................... 21 

Keil Products and Contact Information ................................................................................................................................ 22 

 

http://www.keil.com/appnotes/docs/apnt_273.asp


Creating a USB Data Logger Application using Middleware and CMSIS 

 

App Note 273  Copyright © 2015 ARM Ltd. All rights reserved 

Creating a USB Data Logger Application using Middleware and CMSIS keil.com/appnotes/docs/apnt_273.asp 2 

Introduction 
This workshop explains how to create a software framework for a sophisticated microcontroller application using CMSIS and 

Middleware components. During this workshop a demo application is created that implements the following functions: 

 Collect data from A/D channels and digital I/O ports and blink LEDs. 

 Create files and write data onto the MicroSD card which is connected to the board through the SPI interface. 

 Access the MicroSD Card files from the computer through the USB Mass Storage interface. 

 Send commands to the board from the computer through the USB HID interface. 

 

CMSIS-Driver

Application

CMSIS-CORE

Device
Startup XMC4 Low Level Driver API XMC4Lib Framework

startup_XMC4500.s

system_XMC4500.c
GPIO SPI …

Middleware

File System

Board Support

xmc4500.h core_cm*.h

RTE_Device.hsystem_XMC4500.h

ADC

LED
USBSPI

XMC4500

USB Device

Buttons

xmc_device.h

CMSIS-RTOS RTX

Thread.cTimer.c

main.c

USBD_User_MSC.c USBD_User_HID.c



Creating a USB Data Logger Application using Middleware and CMSIS 

 

App Note 273  Copyright © 2015 ARM Ltd. All rights reserved 

Creating a USB Data Logger Application using Middleware and CMSIS keil.com/appnotes/docs/apnt_273.asp 3 

Software Stack 
The application is created by using user code templates. These templates are part of software components such as the 

Middleware, CMSIS-RTOS or the XMC4000 Device Family Pack (DFP).  

CMSIS-RTOS RTX is a real-time operating system that is part of MDK and adheres to the CMSIS specification. It is used 

to control the application. 

The board support files enable the user to quickly develop code for the hardware that is used here. It provides a simple API 

to control LEDs, push buttons, A/D converters or other external devices. 

Middleware provides stacks for TCP/IP networking, USB communication, graphics, and file access. The Middleware used 

in this application is part of MDK-Professional and uses several CMSIS-Driver components. 

CMSIS-Driver is an API that defines generic peripheral driver interfaces for middleware making it reusable across 

compliant devices. It connects microcontroller peripherals with middleware that implements for example communication 

stacks, file systems, or graphic user interfaces. CMSIS-Drivers are available for several microcontroller families and are part 

of the DFPs. The DFP contains the support for the device in terms of startup and system code, a configuration file for the 

CMSIS-Driver and a device family specific software framework with hardware abstraction layer (HAL) or low level drivers 

(LLD). 

The basis for the software framework is CMSIS-Core that implements the basic run-time system for a Cortex-M device and 

gives the user access to the processor core and the device peripherals. The device header files adhere to the CMSIS-Core 

standard and help the user to access the underlying hardware. 

  



Creating a USB Data Logger Application using Middleware and CMSIS 

 

App Note 273  Copyright © 2015 ARM Ltd. All rights reserved 

Creating a USB Data Logger Application using Middleware and CMSIS keil.com/appnotes/docs/apnt_273.asp 4 

Prerequisites 
To run through the workshop you need to install the following software. Directions are given below: 

 MDK-ARM Version 5.14 or later (https://www.keil.com/demo/eval/arm.htm). 

 A valid MDK-Professional license. 

 Keil::MDK-Middleware 6.3 or higher. 

 Infineon::XMC4000_DFP 2.2.0 or later which includes the XMC4500 Relax Kit Board Support Package (BSP). We 

will download this from the Internet using Pack Installer. 

 XMC4500 Relax Kit (http://www.keil.com/boards2/infineon/xmc4500relaxlitekit/).  

 Text snippets for copy and paste and completed projects are here: www.keil.com/appnotes/docs/apnt_273.asp 

This tutorial assumes you have some experience with the MDK development tool and a basic knowledge of C.  

 

Set up the Workshop Environment 
Install MDK: 

 Install MDK-ARM Version 5.14 or later. Use the default folder C:\Keil_v5 for the purposes of this tutorial. 

 After the initial MDK installation, the Pack Installer utility opens up. Read the Welcome message and close it.  

Install the XMC4000 Device Family Pack: 

 If Pack Installer is not open, first open µVision®: . Then open Pack Installer by clicking on its icon:  

 The bottom right corner should display ONLINE:  If it displays OFFLINE, connect your PC to the Internet. 

 Locate Keil::XMC4000_DFP. Click Install. The installation will commence. 

 Once the Pack is installed this will be displayed indicating a successful installation. 

Install the Middleware Software Pack: 

 Locate Keil::MDK-Middleware. Click Update 

 Close Pack Installer by selecting File/Exit. 

Install your MDK-Professional license. 

 In File/License Management, select the 7 day license. This button is only displayed if you are eligible for this offer. 

It can be used only once. 

 You may contact our sales team to request a time-limited license for this workshop: www.keil.com/contact 

 For more information and license installation instructions see: www.keil.com/download/license/ 

Connect the XMC4500 Relax Kit to your PC: 

 Use the USB-Micro cable to connect your computer and the XMC4500 Relax Kit board using the port labeled as 

“X100 Debug”. 

  

https://www.keil.com/demo/eval/arm.htm
http://www.keil.com/boards2/infineon/xmc4500relaxlitekit/
http://www.keil.com/appnotes/docs/apnt_273.asp
http://www.keil.com/contact
https://www.keil.com/download/license/


Creating a USB Data Logger Application using Middleware and CMSIS 

 

App Note 273  Copyright © 2015 ARM Ltd. All rights reserved 

Creating a USB Data Logger Application using Middleware and CMSIS keil.com/appnotes/docs/apnt_273.asp 5 

Step 1: Create a Project 

Create a New Project for the Evaluation Board 
Create a project with initialization files and the main module: 

1. In the main µVision menu, select Project  New µVision Project. The Create New Project window opens up. 

2. Create a suitable folder in the normal fashion and name your project. We will use 

C:\Datalogger and the project name will be Datalogger. When you save the project the 

project file name will be Datalogger.uvprojx. 

The Select Device for Target window opens. Select XMC4500-F100x1024: 

3. Click on OK and the Manage Run-Time Environment window opens: 

Expand the various options as shown and select: 

- CMSIS:Core  

- CMSIS:RTOS (API):Keil RTX 

- Device:Startup  

4. Click OK to close this window 

5. In the Project window expand all the 

items and have a look at the files 

µVision has added to your project. 

 

 

 

 

 

 

 

 

 

Add the main.c file: 

1. Right click on Source Group 1 and select Add New Item 

to Group ‘Source Group 1’… 
2. In the window that opens, select User Code Template. 

Select CMSIS-RTOS ‘main' function.  

3. Click on Add. 

 

Set the RTOS clock frequency: 

1. In the Project tab under CMSIS, double-click on the file 

RTX_Conf_CM.c to open it. 

2. In the Configuration Wizard tab, set the RTOS Kernel 

Timer input clock frequency [Hz] to 120000000. 

3. Select File  Save All or press  

4. Compile the project source files:   

There will be no errors or warnings displayed in the Build 

Output window. If you get any errors or warnings, please correct this before moving on to configure the JLINK 

Debug Adapter. 

What we have at this point: We have created a new MDK 5 project called Datalogger.uvprojx. We have set the RTOS clock 

frequency, added the CMSIS environment, a main.c file and compiled the source files to test everything. 



Creating a USB Data Logger Application using Middleware and CMSIS 

 

App Note 273  Copyright © 2015 ARM Ltd. All rights reserved 

Creating a USB Data Logger Application using Middleware and CMSIS keil.com/appnotes/docs/apnt_273.asp 6 

Setup the Debug Adapter 
Select the J-LINK / J-TRACE Cortex debug adapter: 

1. Select Target Options  or ALT-F7. Select the Debug tab. 

2. In the Use box select “J-LINK / J-TRACE Cortex”. 

3. Click on Settings. In the Port box, select SW (for Serial-Wire 

Debug SWD). 

4. In the SW Device box you must see a valid IDCODE and 

ARM CoreSight SW-DP. This indicates that µVision is 

connected to the J-LINK’s debug module. 

If you see an error or nothing in the SW Device box, you must fix 

this before you can continue. Make sure the board is connected. 

Configure the Serial Wire Viewer (SWV): 

1. Select the Trace tab. In the Core Clock box, enter 120 MHz and select Trace Enable. This sets the speed of the 

SWO UART signal and debugger timing displays.  

2. Unselect EXCTRC (Exception Tracing). Leave all other settings at their defaults. 

Insert a global variable in the Watch window: 

1. In the Project tab under Device, double-click on system_XMC4500.c to open it up. 

2. Find the variable SystemCoreClock. It is declared near line 283. 

3. Right click on it and select Add SystemCoreClock to… and select Watch 1. Watch 1 will automatically open if it 

is not already open and display this variable. 

4. In the Watch 1 window, right click on SystemCoreClock in the 

Name column and unselect Hexadecimal Display. 

SystemCoreClock will now be displayed with the correct 

frequency of 120 MHz. 

Note: You can add variables to the Watch and Memory 

windows while your program is running. 

What we have at this point: We have selected the debug adapter, enabled the Serial Wire Viewer trace and demonstrated 

how to display the CPU clock in a Watch window. 

  



Creating a USB Data Logger Application using Middleware and CMSIS 

 

App Note 273  Copyright © 2015 ARM Ltd. All rights reserved 

Creating a USB Data Logger Application using Middleware and CMSIS keil.com/appnotes/docs/apnt_273.asp 7 

Step 2: Add CMSIS-RTOS Thread and Timer 

Add and configure CMSIS-RTOS Thread and Timer 
 

Add the Thread.c source file and its initialization: 

In the Project window under Target 1, right click Source Group 1 and select Add New Item Group 'Source Group 1'… 

1. In the window that opens, select User Code Template. Select CMSIS-RTOS Thread. 

2. Click on Add. Note Thread.c is added to the Source Group 1 in the Project window. 

3. Click on the main.c tab to bring it in focus in order to edit it. 

4. In main.c near line 8, add this line: extern int Init_Thread(void); 

5. In main.c near line 19 and before osKernelStart();, add Init_Thread(); 

6. In Thread.c, replace the content of the while loop, inside the function Thread near line 24, by this code: 
osSignalWait(0x01,osWaitForever); 

It will suspend the execution of this thread until the specified signal flag is set. 

Add the Timer.c source file and its initialization: 

1. In the Project window under Target 1, right click Source Group 1 and select Add New Item Group 'Source 

Group 1'… 

2. In the window that opens, select User Code Template. Select CMSIS-RTOS Timer. 

3. Click on Add. Note Timer.c is added to the Source Group 1 in the Project window. 

4. Click on the main.c tab to bring it in focus in order to edit it. 

5. In main.c near line 9, add this line: extern void Init_Timers(void); 

6. In main.c near line 18 and after osKernelInitialize();, add Init_Timers(); 

7. Init_Timers creates two timers: Timer1 (a one-shot) and Timer2 which is a 1 second periodic timer. In this 

application two periodic timers will be used and then the Timer1 has to be modified. In Timer.c near line 42, change 

the second parameter of the call osTimerCreate from osTimerOnce to osTimerPeriodic: 

id1 = osTimerCreate (osTimer(Timer1), osTimerPeriodic, &exec1); 

8. In Timer.c near line 8, add this line: extern osThreadId tid_Thread; 

In Timer.c near line 19, inside the function Timer1_Callback, add this line: 

osSignalSet(tid_Thread,0x01); 

It will set the specified thread’s signal flag, allowing its execution periodically.  

9. Select File  Save All or . 

10. Compile the project source files by clicking on the Rebuild icon .  There will be no errors or warnings in the 

Build Output window. If there are any errors or warnings, please correct them before continuing. 

Demonstrating the Thread is Working: 

1. Program the Flash and enter Debug mode:  Click on the RUN icon.  

TIP: To program the Flash manually, select the Load icon:  

2. The program is running. 

3. In Thread.c, near line 24, set a breakpoint by clicking on the 

gray box. A red circle will appear. The gray box indicates 

that assembly language instructions are present and a 

hardware breakpoint will be legal. 

4. The program will soon stop here. 

5. Click on RUN  and in 100 milliseconds it will stop here again when the thread’s execution is resumed. 

 

What we have at this point: We added the RTX Thread and Timer to your project. We enabled a periodic Timer and 

demonstrated that the thread is running periodically. 



Creating a USB Data Logger Application using Middleware and CMSIS 

 

App Note 273  Copyright © 2015 ARM Ltd. All rights reserved 

Creating a USB Data Logger Application using Middleware and CMSIS keil.com/appnotes/docs/apnt_273.asp 8 

RTX Kernel Awareness 
System and Thread Viewer: 

1. With the program running, open 

Debug  OS Support and select 

System and Thread Viewer. This 

window opens up:  

Note: os_idle_demon and 

osTimerThread threads have been 

already created. 

2. When you click on RUN, the status 

of these two threads will be updated 

in real-time until the program stops. 

3. Note the various other fields that 

describe RTX. 

 

Event Viewer: 

1. Open Debug  OS Support and 

select Event Viewer. The following 

window opens. Resize it for 

convenience. If this window does not 

display any information, the most 

likely cause is that the SWV is not 

enabled or the CPU clock frequency is 

incorrect. See Serial Wire Viewer 

Summary on the last page for useful 

SWV hints. 

2. Click on RUN.  

3. Using In, Out and All in the Zoom 

field, set the grid for about 50ms. 

4. It is easy to see when the threads are 

running. Note most of the time the Idle thread is running. 

5. You can tell at a glance the timing of your RTX implementation and if it is behaving as you expect. 

6. As you add new tasks, they will be automatically added. The Event Viewer uses the Serial Wire Viewer (SWV). 

7. Exit Debug mode:  

 

 

  



Creating a USB Data Logger Application using Middleware and CMSIS 

 

App Note 273  Copyright © 2015 ARM Ltd. All rights reserved 

Creating a USB Data Logger Application using Middleware and CMSIS keil.com/appnotes/docs/apnt_273.asp 9 

Step 3: Add Interfaces to the Board Components 
 

As we want to collect data from board 

peripherals, as well as blink the LEDs, we 

need to add the correspondent board support 

components to the project: 

 

1. Open the Manage Run-Time 

Environment window  and 

select: 

- Board Support:A/D Converter 

- Board Support:Buttons 

- Board Support:LED 

2. Click Resolve to add other 

mandatory middleware components. 

3. Click OK to close this window. 

 

Initialize board support components: 

1. In main.c near line 8, add the 

include directives:  
#include "Board_Buttons.h" 

#include "Board_LED.h"   

#include "Board_ADC.h"   

 

2. In main.c near line 22, add the initialization calls: 
LED_Initialize(); 

Buttons_Initialize(); 

ADC_Initialize(); 

 

Blink the LEDs: 

 

1. In Thread.c, near line 3, add the include directive: 
 #include "Board_LED.h" 

Note: An error  might display on this line. Please ignore this for now. Make sure the source lines are typed in 

exactly as shown to avoid errors. Use your best judgment as to where the source code should be added. Line 

numbers can change with different versions of the software templates. 

2. In Thread.c near line 22, inside the function Thread, declare the following variable: 
 uint8_t led_state = 0x01; 

3. In Thread.c near line 26, inside the while loop, add the following code: 
LED_SetOut(led_state); 

led_state = ~led_state; 

4. Select File/Save All or . 

5. Compile the project:   There will be no errors or warnings in the Build Output window. 

6. Program the Flash and enter Debug mode:  

7. Click on RUN.  

8. The two red LEDs will blink alternately. 

9. Exit Debug mode:  

 

What we have at this point: We have selected and initialized board peripheral drivers from the CMSIS-Pack BSP. We have 

created a simple thread that toggles the LEDs alternately according to a timer event every 100ms. 



Creating a USB Data Logger Application using Middleware and CMSIS 

 

App Note 273  Copyright © 2015 ARM Ltd. All rights reserved 

Creating a USB Data Logger Application using Middleware and CMSIS keil.com/appnotes/docs/apnt_273.asp 10 

Step 4: Add File System Support  

Add the File System component to the project 
As we want to create files and save data into the SD card, we need to add support for the File System: 

1. Open the Manage Run-Time Environment window  

and select: 

- File System:CORE:LFN 

- File System: Memory Card 

2. Click Resolve to add other mandatory middleware 

components. 

3. Click OK to close this window. 

 

Connect the File System component to the SPI driver: 

1. In the Project window under the File System heading, 

double click on FS_Config_MC_0.c to open it. 

2. Click on its Configuration Wizard tab and then on Expand 

All. 

3. Set Connect to hardware via Driver_SPI# to 1.  

4. Set Memory Card Interface Mode to SPI.  

 

Initialize the File System: 

1. In main.c near line 10, add the include directive:  
#include "rl_fs.h" 

2. In main.c near line 26, add the initialization calls: 
finit  ("M0:");         

fmount ("M0:");   

        

Configure the SPI pins for the CMSIS-Driver 
1. In the Project window, under the Device header, double click 

on RTE_Device.h to open it for editing.  

2. Click on its Configuration Wizard tab. 

3. Enable SPI1 (Serial peripheral interface) as shown here: 

4. Set the hardware parameters for the SPI1 interface exactly as 

shown here: 

- SPI1 TX MOSI (master) MISO (slave) Pin = P3_5 

- SPI1 RX MISO (master) MOSI (slave) Pin = P4_0 

- SPI1 CLK OUTPUT Pin = P3_6 

- SPI1 SLAVE SELECT LINE 0 Pin = P4_1 

You can check if the pin assignment is correct in the board 

schematics, available in µVision under the Books tab. 

5. Select File/Save All or .  

 

  



Creating a USB Data Logger Application using Middleware and CMSIS 

 

App Note 273  Copyright © 2015 ARM Ltd. All rights reserved 

Creating a USB Data Logger Application using Middleware and CMSIS keil.com/appnotes/docs/apnt_273.asp 11 

Configure the stack and thread memory resources 
 

The resource requirements of the Middleware 

components, as the File System and the USB, can 

be found in the Middleware documentation that is 

accessible using the link next to the component in 

the Manage Run-Time Environment window: 

 

Configure Thread Stack sizes: 

1. Under the CMSIS heading, double click on 

RTX_Conf_CM.c to open it. 

2. Click on its Configuration Wizard tab and then on 

Expand All. 

3. Change Default Thread stack size [bytes] to 1024. 

4. Change Main Thread stack size [bytes] to 512. 

5. Select File/Save All or . 

6. Compile the project:    

No errors or warnings will be generated as shown in the Build Output window. Please correct any errors or warnings before 

you continue. 

 

What we have at this point: We have added, configured and initialized the File System component and the CMSIS-Driver 

for the SPI interface. This configuration allows our application to easily access files in the SD card connected through SPI.  



Creating a USB Data Logger Application using Middleware and CMSIS 

 

App Note 273  Copyright © 2015 ARM Ltd. All rights reserved 

Creating a USB Data Logger Application using Middleware and CMSIS keil.com/appnotes/docs/apnt_273.asp 12 

Step 5: Add the USB device classes  
In order to access the files in the SD card from a computer, our device has to be recognized as an USB Mass Storage (MSC). 

We want also to send commands to the device to start and stop the data logger recording, so we need an USB Human 

Interface Device (HID). Such peripheral device, that supports more than one device class, is called USB Composite Device. 

Add the USB components to the project 
 

1. Open the Manage Run-Time Environment window  and select: 

- CMSIS Driver:USB Device (API) 

- USB:CORE 

- USB:Device = 1 

- USB:Device:HID = 1 

- USB:Device:MSC = 1 

2. Click Resolve to add other mandatory middleware components. 

3. Click OK to close this window. 

 

Configure USB components: 

1. In the Project window under the USB heading, double click on 

USBD_Config_0.c to open it. 

2. Click on its Configuration Wizard tab and then on Expand All. 

3. Set Product ID to 0x0000.  

4. In the Project window under the USB heading, double click on 

USBD_Config_HID_0.c to open it. 

5. Click on its Configuration Wizard tab and then on Expand All. 

6. Set Interrupt IN Endpoint Number to 2.  

7. Set Interrupt OUT Endpoint Number to 2.  

 

Add USB template files: 

1. Right click on Source Group 1 and select Add New Item to 

Group ‘Source Group 1’… 
2. In the window that opens, select User Code Template. Select 

USB Device HID (Human Interface Device).  
3. Click on Add. 

4. Repeat the previous steps to add the USB Device MSC (Mass 

Storage Class) and USB Device MSC Media Ownership Control 

templates. 

Note USBD_User_HID.c, USBD_User_MSC.c, USBD_MSC.c and 

USBD_MSC.h are added to the Source Group 1 in the Project 

window.  

 

Initialize USB components: 

1. In main.c near line 11, add the include directives:  
#include "rl_usb.h"  
#include "USBD_MSC_0.h"  

   

2. In main.c near line 30, add the initialization calls: 
USBD_Initialize (0);                

USBD_Connect    (0);  
USBD_MSC0_SetMediaOwnerUSB(); 

 

 



Creating a USB Data Logger Application using Middleware and CMSIS 

 

App Note 273  Copyright © 2015 ARM Ltd. All rights reserved 

Creating a USB Data Logger Application using Middleware and CMSIS keil.com/appnotes/docs/apnt_273.asp 13 

Configure Thread Stack sizes: 

1. Under the CMSIS heading, double click on 

RTX_Conf_CM.c to open it. 

2. Click on its Configuration Wizard tab and then on 

Expand All. 

3. Change Number of Threads with user-provided 

stack size to 3. 

4. Change Total stack size [bytes] for threads with 

user-provided stack size to 2048. 

5. Select File/Save All or . 

6. Compile the project:    

 

Install and test the USB Composite Device: 

1. Program the Flash and enter Debug mode:  

2. Click on RUN.  

3. Insert an SD Card in the slot labelled “X300”. 

4. Connect your computer using a USB-Micro cable to 

the port labelled “X3”. 

5. The board will be installed as a USB Composite 

Device and two new interfaces will appear among 

the computer devices: a Disk drive and a HID-

compliant device. 

6. You can access the files stored in the SD card through the Removable Disk 

drive that is created in your computer. 

7. Exit Debug mode:  

 

What we have at this point: We have added the USB component with the MSC and HID interfaces and configured the 

thread stack size. From the computer we can access the files in the SD Card. 

 
  



Creating a USB Data Logger Application using Middleware and CMSIS 

 

App Note 273  Copyright © 2015 ARM Ltd. All rights reserved 

Creating a USB Data Logger Application using Middleware and CMSIS keil.com/appnotes/docs/apnt_273.asp 14 

Step 6: Implement the Data Logger Functions 

Implement a real time clock 
In order to print timestamps associated to the collected data, we will implement a clock with our previously created CMSIS-

RTOS Timer. 

1. Double click on Timer.c to open it for editing. 

2. Near line 3, add the include directive:  
 #include <stdio.h> 

 

3. Near line 11, add the definition: 

struct clock {                    

  unsigned char  hour;            

  unsigned char  min;             

  unsigned char  sec;             

  unsigned short msec;            

};  

static struct clock time; 

 

4. Near line 41, inside the Timer2_Callback, insert the code: 

if (++time.msec == 100) {         

  time.msec = 0; 

  if (++time.sec == 60) {         

    time.sec = 0; 

    if (++time.min == 60) {       

      time.min = 0; 

      if (++time.hour == 24) {    

        time.hour = 0; 

      } 

    } 

  } 

} 

 

5. Near line 78, change the Timer2 interval from 1000ms to 10ms: 
status = osTimerStart (id2, 10); 

 

6. In the end of the file near line 85, append this function:       

void PrintTimeStamp(FILE *f) { 

  fprintf (f,"%02d:%02d:%02d.%02d", 

    time.hour, 

    time.min, 

    time.sec,          

    time.msec);           

}     

 

Add the user code to the thread 
We will modify our previously created CMSIS-RTOS Thread to implement the data logger functionalities: collect data from 

A/D converter and sample the state of the pushbuttons. Every 100ms the measurement from the A/D converter is stored into a 

file, together with a timestamp. The same happens when the state of a pushbutton changes. 

 

To allow file access we add the following application code in the module Thread.c: 

 

1. Double click on Thread.c to open it for editing. 

 



Creating a USB Data Logger Application using Middleware and CMSIS 

 

App Note 273  Copyright © 2015 ARM Ltd. All rights reserved 

Creating a USB Data Logger Application using Middleware and CMSIS keil.com/appnotes/docs/apnt_273.asp 15 

2. Near line 4, add the include directives:  
#include "Board_Buttons.h" 

#include "Board_ADC.h"  

#include "rl_fs.h" 

#include "rl_usb.h" 

#include "USBD_MSC_0.h"                

#include <stdio.h> 

 

3. Near line 18, add the code: 

# extern void PrintTimeStamp(FILE *f); 

 

typedef enum { 

  DEV_IDLE, 

  DEV_START_RECORD, 

  DEV_STOP_RECORD, 

  DEV_RECORDING 

} DeviceState; 

DeviceState gState = DEV_IDLE; 

 

void SetRecording(bool bMode) { 

  if (bMode) { 

    if (gState==DEV_IDLE) gState = DEV_START_RECORD; 

  } else { 

    if (gState==DEV_RECORDING) gState = DEV_STOP_RECORD; 

  } 

} 

                                           

void LogButton(uint8_t button, uint8_t state) { 

FILE *f; 

const char ButName[][7] = {"1", "2"}; 

const char ButState[][9] = {"Released", "Pressed"}; 

  f = fopen("ButtonsLog.txt","a"); 

  if (f != NULL) { 

    PrintTimeStamp(f);   

    fprintf(f," - Button %s %s\n",ButName[button],ButState[state]); 

    fclose (f); 

  }   

} 

                                                 

void LogADC(uint16_t val) { 

FILE *f; 

  f = fopen("AdcLog.txt","a"); 

  if (f != NULL) { 

    PrintTimeStamp(f); 

    fprintf (f," - 0x%04X - %4.2fV\n", val,  

     (float) (val * 3.3 / (1 << ADC_GetResolution ()))); 

    fclose (f); 

  }   

}                           

 

4. Near line 66, replace the content of the function Thread with the code: 

void Thread (void const *argument) { 

  uint8_t led_state = 0x01; 

  uint8_t but_current; 

  uint8_t but_last; 

  uint8_t but_changed; 

  uint8_t but_num; 



Creating a USB Data Logger Application using Middleware and CMSIS 

 

App Note 273  Copyright © 2015 ARM Ltd. All rights reserved 

Creating a USB Data Logger Application using Middleware and CMSIS keil.com/appnotes/docs/apnt_273.asp 16 

  uint16_t adc_val; 

     

  while (1) { 

     

    switch (gState) {   

   

      case DEV_IDLE:       

        break; 

       

      case DEV_START_RECORD:   

        // hide logical unit         

        USBD_MSC0_SetMediaOwnerFS();   

        finit("M0:");       

        fmount("M0:");   

        ADC_StartConversion(); 

        gState = DEV_RECORDING; 

        break; 

       

      case DEV_STOP_RECORD:     

        LED_SetOut(0); 

        // show logical unit 

        USBD_MSC0_SetMediaOwnerUSB(); 

        gState = DEV_IDLE; 

        break; 

 

      case DEV_RECORDING:     

        // Buttons sampling 

        but_current = (Buttons_GetState()); 

        but_changed = but_current ^ but_last; 

        but_last = but_current; 

        but_num = 0;       

        while(but_changed)  

        {       

          if (but_changed&1) { 

            LogButton(but_num,but_current&1); 

          }         

          but_num++;       

          but_changed>>=1; 

          but_current>>=1;                    

        }       

             

        // ADC sampling     

        if (ADC_ConversionDone() == 0) { 

          adc_val = ADC_GetValue(); 

          LogADC(adc_val);               

        } 

        ADC_StartConversion(); 

         

        // Toggle leds 

        LED_SetOut(led_state); 

        led_state = ~led_state;             

        break;                     

    } 

     

    osSignalWait(0x01,osWaitForever);      

  } 

} 



Creating a USB Data Logger Application using Middleware and CMSIS 

 

App Note 273  Copyright © 2015 ARM Ltd. All rights reserved 

Creating a USB Data Logger Application using Middleware and CMSIS keil.com/appnotes/docs/apnt_273.asp 17 

 

Add the USB command handling 
As previously stated, the USB HID Client will be used to start/stop recording.  

The HID Client running on a PC sends an HID output report that is handled by our application. 

 

Modify USBD_User_HID_0.c: 

1. Double click on USBD_User_HID_0.c to open it for editing. 

2. Near line 43, add the declaration: 
extern void SetRecording(bool bMode);  

3. Near line 119, add the call: 
SetRecording((*buf)&0x01); 

Note this call switches the state machine executed by our thread. 

8. Select File/Save All or . 

9. Compile the project:    

 

Using the Data Logger 

1. Program the Flash and enter Debug mode:  

2. Click on RUN:  

 

3. In order to send the command to start recording, run the HID Client software 

that is located at the following path: 

C:\Keil_v5\ARM\Utilities\HID_Client\Release\HIDClient.exe 

 

4. In the HID Client window, select the Device USB_HID0. 

 

5. Check the checkbox “0” under the Outputs (LEDs) tab. This action sends an 

HID output report to the board and the data logger starts recording.  

The Removable Disk is hidden from the computer because at this moment the data logger application has exclusive 

access to the file system. The LEDs blink alternately.  

The A/D Converter measures the input pin P14.0 and the values are recorded every 100ms. 

If you press buttons 1 and 2 in the board, the press and release events are recorded too. 

 

6. Uncheck the checkbox “0” under the Outputs (LEDs) tab. 

The data logger stops recording and the LEDs turn off.  

In the computer the Removable Disk pops up again and the 

files can be accessed. 

The data are stored in text files: AdcLog.txt and 

ButtonsLog.txt.  

 

7. Exit Debug mode:  

 

 

 

What we have at this point: The data logger application is complete. We can use the HID Client to start/stop data recording 

and we can read the logged data in the Removable Disk that automatically pops up. 

 

  



Creating a USB Data Logger Application using Middleware and CMSIS 

 

App Note 273  Copyright © 2015 ARM Ltd. All rights reserved 

Creating a USB Data Logger Application using Middleware and CMSIS keil.com/appnotes/docs/apnt_273.asp 18 

Step 7: Improve Data Recording Operations 
 

Analyzing the source code of the Thread.c file, where the data logger functionalities are implemented, we can see that files 

are being opened and closed every time an event is triggered. It’s a robust implementation that reduces the risk of data loss 

since the fclose function effectively writes the file stream to the media and flushes the associated buffers.  

However such implementation needs relatively high CPU resources as we can see in the Event Viewer.  

 

Viewing RTX Activity with the Event Viewer: 

1. Enter in Debug mode:  and RUN:  

2. Select the Event Viewer tab or if not already open: Select Debug  

OS Support  Event Viewer. 

3. Adjust the column width so the entire Thread names are visible as 

shown below. Data will be visible if the Serial Wire Viewer (SWV) is 

configured properly. 

4. Start the data logger recording as described in the previous chapter. 

5. Near line 123, at the end of the 

DEV_RECORDING case, set a 

breakpoint by clicking on the gray 

area: 

6. Select Stop in the Update Screen 

box. 

7. Set the grid using Zoom In and Out.  

8. Scroll back and forth in time and you 

can see when the other threads were 

active. 

9. Enable the Cursor and Task Info 

boxes to measure timings of these 

events. 

Note the Threads visible: The 

Thread (6) data shows the activity of 

this thread.  

In this example the thread takes about 

~12ms for each file recording 

operation.  

10. Clear the breakpoint by clicking on it. 

11. Exit Debug mode:  

We can have a less resource-hungry implementation by calling the fopen and fclose functions only when respectively starting 

and stopping the data recording. Follow the steps: 

1. Double click on Thread.c to open it for editing. 

2. Near line 19, add the declarations:  
FILE *f_but; 

FILE *f_adc; 

3. Near line 39, remove the local declaration:  
FILE *f; 

4. Near line 41, remove the call:  
f = fopen("ButtonsLog.txt","a"); 

5. In the following line, replace f with f_but:  
if (f_but != NULL) { 

6. Near line 44, remove the call:  
fclose (f); 

7. Near line 48, remove the local declaration and the call:  
FILE *f; 

f = fopen("ButtonsLog.txt","a"); 



Creating a USB Data Logger Application using Middleware and CMSIS 

 

App Note 273  Copyright © 2015 ARM Ltd. All rights reserved 

Creating a USB Data Logger Application using Middleware and CMSIS keil.com/appnotes/docs/apnt_273.asp 19 

8. In the following line, replace f with f_adc:  
if (f_adc != NULL) { 

9. Near line 51, remove the call:  
fclose (f); 

10. Near line 82, after fmount, add the following calls:  
f_but = fopen("ButtonsLog.txt","a"); 

f_adc = fopen("AdcLog.txt","a"); 

11. Near line 89, after case DEV_STOP_RECORD:, add the following calls:  
fclose (f_but); 

fclose (f_adc); 

12. Select File/Save All or 

. 

13. Compile the project:    

14. Program the Flash and 

enter Debug mode:  

15. Click on RUN.  

16. Start the data recording 

and check the Thread 

optimization in the Event 

Viewer as previously 

described: now in this 

example it takes only 

about 0,4ms. 

17. Exit Debug mode:  

 

  



Creating a USB Data Logger Application using Middleware and CMSIS 

 

App Note 273  Copyright © 2015 ARM Ltd. All rights reserved 

Creating a USB Data Logger Application using Middleware and CMSIS keil.com/appnotes/docs/apnt_273.asp 20 

Serial Wire Viewer Summary 
Serial Wire Viewer (SWV) is a 1 bit data trace. It is output on the SWO pin which is shared with the JTAG TDO pin. This 

means you cannot use JTAG and SWV together. Instead, use Serial Wire Debug (SWD or SW) which is a two pin alternative 

to JTAG and has about the same capabilities. SWD is selected inside the µVision IDE amd is easy to use. 

1. The Core Clock: is the CPU frequency and must be set accurately. In this tutorial, 120 MHz is used. If you see ITM 

frames in the Trace Records window of number other than 0 or 31, or no frames at all, the clock frequency is 

probably wrong. 

2. SWV is configured in the Cortex-M Target Setup in the Trace tab. In Edit mode: Select Target Options  or 

ALT-F7 and select the Debug tab. Select Settings: Then select the Trace tab. In Debug mode: Select Debug/Debug 

Settings.. and then select the Trace tab. 

3. If SWV stops working, you can get it working by exiting and re-entering Debug mode. In rare cases, you might also 

have to cycle the board power.  

4. SWV outputs its data over a 1 bit SWO pin. Overloading can be common depending on how much information you 

have selected to be displayed. Reduce the information to only that which you really need helps as does limiting the 

activity of variables. Using a ULINKpro on boards equipped with a 20 CoreSight ETM connector enables the SWV 

information to be output on the 4 bit ETM trace port. 

5. For more information on XMC4500 Relax Kit see: http://www.keil.com/boards2/infineon/xmc4500relaxlitekit  

 

 

Watch, Memory windows and Serial Wire Viewer can display: 

 Global and Static variables. Raw addresses: i.e. *((unsigned long *)0x20000004) 

 Structures. 

 Peripheral registers – just read or write to them. 

 Can’t see local variables. (just make them global or static). 

 Cannot see DMA transfers – DMA bypasses CPU and CoreSight and CPU by definition. 

 You might have to fully qualify your variables or copy them from the Symbol window. 

Serial Wire Viewer (SWV) displays in various ways: 

 PC Samples. 

 A printf facility that does not use a UART. 

 Data reads. Graphical format display in the Logic Analyzer: Up to 4 variables can be graphed. 

 Exception and interrupt events. 

 All these are Timestamped. 

 CPU counters. 

Instruction Trace (ETM): 

 ETM Trace records where the program has been. Assembly instructions are all recorded. 

 Assembly is linked to C source when available (this is up to your program). 

 A recorded history of the program execution in the order it happened. 

 Provides Performance Analysis and Code Coverage. Higher SWV performance. 

 ETM needs a Keil ULINKpro to provide the connection to the 4 bit Trace Port.  

 

  

http://www.keil.com/boards2/infineon/xmc4500relaxlitekit


Creating a USB Data Logger Application using Middleware and CMSIS 

 

App Note 273  Copyright © 2015 ARM Ltd. All rights reserved 

Creating a USB Data Logger Application using Middleware and CMSIS keil.com/appnotes/docs/apnt_273.asp 21 

Document Resources 

Books 

 NEW! Getting Started MDK 5:     www.keil.com/mdk5/. 

 A good list of books on ARM processors is found at: www.arm.com/support/resources/arm-books/index.php 

 µVision contains a window titled Books. Many documents including data sheets are located there. 

 A list of resources is located at: www.arm.com/products/processors/cortex-m/index.php (Resources tab). 

 The Definitive Guide to the ARM Cortex-M0/M0+ by Joseph Yiu. Search the web for retailers. 

 The Definitive Guide to the ARM Cortex-M3/M4 by Joseph Yiu. Search the web for retailers. 

 Embedded Systems: Introduction to Arm Cortex-M Microcontrollers (3 volumes) by Jonathan Valvano. 

 MOOC: Massive Open Online Class: University of Texas: http://users.ece.utexas.edu/~valvano/ 

Application Notes 
1. Overview of application notes:    www.keil.com/appnotes 

2. NEW! Keil MDK for Functional Safety Applications: www.keil.com/safety 

3. Using DAVE with µVision:    www.keil.com/appnotes/files/apnt_258.pdf 

1. Using Cortex-M3 and Cortex-M4 Fault Exceptions  www.keil.com/appnotes/files/apnt209.pdf 

2. CAN Primer using NXP LPC1700:    www.keil.com/appnotes/files/apnt_247.pdf  

3. CAN Primer using the STM32F Discovery Kit  www.keil.com/appnotes/docs/apnt_236.asp 

4. Segger emWin GUIBuilder with µVision™   www.keil.com/appnotes/files/apnt_234.pdf 

5. Porting an mbed project to Keil MDK™   www.keil.com/appnotes/docs/apnt_207.asp 

6. MDK-ARM™ Compiler Optimizations   www.keil.com/appnotes/docs/apnt_202.asp 

7. Using µVision with CodeSourcery GNU   www.keil.com/appnotes/docs/apnt_199.asp 

8. RTX CMSIS-RTOS in MDK 5     http://www.keil.com/pack/doc/cmsis_rtx/index.html 

9. Lazy Stacking on the Cortex-M4     www.arm.com and search for DAI0298A 

10. Sending ITM printf to external Windows applications:  www.keil.com/appnotes/docs/apnt_240.asp 

11. Barrier Instructions   http://infocenter.arm.com/help/topic/com.arm.doc.dai0321a/index.html 

12. Cortex Debug Connectors:  http://www.keil.com/support/man/docs/ulinkpro/ulinkpro_cs_connectors.htm 

Useful ARM Websites 
1. Keil Forum:       www.keil.com/forum 

2. ARM Connected Community Forum:   http://cc.arm.com/groups/tools 

3. ARM University Program:     www.arm.com/university  

4. ARM Accredited Engineer Program:    www.arm.com/aae 

5. mbed™:       http://mbed.org 

6. CMSIS standard:       www.arm.com/cmsis 

7. CMSIS documentation:      www.keil.com/cmsis 

For comments or corrections on this document please email   feedback@keil.com 

http://www2.keil.com/mdk5/
http://www.arm.com/support/resources/arm-books/index.php
http://www.arm.com/products/processors/cortex-m/index.php
http://users.ece.utexas.edu/~valvano/
http://www.keil.com/appnotes
http://www.keil.com/safety
http://www.keil.com/appnotes/files/apnt_258.pdf
http://www.keil.com/appnotes/files/apnt209.pdf
http://www.keil.com/appnotes/files/apnt_247.pdf
http://www.keil.com/appnotes/docs/apnt_236.asp
http://www.keil.com/appnotes/files/apnt_234.pdf
http://www.keil.com/appnotes/docs/apnt_207.asp
http://www.keil.com/appnotes/docs/apnt_202.asp
http://www.keil.com/appnotes/docs/apnt_199.asp
http://www.keil.com/pack/doc/cmsis_rtx/index.html
http://www.arm.com/
http://www.keil.com/appnotes/docs/apnt_240.asp
http://infocenter.arm.com/help/topic/com.arm.doc.dai0321a/index.html
http://www.keil.com/support/man/docs/ulinkpro/ulinkpro_cs_connectors.htm
http://www.keil.com/forum
http://cc.arm.com/groups/tools/content
http://www.arm.com/
http://www.arm.com/aae
http://mbed.org/
http://www.arm.com/cmsis
http://www.keil.com/cmsis
mailto:feedback@keil.com


Creating a USB Data Logger Application using Middleware and CMSIS 

 

App Note 273  Copyright © 2015 ARM Ltd. All rights reserved 

Creating a USB Data Logger Application using Middleware and CMSIS keil.com/appnotes/docs/apnt_273.asp 22 

Keil Products and Contact Information 

Keil Microcontroller Development Kit (MDK-ARM™)  

 MDK-Lite (Evaluation version) - $0 

 MDK-ARM-CM™ (for Cortex-M series processors only – unlimited code limit) 

 MDK-Standard (unlimited compile and debug code and data size Cortex-M, ARM7 and ARM9) 

 MDK-Professional (Includes Flash File, TCP/IP, CAN and USB driver libraries and Graphic User Interface (GUI) 

 NEW! ARM Compiler Qualification Kit: for Safety Certification Applications 

USB-JTAG adapter (for Flash programming too) 

 ULINK2 - (ULINK2 and ME - SWV only – no ETM) 

 ULINK-ME – sold only with a board by Keil or OEM. 

 ULINKpro – Faster operation and Flash programming, Cortex-Mx SWV & ETM trace. 

 NEW! ULINKpro D – Faster operation and Flash programming, Cortex-Mx SWV, no ETM trace. 

 

For special promotional or quantity pricing and offers, please contact Keil Sales. 

Contact sales.us@keil.com  800-348-8051 for USA prices. 

Contact sales.intl@keil.com  +49 89/456040-20 for pricing in other countries. 

 

CMSIS-RTOS RTX is now provided under a BSD license. This makes it free. 

All versions, including MDK-Lite, include CMSIS-RTOS RTX with source 

code! 

Keil includes free DSP libraries for the Cortex-M0, M0+, M3, M4 and M7. 

Call Keil Sales for details on current pricing, specials and quantity discounts. 

Sales can also provide advice about the various tools options available to you. 

They will help you find various labs and appnotes that are useful. 

All products are available from stock. 

All products include Technical Support for 1 year. This is easily renewed. 

Call Keil Sales for special university pricing. Go to www.arm.com/university 

to view various programs and resources. 

Keil supports many other Infineon processors including 8051 and C166 series 

processors. See the Keil Device Database
®
 on www.keil.com/dd for the complete list of Infineon support. This information is 

also included in MDK. 

 

For more information: 

Keil Sales In USA: sales.us@keil.com or 800-348-8051. Outside the US: sales.intl@keil.com or +49 89/456040-20 

Keil Technical Support in USA: support.us@keil.com or 800-348-8051. Outside the US: support.intl@keil.com. 

 

 

 

 

mailto:sales.us@keil.com
mailto:sales.intl@keil.com
http://www.arm.com/
http://www.keil.com/dd
mailto:sales.us@keil.com
mailto:sales.intl@keil.com
mailto:support.us@keil.com
mailto:support.intl@keil.com

	Abstract
	Introduction
	Software Stack
	Prerequisites
	Set up the Workshop Environment
	Step 1: Create a Project
	Create a New Project for the Evaluation Board
	Setup the Debug Adapter

	Step 2: Add CMSIS-RTOS Thread and Timer
	Add and configure CMSIS-RTOS Thread and Timer
	RTX Kernel Awareness

	Step 3: Add Interfaces to the Board Components
	Step 4: Add File System Support
	Add the File System component to the project
	Configure the SPI pins for the CMSIS-Driver
	Configure the stack and thread memory resources

	Step 5: Add the USB device classes
	Add the USB components to the project

	Step 6: Implement the Data Logger Functions
	Implement a real time clock
	Add the user code to the thread
	Add the USB command handling
	Using the Data Logger

	Step 7: Improve Data Recording Operations
	Serial Wire Viewer Summary
	Document Resources
	Books
	Application Notes
	Useful ARM Websites

	Keil Products and Contact Information

