ARMKEIL ‘Tutorial: Cortex-M7 STM32 F7 Discovery Kit

Microcontroller Tools f".l_]sling ARM Keil MDK 5 toolkit featuring Serial Wire Viewer & ETM

Winter 2015 Version 1.6 Robert Boys, bob.boys@arm.com

The latest version of this document is here: www.keil.com/appnotes/docs/apnt 280.asp

Introduction:

The purpose of this lab is to introduce you to the STMicroelectronics Cortex™-M7 processor using the ARM® Keil® MDK
toolkit featuring the IDE pVision®. We will use the Serial Wire Viewer (SWV) and the on-board ST-Link V2 Debug Adapter.
You can also use a ULINK2 or a J-Link. For ETM instruction trace: use a Keil ULINKpro. See www.keil.com/st.

Keil MDK supports and has examples for most ST ARM processors. Check the Keil Device Database® on www.keil.com/dd2
for the complete list which is also included in MDK: in the uVision main menu, select Project/Select Device for target...

MDK supports the ELF/DWARF format. GCC and LLVM executables can be directly imported or used in pVision.
Linux: Cortex-A processors running Linux, Android and no OS are supported by ARM DS-5". www.arm.com/ds5.

Keil MDK-Lite™ is a free evaluation version that limits code size to 32 Kbytes. Nearly all Keil examples will compile within
this 32K limit. The addition of a valid license number will turn MDK into a full commercial version. MDK is free for STM32
FO/LO Cortex-MO processors. See www.keil.com/st or contact Keil Sales for more information.

Why Use Keil MDK ? MDK provides these features particularly suited for Cortex-M processor users:

1. pVision IDE with Integrated Debugger, Flash programmer and the ARM®
Compiler toolchain. MDK is a turn-key "out-of-the-box" solution.

Dynamic Syntax Checking on C source lines.

STM32CubeMX compatible. MDK 5 projects are created.
Compiler Safety Certification Kit: www.keil.com/safety/

TUV certified. SIL3 (IEC 61508) and ASILD (I1SO 26262).

Keil Middleware: TCP/IP, USB and Flash File. Easily configured.

A full feature Keil RTOS called RTX is included with MDK. RTX has a
BSD license and source code is provided. See www.keil.com/rtx/.

8. Two RTX Kernel Awareness windows. They are updated in real-time.
9. CoreSight™ Serial Wire Viewer and ETM trace capability is included.
10. Keil Technical Support is included for one year and is easily renewable. This helps you get your project completed.
11. Affordable perpetual and term licensing. Contact Keil sales for pricing, options and current special offers.

This document details these features:
1. Serial Wire Viewer (SWV) data trace using ST-Link V2. Real-time is tracing updated while the program is running.

2. Real-time Read and Write to memory locations for Watch, Memory and Peripherals windows. These are non-
intrusive to your program. No CPU cycles are stolen. No instrumentation code is added to your source files.

Six Hardware Breakpoints (they can be set/unset on-the-fly) and four Watchpoints (also known as Access Breaks).
RTX Viewer: a kernel awareness program for the Keil RTX RTOS that updates while your program is running.

A DSP example program using ARM CMSIS-DSP libraries. www.arm.com/cmsis

ETM instruction trace including Performance Analysis, Code Coverage and a Hard Fault error demonstration.

7. Create a project with STM32CubeMX, Keil Software Packs, MDK Middleware or ST Standard Peripheral Libraries.

Serial Wire Viewer (SWV):

Serial Wire Viewer (SWV) displays PC Samples, Exceptions (including interrupts), data reads and writes, ITM (printf), CPU
counters and timestamps. This information comes from the ARM CoreSight™ debug module integrated into STM32 CPU.
SWV does not steal any CPU cycles and is completely non-intrusive. (except for the ITM Debug printf Viewer).

Embedded Trace Macrocell (ETM): (includes Code Coverage and Performance Analysis)

ETM records and displays all instructions that were executed. This is very useful for debugging program flow problems such
as “going into the weeds” and “how did I get here?” ETM requires a ULINKpro and an STM32756G_EVAL board.

No ok own

o gk w

1 Copyright © 2016 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F7 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

http://www.keil.com/appnotes/docs/apnt_280.asp
mailto:bob.boys@arm.com
http://www.keil.com/dd
http://www.keil.com/st
http://www.keil.com/safety/
http://www.keil.com/rtx
http://www.arm.com/cmsis

1. Three Methods used to create pVision Projects: 3
2. CoreSight Definitions: 3
3. Overview: Keil MDK Software: MDK 5 4
4. Keil MDK Core Software Download and Installation: 4
5. Software Pack Download and Install Process: 4
6. Install the MDK 5 Blinky Example from the Software Packs: 5
7. Install the Blinky BM, RTX_Blinky and DSP Examples from the web: 5
8. Getting Started Guide MDK 5 manual: 5
9. STMicroelectronics evaluation boards: 5
10. Install the ST-Link V2 USB Drivers: 6
11. Testing the ST-Link V2 Connection: 6
12. Software Pack Version Selection and Manage Run-Time Environment: 7
13. Blinky example using the STM32F746G Discovery board: 8
14. Hardware Breakpoints: 8
15. Call Stack & Locals window: 9
16. Watch and Memory windows and how to use them: 10
17. View Variables Graphically with the Logic Analyzer (LA): 11
18. Watchpoints: Conditional Breakpoints (Access Breakpoints) 12
19. ITM (Instrumentation Trace Macrocell): 13
20. Printf with ITM (Instrumentation Trace Macrocell): 14
21. RTX_Blinky example: Keil RTX RTOS: 15
22. RTX Kernel Awareness using RTX Viewer: 16
23. Logic Analyzer: View variables real-time in a graphical format: 17
24. DSP Sine Example using ARM CMSIS-DSP Libraries 18
25. Keil Middleware: Network (TCP/IP), Flash File, USB, Graphics 21
26. Creating your own MDK 5 project from scratch: 22
27. Creating your own RTX RTOS project from scratch: 25
28. Adding a new Thread to your RTX project: 26
29. Using Event Viewer to examine the timing of RTX: 27
30. Using STM32CubeMX to create a simple Blinky Program: 28
31. ETM Instruction Trace: with ULINKpro: 30
1) Configure ETM 31
2) Searching for Trace Frames 33
3) Trace Triggers: 33
4) Code Coverage (CC): 35
5) Performance Analysis (PA): 37
6) "In-the-Weeds" example: Finding a A Hard Fault cause: 39
32. Serial Wire Viewer (SWV) and ETM Summary and SWV Configuration: 40
33. Document Resources: 42
34. Keil Products and contact information: 43

Note: MDK 5.17 and Software Pack STM32F7xx_DFP 2.3.0 were used in the exercises in this document.

2
STMicroelectronics Discovery STM32F7 Lab with ARM® Keil™ MDK toolkit

Copyright © 2016 ARM Limited or its affiliates. All rights reserved

www.keil.com/st

1) Three Methods used to create pVision Projects:

There are three main methods to create your own pVision projects:

1) STM32CubeMX. This configures your processor and exports a pVision project in MDK 5 format. See
Page 28. STM32CubeMX can be downloaded from www.st.com/stm32cubemx/

2) Standard Peripheral Libraries from ST. STM32CubeF7. Contains extensive examples and source code
for Keil MDK 5. These libraries are available from www.st.com/stm32cubemx/

3) uVision Software Packs, examples and Keil Middleware. A Software Pack includes examples and files
that you can use. See Page 21 and www.keil.com/pack/doc/STM32Cube/General/html/index.html

STM32CubeMX provides software in MDK 5 format consistent with Software Packs. Keil Middleware supports STM32F7.

MDK 5 and MDK 4 projects: MDK 5 uses Software Packs and MDK 4 does not. This tutorial uses MDK 5 projects
which have a filename extension .uvprojx. Legacy MDK 4 projects (with an extension .uvproj) can be converted to MDK 5:
Select Project/Manage/Migrate to Version 5 format... You can also use MDK 5 Legacy support for older processors.
ELF/DWARF: The ARM compiler produces a .axf file which is ELF/DWARF compliant. pVision can load similar compiler
output such as from GCC with all debug information visible. You can also use GCC as your compiler of choice in pVision.

2) CoreSight Definitions: Itis useful to have a basic understanding of these terms:

Cortex-MO and Cortex-MO0+ have only features 2) through 3) plus 11 and 12 implemented. Cortex-M3, Cortex-M4 and
Cortex-M7 can have all features listed implemented. MTB is normally found on Cortex-MO0+. It is possible some
processors have all features except ETM Instruction trace and the 4 bit trace port. Consult your specific
STMicroelectronics datasheet to determine its specific feature set.

1. JTAG: Provides access to the CoreSight debugging module located on the Cortex processor. It uses 4 to 5 pins.

2. SWD: Serial Wire Debug is a two pin alternative to JTAG and has about the same capabilities except Boundary Scan
is not possible. SWD is referenced as SW in the pVision Cortex-M Target Driver Setup. The SWJ box must be
selected if it is displayed. Serial Wire Viewer (SWV) must use SWD because the JTAG signal TDIO shares the same
pin as SWO. The SWV data normally comes out the SWO pin and a conflict will arise.

3. DAP: Debug Access Port. This is a component of the ARM CoreSight debugging module that is accessed via the
JTAG or SWD port. One of the features of DAP is the memory read and write accesses which provide on-the-fly
memory accesses without the need for processor core intervention. pVision uses the DAP to update memory, watch
and RTOS kernel awareness windows in real-time while the processor is running. You can also modify variable
values on the fly. No CPU cycles are used, the program can be running and no source code stubs are needed.

You do not need to configure or activate DAP. uVision configures DAP when you select a function that uses it.

SWV: Serial Wire Viewer: A trace capability providing display of reads, writes, exceptions, PC Samples and printf.
SWO: Serial Wire Output: SWV frames usually come out this one pin output. It shares the JTAG signal TDIO.
Trace Port: A 4 bit port that ULINKpro uses to output ETM frames and optionally SWV (rather than SWO pin).

ITM: Instrumentation Trace Macrocell: As used by pVision, ITM is thirty-two 32 bit memory addresses (Port 0
through 31) that when written to, will be output on either the SWO or Trace Port. This is useful for printf type
operations. pVision uses Port O for printf and Port 31 for the RT X Event Viewer. The data can be saved to a file.

8. ETM: Embedded Trace Macrocell: Displays all the executed instructions. The ULINKpro provides ETM. ETM
requires a special 20 pin CoreSight connector. ETM also provides Code Coverage and Performance Analysis.

9. ETB: Embedded Trace Buffer: A small amount of internal RAM used as an ETM trace buffer. This trace does not
need a specialized debug adapter such as a ULINKpro. ETB runs as fast as the processor and is especially useful for
very fast Cortex-A processors. Not all processors have ETB. See your specific datasheet.

No gk~

10. MTB: Micro Trace Buffer. Found only on Cortex-MO+ processors. A portion of the device internal RAM is used
for an instruction trace buffer. STM32 Cortex-M3, M4 and M7 processors provide ETM trace instead.

11. Hardware Breakpoints: The Cortex-MO0+ has 2 breakpoints. Cortex-M3, M4 and M7 processors usually have 6.
These can be set/unset on-the-fly without stopping the processor. They are no skid: they do not execute the
instruction they are set on when a match occurs.

12. WatchPoints: Both the Cortex-M0, M0+, Cortex-M3, Cortex-M4 and Cortex-M7 can have 2 Watchpoints. These
are conditional breakpoints. They stop the program when a value is read and/or written to an address or variable.

3 Copyright © 2016 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F7 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

http://www.st.com/stm32cubemx/
http://www.st.com/stm32cubemx/
http://www.keil.com/pack/doc/STM32Cube/General/html/index.html

3) Overview: Keil MDK Software: MDK 5 This document uses MDK 5.17 or later.

MDK 5 uses Software Packs to distribute processor specific software, examples and middleware. MDK 5 Core is first
installed and you then download the Software Packs you require from the web. They can also be imported manually. You no
longer need to wait for the next version of MDK or install patches to get the latest processor specific files.

4) Keil MDK Core Software Download and Installation:
Download MDK Core from the Keil website. www.keil.com/mdk5/install

Install MDK into the default folder C:\Keil _v5.
We recommend you use the default folders for this tutorial. We will use C:\MDK\ for the examples.
If you install MDK or the examples into different folders, you will have to adjust for the folder location differences.

MDK Licensing:
1. You can use the evaluation version (MDK-Lite) for this lab. No license is needed.

2. You can obtain a one-time free 7 day license in File/License Management. If you are eligible, this button is visible:

A w b e

3. This gives you access to the Keil Middleware as well as unlimited code size Evaluste MDK Professional |
compilation. Contact Keil sales to extend this license for evaluation purposes.

5) Software Pack Download and Install Process:

1) Start uVision and open Pack Installer: After the first MDK install is complete, pVision and Software Packs will startup.
Otherwise, follow Steps 1 and 2 below.

1. Connect your computer to the Internet. This is normally needed to download the Software Packs.
2. Start pVision by clicking on its desktop icon. w%m

3. Open the Pack Installer by clicking on its icon: @
This window opens up: Select the Boards tab. Type discovery in the Search box to filter the listings:

4 Pack Tnstaller - C:\Keil_v5\ARM|PACK =l0lx|

TIP: What is selected on the left side in the Devices and Boards tabs e e
filters what is displayed on the right side in the Packs and Examples tabs. :

5. Select STM32F746G-Discovery as shown here: You can also
select individual processors under the Devices tab.

6. Note: “ONLINE” is displayed at the bottom right. If
“OFFLINE” is displayed, connect to the Internet.

TIP: If there are no entries shown because you were not connected to the Internet when Pack Installer opened, select
Packs/Check for Updates or R to refresh once you have connected to the Internet.

2) Install The STM32F7 Software Pack:
1. Click on the Packs tab. Initially, the Software Pack ARM::CMSIS is installed by default.

2. Select Keil::STM32F7xx_DFP as shown above and click on Install. The latest Pack will download and install to
C:\Keil_v5\ARM\Pack\Keil\ST\ by default. This download can take two to four minutes.

3. Its status will then be indicated by the “Up to date” icon: 4 Upto date |
4

We will install the examples on the next page: Please leave Pack Installer open.

A Pack Installer Welcome screen will open. Read and close it.

Seareh

What is a Software Pack made up of ? 1 pack Insaler i\ Kol vSARMPACK ialx]
Fle Packs Window Hep

A Pack is an ordinary zip file with a .pack j - T

o o o . 4| peces ' poards Pac mples]

filename extension. This file can contain S o B[R T

various headers and other source files, Flash = A N —

programing algorithms, examples, RTOS, : s o R -

Middleware, documentation and Board BT el |8 j T e o %MJ =

Support Packages (BSP). A .pdsc file in XML e ——— — .

format describes the Pack contents. Compte s acirs oune
4 Copyright © 2016 ARM Limited or its affiliates. All rights reserved

STMicroelectronics Discovery STM32F7 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

http://www2.keil.com/mdk5/install

6) Install the MDK 5 Blinky Example from the Software Pack:

1. You must still have Pack Installer open from the previous page. If not, open it now:
2. Select the Boards tab. In the Search: box, enter discovery to filter the entries displayed.
3. Select STM32F746G-Discovery in the Boards tab.
4. Select the Examples tab: Q1 vass” Bampie o
5. Inthe Example tab: select CMSIS-RTOS Blinky: | [show examies from instalied packs only
Example Action Description
6. Select Copy MELI DO not Select the ~-BSD Client (STM32F746G-Discovery) @ Copy. Example using BSD sockets to send commands to rer 4 |
Bllnky example USI ng STMSZCubeMX BSD Server (STM32EJ4RG 1 "\. % le using BSD sockets to accept commands fron
~-CMSIS-RTOS Blinky (STM32F746G-Discovery) ® Copy CMSIS-RTOS based BI example

7 The Copy Example WindOW bE"OW OpenS up CMSIS-RTOS Blinky With STVIS ZCUBEm (ST, | S7Copy. TMSIS-RTOS based Blinky example configured with S

' ' FTP Server (STM32F746G-Discovery) : Copy File Server using FTP protocol with SD/MMC Memory,
8. Inthis window, select Use Pack Folder Structure: i St o [ATMERETASE Mirrmonnd (S e TSI manineintinn nvamnly ot o e it

Unselect Launch pVision:

9. Typein C:\ asshown to the right: Click OK to copy into) Desmnm .
C:\MDK\Boards\ST\STM32F746G_Discovery\. & e,
TIP: When you specify C:\ in the Copy Example window, pVision uses Itk Pack e Stuctre Ltentue
information in the Software Pack to create the rest of the folder tree. In this Cancel
case, it creates the folders MDK\Boards\ST\STM32F746G_Discovery\ in C:\.
i

10. Close Packs Installer. You can open it any time by clicking on its icon.
11. If a window opens stating the Software Packs folder has been modified. Reload Packs?, select Yes.

TIP: The default directory for copied examples the first time you install MDK is C:\Users\<user>\Documents. For
simplicity, we will use the default directory of C:\MDK\ in this tutorial. You can use any directory you prefer.

TIP: An "Update" icon means there is an updated Software Pack available for download.

The “Up to date” icon means exactly that: Up to date

Select Packs/Check for Updates or this icon " in the Pack Installer to refresh this list. This is not done automatically. You
must be connected to the Internet. Remember a Pack can be imported manually as well as from the web. You can create your
own Pack for unannounced devices or for your own proprietary boards or source code and distribute it privately.

7) Install the Blinky_BM, RTX_Blinky and DSP Examples from the web: —
1. Obtain the example software zip file from www.keil.com/appnotes/docs/apnt_280.asp. | Binky
2. Extract this into the directory C:\MDK\Boards\ST\STM32F746G_Discovery\ ¢ Blinky_BM
3. The Blinky_BM, DSP and RTX_Blinky folders will be created along with the Blinky folder:) :Ej:_minky

8) Getting Started Guide MDK 5 manual: Obtain this useful book here: www.keil.com/gsg

9) STMicroelectronics evaluation boards:
This tutorial supports two STM32F7 boards: many others can be used with slight modifications.

STM32F746G-Discovery: As pictured on the front page. This tutorial uses this board except for the ETM exercises. Blinky
and Middleware examples are provided. You do not need any debug adapters: just the Discovery board, a USB cable and
MDK 5 installed on your PC. You connect to the on-board ST-Link V2 debug adapter with a USB cable connected to CN14
and to your PC which also powers the board.

STM32756G_EVAL.: This is used in the ETM examples in this tutorial. Blinky and Middleware examples are provided.
This has a 20 pin CoreSight connector for ULINKpro. ETM has 4 bit signal + a clock + JTAG/SWD signals.

Custom or other boards: Using MDK with other STM32F7 boards is easy. For information concerning debug connectors
visit www.keil.com/coresight/coresight-connectors/

On-board Debug Adapters: To install your own on-board debug adapter on a custom board: see CMSIS-DAP:
www.keil.com/pack/doc/CMSIS/DAP/html/

5 Copyright © 2016 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F7 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

http://www.keil.com/appnotes/docs/apnt_230.asp
http://www.keil.com/gsg
http://www.keil.com/coresight/coresight-connectors/
http://www.keil.com/pack/doc/CMSIS/DAP/html/index.html

10) Install the ST-Link V2 USB Drivers: (this is not necessary if the test below passes)
ST-Link V2 USB drivers initially must be installed manually. Windows may attempt to install them but this might not work.
Installing the ST-Link USB Drivers: This step normally needs to be done just once !

1. Do not have the Discovery board USB port connected to your PC.

2. The USB drivers must be installed manually by executing stlink_winusb_install.bat. This file is found in
C:\Keil_v5\ARM\STLink\USBDriver\. Double-click on this file. The drivers will install.

3. Connect a PC to the Discovery board USB CN14. The USB drivers will now finish installing in the normal fashion.

Upgrading the ST-Link V2 Firmware on the board: The ST-Link V2 firmware updater utility ST-LinkUpgrade.exe
is located here: C:\Keil_vS\ARM\STLink\. It is a good idea to upgrade the ST-Link firmware. Find this file and double click
onit. Itiseasy touse. It will check and report the current firmware version. If you experience trouble especially with Serial
Wire Viewer (SWV), try updating to the latest drivers and firmware.

11) Test the ST-Link V2 Connection: (Optional)

Mo)
Start pVision mu-m if it is not already running.
Connect the Discovery board to your PC with a USB cable as shown on the first page of this tutorial.

If the ST-Link USB drivers are installed correctly, you should hear the usual USB connected dual-tone. If not, you
might have to install the drivers manually. See the directions above.

Two red LEDs will light: LD7 and LD2 (PWR).
Select Project/Open Project.
Select the Blinky project C:\MDK\Boards\ST\STMF32F4-Discovery\Blinky\Blinky.uvprojx. (or any project)

Select STM32F407 Flash as shown here; STM32F746 Fiash b L X

- | Linker Debug | Littes |
Select Target Options &N or ALT-F7 and select the Debug tab: wessssssm) | & Use: [STLnk Debugoer =] _Setings | |

9. Click on Settings: and the window below opens up: If an IDCODE and Device name is displayed, ST-Link is
working. You can continue with this tutorial on the next page. Click OK twice to return to the pVision main menu.

w N e

A A

©

10. A number in the Serial Number: box means uVision is successfully connected to the ST-Link adapter via USB.
11. If nothing or an error is displayed in this SW Device box, this must be corrected before you can continue. See the

instructions above: Installing the ST-Link USB Drivers: Corten-r Tarmet Drversetup. x
12. Once you see a proper display, your ST-Link USB drivers e -
are installed properly. Click OK twice to exit the Target ot TN e MLl
Options windows and continue to the next page. v o
. : - . Fimware Version: [V2J1650 -
TIP: To refresh the SW Device box, in the Port: box select JTAG N o | i B
and then select SW again. You can also exit then re-enter this Max oo [=] | || |21 | e | tpssi| s [

window. ST-Link V2 does not support JTAG mode, only SWD.

LED LD7 indication:

LED is blinking RED: the start of USB enumeration with the PC is taking place but not yet completed.

LED is RED: communication between the PC and ST-LINK/V2 is established (end of enumeration). pVision is not connected
to ST-Link (i.e. in Debug mode).

LED is GREEN: pVision is connected in Debug mode and the last communication was successful.

LED is blinking GREEN/RED: data is actively being exchanged between the target and pVision.

LED is off, except for a brief RED flash while entering Debug mode and a brief flash when clicking on RUN happens when
the SWV trace is enabled in puVision.

No Led: ST-LINK/V2 communication with the target or pVision has failed. Cycle the board power to restart.

6 Copyright © 2016 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F7 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

12) Software Pack Version Selection and Manage Run-Time Environment:
This section is presented for reference only.

Select Software Pack Version:

This pVision utility provides the ability to choose various software pack versions installed in your computer. You can select
the various versions you want to use. You are able to "freeze" software versions for your development purposes.

2. Select Project/Open Project in pVision.
3. Open the project Blinky.uvprojx located in C:\MDK\Boards\ST\STM32F746G_Discovery\Blinky\.
- - - - "h
4. Open Select Software Pack by clicking on its icon: "
5. This window opens up. Note Use latest versions ... is selected. The latest version of the Pack will be used. The
Packs used in the active project in uVision are highlighted in green as shown below:
6. Unselect this setting and the window changes similar to that shown below right:
You probably will see a different screen depending on what Packs are installed (or not).
5|
[¥ Use latest versions of all installed Software Packs
Pack Selection Version Description
- Keil:STM32F0w0_DFP latest =140 STMicroelectronics STM32F0 Series Device Support and Examples ;I
FA-Keil:STM32FLioe_DFP s =110 STMicroelectronics STM32FL Series Device Suppart, Drivers and Examples
Keil::5TM32F3:c_DFP =130 STMicroelectronics STM32F3 Series Device Support and Examples
[H-Keil::STM32F400_DFP - 250 STMicroelectronics STM32F4 Series Device Support, Drivers and Examples
- Keil::STM32FTe_DFP =220 STMicroelectronics STM32FT Series Device Support, Drivers and Examples
H-Keil::STM3210x_DFP 130 STMicroelectronics STM32L0 Series Device Support and Examples J
- Keil:5TM32 e _DFP =102 STMicroelectronics STM32L1 Series Device Support and Examples
- Keil:STM32MUCLED_BSP - 1.20 STMicroelectronics Mucleo Boards Support and Examples
- KeilW2M-MPS2_CMx_BSP - 1.1.0 ARM VZM-MPS2 Board Support PACK for Cortex-M System Design Kit Devices -
QK I Cancel | Help |
7. Expand the header Keil::STM32F7xx_DFP. Note the various versions visible. You probably will see a
different screen depending on what Packs are installed or not.
.Select excluded and see the options as shown: I™ Use latest versions of all installed Software Packs
If you wanted to use V 2.1.0, you would select fixed and then select Frledlon | Verlor
the check box opposite 2.1.0. , "
. fixed "l =
10. Re-select Use latest versions. .. latest fwed =220
. . fixed [
11. Close this window. =
. . . 1. r
Manage Run-TIme EnVI ronment' [+--Keil:5TM32L0:x_DFP excluded =
-Keil::STM32LLx_DFP excluded |+
1. Click on the Manage RTE icon: ‘ The next window opens: This
includes the board support package (BSP), Keil Middleware, selected open source software, RTX and CMSIS drivers
for various peripherals. This window is created by the .pdsc file in the Software Pack.
2_ Expand Various W Manage Run-Time Environment x|
headel’S and nOte the Software Component Sel. Variant Version Description
1 EI-‘ Board Support STM32F746G-Discovery « |1.0.0 STMicroelectronics STM32F746G-Discovery Kit -
selections you can 4 Buttons (41 100 |Buttons Interface
make A Se|eCtI0n 0 Drivers Kinetis BSP Drivers
H 4% Graphic LCD (AP]) 1.00 Graphic LCD Interface
made he_re WI" =4 LED (AP0 1.00 LED Interface
automatlca“y insert | @ LED i 100 LED Interface for STMicroelectronics STM32F746G-Discovery Kit
H + ‘ Touchsecreen [4P) 1.00 Touchscreen Interface
the appropriate source B4 emWin LCD (4P) 11 emWin LCD Interface
files into your pl’OjeCt. [—]" CMSIS Cortex Microcontroller Software Interface Components
W CORE cl 410 CMSIS-CORE for Cartex-M, SC000, and SC300
3 Components Selected i@ DSP =] 145 CMSIS-DSP Library for Cortex-M, SC000, and 5C300
' . Er4p RTOS (APD 10 CMSIS-RTOS API for CortexM, 5C000, and SC00
are shown in green. @ Keil RTX [4780 | CMSIS-RTOS RDXimplementation for Cortex-b, 5C000. and SC300 _lil
e | »
4. Do not make any |
- Validation Output Description
changes. Click Cancel : o
to Close thls WIndOW Resolve | Select Packs Details | Cancel Help

7 Copyright © 2016 ARM Limited or its affiliates. All rights reserved

STMicroelectronics Discovery STM32F7 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

13) Blinky example program using the STM32F746G Discovery board:
We will connect the Keil MDK development system using real target hardware using the built-in ST-Link V2 debug adapter.

Start pVision by clicking on its desktop icon. & Connect to your PC with a USB cable to USB ST-Link CN14.
Select Project/Open Project. Open C:\MDK\Boards\ST\STM32F746G_Discovery\Blinky BM\BIinky.uvprojx

By default, ST-Link is selected. If this is the first time you have run pVision and the Discovery board, you might
have to install the USB drivers. See the configuration instructions on page 6.

Enter Debug mode by clicking on the Debug icon.@ Select OK if the Evaluation Mode box appears. The Flash
will be erased and programmed and progress will be indicated in the Output Window.

Click on the RUN icon. Note: you stop the program with the STOP icon. >

The LED LD1 on the STM32F7 Discovery board will blink.
Press the blue USER button and it will blink slower.

Now you know how to compile a program, program it into the STM32 processor Flash, run it and stop it !
Note: The board will start Blinky stand-alone. Blinky is now permanently programmed into the Flash until reprogrammed.

14) Hardware Breakpoints:
The STM32F7 has six hardware breakpoints that can be set or unset on the fly while the program is running.

1.

With Blinky running, in the Blinky.c window, click on a darker grey block in the left margin on a line in main() in the
while loop. Between near lines 57 through 61 will suffice.

A red circle will appear and the program will stop.

Note the breakpoint is displayed in both the disassembly and source windows as shown below:

You can set a breakpoint in either the Disassembly or Source windows as long there is a gray rectangle indicating the
existence of an assembly instruction at that point.

Every time you click on the RUN icon the program will run until the breakpoint is again encountered.

. : nik T
You can also click on Single Step (Step In) & , Step Over { and Step Out {3 :
Remove all breakpoints when you are done for the next exercise by clicking on them again.

TIP: To single step (Step In) by assembly instruction, click on the Dlsassembly window to bring it into focus. To stepbyaC

source line, bring the appropriate source window into focus.
TIP: A hardware breakpoint does not execute the instruction

0x080013C6 FTFEFF3D BL.W Buttons_Initialize (0x08000244)
57: while (1) {

581
0x0D80013CA E008 B 0x080013DE

it is set to. ARM CoreSight breakpoints are no-skid. Your Thread 1ED();
- - - - .- :}()XOEOOISCC FT7FFFFD2 BL.W Thread LED (0x0800137 QJ
instructions in Flash are not substituted or modified. These it (Busco tEve ()] /% Slow blinking while holding U
. . . 0x0E0013D0 FTFEFF28 BL.W Buttons_GetState (0x08000224)
are rather important features for efficient software prosooisos Bus cz o RO Ox0800s0E
deVeIOpment. Lﬂxoaoaisns F44FT0FR MOV ’rO.#OxJFﬂ _’ILI
TIP: You can delete the breakpoints by clicking on them or B R T —
selecting Debug/Breakpoints (or Ctrl-B) and selecting Kill 22| systemcoreciockupdace():
All. B || oarons mmaaatizeo: /° Baccons rettiaiasation
56 -
TIP: You can view the breakpoints set by selecting ?I s
Debug/Breakpoints or Ctrl-B. H oL TR + Siow pismeing wnile nolsing USER bateen
61 Delay(500);
62 | }
65 = =
4] | »

8 Copyright © 2016 ARM Limited or its affiliates. All rights reserved

STMicroelectronics Discovery STM32F7 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

15) Call Stack + Locals Window:

Local Variables:

The Call Stack and Local windows are incorporated into one integrated window. Whenever the program is stopped, the Call
Stack + Locals window will display call stack contents as well as any local variables belonging to the active function.

If possible, the values of the local variables will be displayed and if not the message <not in scope> will be displayed. The
Call + Stack window presence or visibility can be toggled by selecting View/Call Stack window.

1. Runand Stop Blinky '9 Click on the Call Stack + Locals tab.

2. You will probably be stopped in the Delay() function as shown here in the Call Stack + Locals window:

The contents of the local variables are displayed as well as
names of active functions. Each function name will be

Call Stack + Locals

displayed as it is called from the function before it or from Mame Location/Value | Type
an interrupt or exception_ EI W Delay 0x080002F8 void flunsigned int) -
. . . i L. diyTicks 0:00000064 param - unsigned int

When a function exits, it is removed from the list. e s 00009953 Jufo - unsigned int

The first called function is at the bottom of this table. - @ Thread_LED 0x0800138E vaid [

This table is active only when the program is stopped. - W DIDTRIIEIL O -l
-

. . T ;
3. Click on the Step Inicon or F11: ¥ i#1Call Stack = Locals | watch 1 | E Memary1 |

Note the different functions displayed as you step through them. If you get trapped in the Delay function, use Step

Rl
Out & or Ctrl-F11 to exit it faster.
Click numerous times on Step In and see other functions.
Right click on a function name and try the Show Callee Code and Show Caller Code options as shown here:

. . r_l . . . A2 ANNA1 D I
7. Click on the StepOut icon & {0 exit all functions to return to main(). 20 nom Show Caller Code E
¥ main Show Callee Code E
TIP: You can modify a variable value in the Call Stack & Locals window when |- # num _ _ au
the program is stopped. ~ @ dir v | Hexadecimal Display b
TIP: This is standard “Stop and Go” debugging. ARM CoreSight debugging = W hitns [nxn0000000 Lz

technology can do much better than this. CoreSight can display global or static variables updated in real-time while the
program is running. No additions or changes to your code are required. Updating variables while the program is running is
not possible with local variables because they are usually stored in a CPU register. They must be converted to global or static
variables so they always remain in scope.

If you have a ULINKpro with ETM trace, you can see a record of all the instructions executed. The Disassembly and Source
windows show your code in the order it was written. The ETM trace shows it in the order it was actually executed with
timestamps. This is very useful for finding tricky and complicated program flow problems. See page 44 for more uses. ETM
also provides Code Coverage, Performance Analysis and Execution Profiling.

Changing a local variable to a static or global normally means it is moved from a CPU register to RAM. CoreSight can view
RAM including peripherals, but not CPU registers when the program is running.

Call Stack:

The list of stacked functions is displayed when the program is stopped as you have seen. This is useful when you need to
know which functions have been called and what return data is stored on the stack.

TIP: You can access the Hardware Breakpoint table by clicking on Debug/Breakpoints or Ctrl-B. This is also where
Watchpoints (also called Access Points) are configured. You can temporarily disable entries in this table.

Selecting Debug/Kill All Breakpoints deletes Breakpoints but not Watchpoints.

9 Copyright © 2016 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F7 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

16) Watch and Memory Windows and how to use them:

The Watch and Memory windows display updated variable values in real-time. It does this through the ARM CoreSight
debugging technology that is part of Cortex-M processors. It is also possible to modify values in the Memory window.

Watch window:
Add a global variable: Recall the Watch and Memory windows can’t see local variables unless stopped in their function.
Make local variables static or global to make them visible in a Watch or Memory window while the program is running.

1. Stop the program @ and exit Debug mode.)}

2. InBlinky.c, declare a global variable (I called it counter) near line 20 like this: unsigned int counter = 0;
3. Add the statements counter++; and if (counter > 0x10) counter = 0; asshown here near line 60:
4

Select File/Save All or click i, 58 Thread LED();
60 CCIJI]EE;++,‘
. . '\-5"\} 61 if (counter > 0xl10) counter = 0;
5. C|ICk on RebUIld I_I . 62 if (Buttons_GetState())}{

Enter Debug mode. @ Click on RUN . You can set Watch and Memory windows while the program runs.

In Blinky.c, right click on the variable counter and select Add counter to ... and select Watch 1. Watch 1 will open
if needed and counter will be displayed as shown here:

- - - - Name | Value | Type
counter WI” Increment n real-tlme - SystemCoreClock 216000000 unsigned int
Note some values of counter will be missed because the Watch |~ 7 @ anstgned it

and Memory windows are updated periodically. Press the Blue
User button to demonstrate this by slowing the program down. — Zcaistack - tocals | wateh1 [l vemory 1 |

TIP: Note SystemCoreClock is visible and this displays the CPU clock frequency as shown above.
TIP: If an update occurs only when the program is stopped, make sure View/Periodic Window Update is selected.

TIP: You can also block counter, click, hold and drag it into a Watch or Memory window. You can also enter a variable
manually by double-clicking under Name or pressing F2 and using copy and paste or typing the variable. Use the
View/Symbols window to enter a variable fully qualified if needed.

Memory window:
1. Right-click on counter and similarly enter it into the Memory 1 window.

2. Note the value of counter is displayed in the address column in Memory 1 as if it is a pointer. This is useful to see
what memory address a pointer is pointing to; but this not what we want to see at this time.

3. Add an ampersand “&” in front of the variable name and press Enter. The physical address is shown (0x2001_0004).

4. Right click in the Memory window and select Unsigned/Int.

5. The value of counter is now displayed as a 32 bit value.)

6. Both the Watch and Memory windows are updated in real-
time without stealing CPU cycles. Address: [scourter D ﬂ

7. You can modify counter in the Memory window while the T5xzo0010004: ooooof@ooooo OCDFE600 00000000
program is running with a right-click with the mouse i — 000000 00000000 00000000
cursorover the data fild and select Modify Memory. |:33930%31 seoeees seesees cenenees seeiiniy

.5.'_'|Call Stack = Locals | Watch 1 | 2| Memory 1

TIP: To view variables and their locations use the Symbol window. Select View/Symbol Window while in Debug mode.
How It Works:

uVision uses ARM CoreSight technology to read or write memory locations without stealing any CPU cycles. This is nearly
always non-intrusive and does not impact the program execution timings. The Cortex-M/M4/M7 series are a Harvard
architecture. This means it has separate instruction and data buses. While the CPU is fetching instructions at full speed, there
is plenty of time for the CoreSight debug module to read or write data values without stealing any CPU cycles.

This can be slightly intrusive in the unlikely event the CPU and pVision reads or writes to the same memory location at
exactly the same time. Then, the CPU will be stalled for one clock cycle. In practice, this cycle stealing never happens.

10 Copyright © 2016 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F7 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

17) View Variables Graphically with the Logic Analyzer (LA):

We will display the global variable counter you created earlier in the Logic Analyzer. No code stubs in the user code will be
used. This example uses the Serial Wire Viewer (SWV) and therefore does not steal CPU cycles.

1. Stop the processor Q and exit Debug mode. @
Configure Serial Wire Viewer (SWV):

2. Select Target Options #N or ALT-F7 and select the Debug tab. Select Settings: on the right side of this window.
Confirm SW is selected. SW selection is mandatory for SWV. ST-Link uses only SW. Select the Trace tab.

3. Inthe Trace tab, set Core Clock: to 216 MHz. Select Trace Enable. Unselect Periodic and select EXCTRC.
Everything else is set as shown here: —————————t E

Debug Trace | Flash Dewnload |

4. Click OK once to return to the Debug tab.

. . r~ Trace Port Timestamp: Trace Events ——————————
5. Click OK return to the main menu. Enter Debug mode. @ oo Ve 0iod URTIRZ] | | ¥ Enabls Prsscaler[T =] | | I Pl Cycleaper stucion

™ EXC: Exception overhead

SWO Clock Prescaler:| 102 PC Sampling

nfigure the Logic Analyzer: I~ SLEEP: Sleep Cycles
Configure the .Og Cc Ana y. e . . e D';mme:d Prscae 102576 =] | || 1 150 LondSere L Gy
1. Open View/Analysis Windows and select Logic Analyzer W s REH [T || O I e
[I on Data RAW Sample ¥ EXCTRC: Exception Tracing
or select the LA window on the toolbar. E | 1TH i Pors 5 re mm e 5k n 57 rm b
. . . . Enable: |GFFFFFFFF 172 72 72 77 72 2 2l 2 2 7 v v g el g v) v P e o el v e g g v v e
TIP: You can configure the LA while the program is running. Piviege: [GO0000008 | Pat31.2¢ [P23i6 [Fot15.81 Pat7.0
2. Click on the Blinky.c tab. Right click on counter and Fnge
select Add counter to... and then select Logic Analyzer. I™ Overute CYCENT
You can also Drag and Drop or enter it manually. [ok | Comcel | ool

3. Inthe Logic Analyzer window, click on the Select box and the LA Setup window appears as shown here:

4. With counter selected, set Display Range Max: to 0x15 as shown here: \@mmm@m J;
.
5. Click on Close.
Run the Program:
1. Click on Run. Click on Zoom Out until Grid is about 1 second. - RS
2. The variable counter will increment to 0x10 (decimal 16) and then is set to 0. o T
TIP: If you do not see a waveform, exit and re-enter Debug mode to refresh the LA. You [e wamoe |
might also have to repower the Discovery board. Confirm the Core Clock: value is correct. \ F“’;jﬁ'@j’;jwmg e |‘
TIP: You can show up to 4 variables in the Logic Analyzer. These variables must be global, e
static or raw addresses such as *((unsigned long *)0x20000000). e

1. Press the blue User button and see counter increment slower as shown in the blue circle below:

2. Select Signal Info, Show Cycles, Amplitude and Cursor to see the measuring capabilities of the LA. You can stop the
LA from acquiring

data by clicking on Bl =

the Stop icon in MinTme MamcTme Gid | Zoom | Min/Max |Update Sereen| Transtion | Jumpto ||~ Sigrallfo |~ Ampltude ¥ Timestamps Enatl
€ Stop Ico Geve][0Os [45700036 [s []Out [AT] [Auto] lnds] [Sop][oar] Prov[Ne] [Code [Trscs] I~ Show Cycles I~ Cursor -

the Update Screen o5 ; | ; ; ; ; ; ; ; ; : : ‘

box. Your

program can keep

running. courter

3. Note counter

briefly reaches

0x11 since the test LT : : : ' : : : : : : : : : ;

. 30.23408 = 38.23408 ¢ 46.23408 s

is after the ml Lefl=1]

|ncrement @lDl:a::em\:I; | i Logic Analyzer

4. When you are ready to continue, start the Update Screen.

5. Stop the CPU. &

11 Copyright © 2016 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F7 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

18)

Recall

Watchpoints: Conditional Breakpoints: This does not need or use Serial Wire Viewer:
STM32 processors have 6 hardware breakpoints. These breakpoints can be set on-the-fly without stopping the CPU.

The STM32 also have four Watchpoints. Watchpoints can be thought of as conditional breakpoints. The Logic Analyzer uses
the same comparators as Watchpoints in its operations and they must be shared. This means in you must have two variables

free in

1.

® N o kWD

10.

11.
12.

13.
14.

15.

16.

17.

18.
19.

20

the Logic Analyzer to use Watchpoints. Watchpoints are also referred to as Access Breakpoints in Keil documentation.

Use the same Blinky configuration as on the previous page. Stop the program if necessary. D) Stay in Debug mode.
We will use the global variable counter you created in Blinky.c to explore Watchpoints.

The SWV Trace does not need to be configured for Watchpoints. However, we will use it in this exercise.

The variable counter should be still entered in the Logic Analyzer from the last exercise on the previous page.
Select Debug in the main pVision window and select Breakpoints or press Ctrl-B.

Select both the Read and Write Access. In the Expression box enter: “counter == 0x5” without the quotes.

Click on Define and it will be accepted as shown here: Click on Close.

Enter the counter to the Watch 1 window if it is not x|
already listed. It should still be there from before. Current Breakpoirts:

00: (A readwrite (x20010004 len=4). ‘counter == x5,

Open Debug/Debug Settings and select the Trace tab.
Select “on Data R/W sample” and unselect EXTRC.

Click on OK twice to return to the main menu.
Open the Trace Records window. | Recoras | | I
. . . . Access
Double click in the Trace Records window to clearit. g .| EE—
. -1 B Size:
Click on RUN. Coms: [1_ =] = Do
Command: I =]] e

You will see counter increment in the Logic

Analyzer as well as in the Watch window. [Do | kisekoed| mm | Qose | e |

When counter equals 0x5, the Watchpoint will stop
the program.

Note the data writes in the Trace Records window shown below. 0x5 is in the last Data column. Also the address the
data written (Address) to and the PC of the write instruction (PC) are displayed. This is with the ST-Link. A
ULINK2 will show the same window. A ULINKpro or a J-Link (black case) will show a slightly different display.

There are other types of expressions you
can enter and are detailed in the Help button x
in the Breakpoints window. Not all are Type O [Mam [paess [Do | P TOy] Goes | Tmem |-l
. . - Data Write 20000000H 00000002H 08000292H 672012173 4.00007246
currently implemented in pVision. Data Wite H 00000DD3H 08000292H 7IADZIT0 425007244
Data Write: 20000000H 08000292H 756012170 450007244
TO repeat thIS exerc'se C|ICk on RUN Data Write: 20000000H 08000232H 73012170 475007244

When finished, stop the program 0 click
Debug/Breakpoints (or Ctrl-B) and Kill the Watchpoint.

. Leave Debug mode. @

TIP: You cannot set Watchpoints on-the-fly while the program is running like you can with hardware breakpoints.
TIP: To edit a Watchpoint, double-click on it in the Breakpoints window and its information will be dropped down into the

configuration area. Clicking on Define will create another
Watchpoint that is modified. You should delete the old one by

[eip |[[oad] MnTme MaxTme Gid | Zoom | Min/Max |Update Screen| Transton | Jumpto |[~ Sgnalimfo |~ Ampliude
Ts

Save...||[0= 97500365 |

[0t A] (o] o] [op] iear] [Frev]ext] [Gode] frmce] I Snow Geies [Curser

highlighting it and click on Kill Selected or try the next TIP:
TIP: The checkbox beside the expression allows you to e
temporarily unselect or disable a Watchpoint without deleting it. S))
TIP: Raw addresses can also be entered into the Logic Analyzer. | =& — — o
An example is: *((unsigned long *)0x20000000) BN |

Shown above right is the Logic Analyzer window displaying the variable counter trigger point of 0x5.

12 Copyright © 2016 ARM Limited or its affiliates. All rights reserved

STMicroelectronics Discovery STM32F7 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

19) ITM (Instrumentation Trace Macrocell): ITM uses Serial Wire Viewer:

ITM Port 0 is available for a printf type of instrumentation that requires minimal user code. After the write to the ITM port,
zero CPU cycles are required to get the data out of the processor and into pVision for display in its Debug (printf) Viewer
window. This exercise uses the Blinky_BM project. _BM means Bare Metal — no RTOS is used for simplicity.

Stop the program if it is running Q and exit Debug mode. @
Use the same Blinky_BM project we have been using. SWV must be configured. Delete the Watchpoint.

Add this code to Blinky.c. A good place is near line 20, just after the #include "clock.c".
#define ITM Port8(n) (* ((volatile unsigned char *) (0xE0000000+4*n)))

4. Inthe main function in Blinky.c after the if statement near line 65, enter these lines:

ITM Port8(0) = counter + 0x30; /* displays value in ASCII */
while (ITM Port8(0) == 0);

ITM Port8(0) = O0xO0D;

while (ITM Port8(0) == 0);

ITM Port8(0) = 0x0A;

Select File/Save All or click 'j Rebuild the source files

Open Select Target Options &N or ALT-F7 and select the Debug tab, and then the Trace tab.
The Serial Wire Viewer should be still configured. Use 216 MHz for the Core Clock.
Confirm ITM Port 0 is selected. ITM Stimulus Port “0” is the port the Debug (prinftf) Viewer uses to pass data.

© N o O

9. Click OK twice to return to the main pVision menu. Enter Debug mode @

10. Click on View/Serial Windows and select Debug (printf) Viewer and click on RUN .
11. Inthe Debug (printf) Viewer you will see the ASCII of counter display: Debug (printf) Viewer
12. As counter is incremented, its ASCII character is displayed. =l :
TIP: You can easily save ITM information to a file. For information see
2 of

www.keil.com/support/man/docs/uv4/uv4 _cm_itmlog.htm
4 15
Trace Records =] Build Output | E3Debug [printf) Viewer
1. Open the Trace Records window if not already open. Double click on it to clear it.
2. You will see a window such as the one below with ITM and Exception frames.
3. Right click inside the Trace Records window and unselect Exceptions to filter these out.
How does this work ?

You can see the ITM writes and Data writes (counter is also being displayed in the LA as shown below).
1. ITM 0 frames (Num column) are our ASCII characters from counter with carriage return (OD) and line feed (0A) as
displayed the Data column.

2. All these are timestamped in both CPU cycles and time in seconds.

3. When you are done, stop the processor o and exit Debug mode . @

ITM Notes ﬂ
The writes to ITM Stimulus Port 0 are slightly intrusive and are e e =
usually one cycle. It takes no CPU cycles to get the data out the © oot oo X
- - . . 0 3DH X
processor and to your PC via the Serial Wire Output (SWO) pin. X
TIP: Itis important to select as few options in the Trace it
configuration as possible to avoid overloading the SWO pin. Enter g oo
only those features that you really need. " momon oo :
TIP: ITM_SendChar is a useful function you can use to send ITM R X N

characters. It is found in the header core.CM7.h. See the next page.

13 Copyright © 2016 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F7 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

http://www.keil.com/support/man/docs/uv4/uv4_cm_itmlog.htm

20) printf with ITM (Instrumentation Trace Macrocell): ITM uses Serial Wire Viewer:
It is easy to incorporate printf using ITM and the pVision utility Manage Runtime Environment.

Stop the program if it is running] and exit Debug mode. @

Comment out all six C source lines you entered in Blinky on the previous page. They are not needed here. That
exercise was useful to show you how ITM works inside. Here is an easier method you can use.

3. Open the Manage Run-Time Environment utility. This window opens:

. Manage Run-Time Environment

4' Expand Compller' N 'I/O as Shown‘ Software Component Sel. | Variant Version Description
-4 Board S rt STM32F746G-Di - |1.00 STMi lect STM32F746G-D Kit
5. Select STDOUT as shown here: Teans CortrirocontolerSofwore nteace Componert
6. Inthe Variant column, select ITM: |8 G ™ 000 Complersofvmr Bemions
7. All the blocks should be green. If E.Q-iom I File System 100 E:t::eteatr;:t;;ot:;e:;erwiththe File System component
1 @ STDERR L 9] - |1.00 Redirect STOERR 1 defined output t: t [USART,
not, click on the Resolve button. E o116 R ST rom 3 speaiedmp sorce (SRR
H H H e c 0 Redirect STDOUT to a deb tput wind M
8. Click OK to close this window. i =100 Rednect i o3 ser demed svput aget
<i> Data Exchange Software Components for Data Exchange

9. The file retarget_io.c will be added
to your project in the Project window in the Compiler group.

10. In Blinky.c, near line 65 just after the if (counter>.... line, add this line: printf("counter equals: %d\n", counter);

11. Select File/Save All or click lﬂ

Debug (printf) Viewer

counter Eq'JE.lS :

12. Rebuild the source files =, counter equals:

w m =]

counter equals:

13. Enter Debug mode @ Click on RUN . _lzl
14. The values of counter is displayed as seen here: — ——) | x

15. When you are done, stop the processor o and exit Debug mode . @

TIP: You can easily save ITM information to a file. See www.keil.com/support/man/docs/uv4/uv4 _cm_itmlog.htm

Obtaining a character typed into the Debug printf Viewer window:
It is possible for your program to input characters from a keyboard with the function ITM_ReceiveChar found in core.CM7.h.
This is documented here: www.keil.com/pack/doc/CMSIS/Core/html/group i t m__ debug__gr.html.

A working example can be found in the File System Demo in Keil Middleware. Download this using the Pack Installer utility.

Read-Only Source Files:

Some files in the Project window will have a yellow key on them: ﬁ This means they are read-only. This is to help
unintentional changes to these source files. This can cause difficult to solve problems. Most of these files will not need any
modification.

If you need to modify one, you can use Windows Explorer to modify its permission.
1. Double click on the file to open it in the Sources window.
Right click on its source tab and select Open Containing folder.
Explorer will open with the file selected.
Right click on the file and select Properties.
Unselect Read-only and click OK. You are now able to change the file in the pVision editor.

O OIREERNCERRNY

It is a good idea to make the file read-only when you are finished modifications.

14 Copyright © 2016 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F7 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

http://www.keil.com/support/man/docs/uv4/uv4_cm_itmlog.htm
https://www.keil.com/pack/doc/CMSIS/Core/html/group___i_t_m___debug__gr.html

21) RTX_Blinky Example Program with Keil RTX RTOS: A Stepper Motor example

Keil provides RTX, a full feature RTOS. RTX is included as part of Keil MDK and separately. This example explores the
RTX RTOS project. MDK will work with any RTOS. RTX comes with a BSD license and all source code is provided with
all versions of MDK.

NOTE: This RTX_Blinky example has four threads simulating a stepper motor and blinks one LED.

RTX information and documentation are available here: www.keil.com/rtx The Getting Started Guide MDK 5 is useful.
RTX and all its components are located here: C:\Keil_v5\ARM\Pack\ARM\CMSIS\.X.X\CMSIS\RTOS

You must have copied the RTX_Blinky example to C:\MDK\Boards\ST\STM32F746G_Discovery as described on page 5.
Run the RTX_Blinky example:

4.

5.

6
7.
8.
9

With uVision in Edit mode (not in debug mode): Select Project/Open Project.
Open the file C:\MDK\Boards\ST\STM32756G_EVAL\RTX_Blinky\Blinky.uvprojx.
This project is pre-configured for the ST-Link V2 debug adapter.

Enter the Debug mode by clicking on the debug icon @ . The Flash is programmed and progress is displayed.

Click on the RUN icon.
The green LED LD1 will be toggled by Thread 1 (phaseA).
Open Watch 1 and the four phases phasea through phased will display changing as well as the CPU clock speed.

Click on STOP @ We will explore the operation of RTX with the Kernel Awareness windows.

The Configuration Wizard for RTX:

1.

No gk owbd

Click on the RTX_Conf_CM.c source file tab as shown below on the left. To open this file, double click on it in the
Project window under the CMSIS header or open it with File/Open.

Click on the Configuration Wizard tab at the bottom and your view will change to the Configuration Wizard.
Open up the individual directories to show the various configuration items available.

See how easy it is to modify these settings here as opposed to finding and changing entries in the source code.
Changing an attribute in one tab changes it in the other automatically. You should save any changes and rebuild.
You can create Configuration Wizards for any source file with the scripting language as used in the Text Editor.

This scripting language is shown below in the Text Editor as comments starting such as a </h> or <i>.
See www.keil.com/support/man/docs/uv4/uv4_ut_configwizard.htm for instructions.

+
/ RTX_Conf_Ch.c] i Blinky.c RTX_Conf CM.c 1 - X
081 #ifndef 05 TICE Z'
082 ¥define 05_TICKE 10000 Expand All I Callapse Al Help I
083 #endif
084 Option | Yalue
095/ < R - Task Definitions .
57 e £ e = o - - - Mumber of concurrent running tasks 7
b T s>Hound-Robin fask svitching - Mumber of tasks with user-provided stack 0
067 /s = k L . . o - Task skack size [bytes] 200
Dag / <1> Enable Round-Robi ask Swibtching - Check for the stack overflow v
083 #ifndef 03_ROBIN Runin privieged mode Il
030 #define O5_ROEIN J Number of user timers 1]
091 #endif SysTick Timer Configuration
032 Timer clock value [Hz] 72000000
033 s/ <oxRo [[Timer tick value [us] 10000
03 /s <ix D TOW §Round-Robin Task switching Icd
s s <i» Default: & -~ Round-Robin Tirmeout [ticks] 5
096 #ifndef 05_ROBINTOUT
097 #define 05 _RCOBINTCUT 5
JLT_TR fendif _»lﬂ
' Text Bditor _ComAguramon wizzrc | TextEditor }, Configuration Wizard [

Text Editor: Source Code Configuration Wizard

STMicroelectronics Discovery STM32F7 Lab with ARM® Keil™ MDK toolkit

15 Copyright © 2016 ARM Limited or its affiliates. All rights reserved

www.keil.com/st

http://www.keil.com/rtx
http://www.keil.com/support/man/docs/uv4/uv4_ut_configwizard.htm

22) RTX Kernel Awareness using Serial Wire Viewer (SWV):

Users often want to know the number of the current operating task and the status of the other tasks. This information is
usually stored in a structure or memory area by the RTOS. Keil provides two Task Aware wmdows for RTX. Other RTOS
companies also provide awareness plug-ins for pVision.

Important TIP: View/Periodic Window Update must be selected !

3.

1.

»

® N oo

10.

11.
12.
13.

14.

Run RTX_Blinky by clicking on the Run icon.

Open Debug/OS Support and select System and Thread
Viewer and the window on the right opens up. You might
have to grab the window and move it into the center of the
screen. These values are updated in real-time using the
same read write technology as used in the Watch and
Memory windows.

Open Debug/OS Support and select Event Viewer. There

Tick Timer:
Round Robin Timeout:

1000 mSec
5000 mSec

Default Thread Stack Size: 200
Thread Stack Overflow Check: Yes
Thread Usage: Available: 6, Used: 6

=-Threads

Event Value EventMask Stack Load

0:0100 40%
0:0001
0:0001
0x0001 40%
0:0001

is probably no data displayed because SWYV is not configured.
RTX Viewer: Configuring Serial Wire Viewer (SWV):
We must activate Serial Wire Viewer to get the Event Viewer working. The System and Threads Viewer uses DAP R/W.

Stop the CPU Q and exit Debug mode. @

Click the Target Options icon AN Select the Debug tab.
Click the Settings box next to ST-Link Debugger.

In the Debug window, make sure Port: is set to SW and
not JTAG. SWV works only with SW mode.

Click on the Trace tab to open the Trace window.
Set Core Clock: to 216 MHz. Select Trace Enable.
Unselect the Periodic and EXCTRC boxes as shown:

Cortex-M Target Driver Setup x|

Debug Trace | Fash Download |

Core Clock: | 216.000000 MHz

r~ Trace Port
Serial Wire Output - UART/NRZ _+

¥ Trace Enable

Sstamps
7 Enable Prescaler[1 ~

PC Sampling

Trace Events

™ CPI: Cycles per Instruction
™ EXC: Exception overhead
™ SLEEP: Sleep Cycles

SWO Clock Prescaler: | 1

v Autodetect 16 v
i Eiscael 102416 I L5U: Load Store Unit Cycles
Shipme] ANCE I Periodic Period: [<Disabled> | | [FOLD: Folded Instructions

I~ on Data R/W Sample I~ EXCTRC: Exception Tracing

r~ITM Stimulus Port:

Port 2423 Port
|v|v|v|v|v|~/|~/|~/ MVl vieiviviviviviv vivieivivieieiv

16 15 Port 8 7 Port 0

Enable: [L<FFFFFFFF

Pivilege: [<00000008 | Pot31.24 ¥ Pat23.16 [Port 15.8 [~ Pot7.0 I~

ITM Stimulus Port 31 must be checked. This is the e
method the RTX Viewer gets the kernel awareness I Overwree CYCENT
information out to be displayed in the Event Viewer. ok || Coee oy
It is slightly intrusive and requires a small amount of code.
Click on OK twice to return to pVision main menu.
The Serial Wire Viewer is now configured !

[Load...]| Min Time MaxTme Grid | | upd n | Jumpto | Transiton ||~ Tascinfo [curs

A ;) ﬂ [save...] [31600175 \ﬂamw \01 [HO tH Al HI scnu \IC\ HICd HTrace\ [Pre HN]| Show Cycles

Click on File/Save All or select the icon:

Enter Debug mode @ and click on RUN .
Click on the Event Viewer tab if not in focus.

This window displays task events in a graphical
format as shown in the RTX Kernel window here:

seiew | |I [II I I |
You probably have to change the Range to about 0.1 .
sec by clicking on the Zoom ALL and + and — icons. #1.398978 " mswrs

You can use the cursor settings to determine various

phaseA (2)
phaseB (3)
phaseC (4)

phaseD (5)

K|
Event Viewer | System an

d Thread Viewer |

timings of the Threads. You can select Stop Update Screen to stop the LA from collecting data without stopping the
CPU to make measuring easier. The program execution is not stopped.

TIP: If Event Viewer doesn’t work, open the Trace Records window and confirm there are good ITM 31 frames present. Is
Core Clock correct ? This project is running at 216 MHz. Exit and re-enter Debug mode. Cycle the power to the board.

The data is updated while the program is running. No instrumentation code needs to be inserted into your source. You will
find this feature very useful I Remember, RTX with source code is included with all versions of MDK.

TIP: You can use a ULINK2, ULINK-ME, ULINKpro, ST-Link V2 or J-Link for these RTX Kernel Awareness windows.

16

STMicroelectronics Discovery STM32F7 Lab with ARM® Keil™ MDK toolkit

Copyright © 2016 ARM Limited or its affiliates. All rights reserved
www.Kkeil.com/st

23) Logic Analyzer Window (LA): View variables real-time in a graphical format:

pVision has a graphical Logic Analyzer window. Up to four variables can be displayed in real-time using the Serial Wire
Viewer in the STM32. RTX_Blinky four tasks will be used to create the waveforms. We will graph these four waveforms.

1. Leave the progranm running from the previous page.
2. Four global variables unsigned int phasea through unsigned int phased are in Blinky.c as shown here:

3. Each of four threads phasea through phased represents one phase of a stepping - jj;ig;:j o Ei:;:jj
motor driver. This is the phasea code and is the one that toggles the LED LD1. 26 unsigned int phasec=0;
27 nunsigned int phased=0;

Select View/Watch Windows/Watch 1.

] Binkyc |] R Cont e |] startup stm32r74eecs | °7 LED 7466 Discovery.c | |] Abstractea |] eloek.c |¥ X
5. Note the 4 variables changing in Watch 1 as each =
thread is executed.
6. We will enter these for global variables into the . . -
Logic Analyzer for examination. o
Enter the Variables into the Logic Analyzer (LA): 1
7. Click on the Blinky.c tab. Near line 23, right click o o

on phasea, select Add ‘phasea’ to... and finally
select Logic Analyzer. Phasea will be added to the LA.

8. Repeat for phaseb, phasec and phased. These variables will be listed on the left side of the LA window as shown.
Now we have to adjust the scaling. Do not use phasea instead of phasea. They are different variables.

Help: If you can’t get these variables entered into the LA, make sure the Trace Configuration is set correctly. The Serial Wire
Viewer must first be configured correctly in order to enter variables in the LA. The Core Clock value is especially important.

Help: If there is no display, stop the program and exit and re-enter Debug mode to refresh all CoreSight registers. You can try
unselecting ITM Stimulus 31 in the Trace Configuration window to stop Event Viewer data from overloading the SWO pin.

TIP: LA can’t see locals: make them static or global. For peripheral registers, read or write to them and enter them in the LA.
9. Click on the Setup icon and click on each of the four variables and in turn set Max. in the Display Range: to 0x3.
10. Click on Close to go back to the LA window.
11. Using the All, OUT and In buttons set the range to 2 seconds or so. Move the scrolling bar to the far right if needed.

Logic Analyzer

Min Time: Max Time Grid Zoom Min/Max |Update Screen | Transition Jump to v Signal Info W Amplitude
Save.. ||[67389925 [7350017s | 025 |[In |[Out| Al]|[Auto]|[Undo] [Start |[Clear | [Prev|[Next]|[Cod=|[Trace] | W Show Cycles ¥ Cursor

phasea

I A
3 0 2 [

vl ||

phaseb

phasec

phased phased i H
! ! Mouse Pos Reference Point Delta : : |
Time: 7116357 5 71.00017 s 0.1634 5 = 6,119951 Hz
7047157 5 71.0007 Value: 1 0 1 73471575
11833224252 119280 PC 5 I N/A 12343224252

L ql=1]

[}
@ll}i;a::eml:l; | ﬂ Logic Analyzer

12. Click on Stop in Update Screen to stop (and start) the data collection.

13. Select Signal Info and Show Cycles. Click to mark a place and move the cursor to get timings. Hover the cursor on
one of the waveforms and get timing and other information as shown in the inserted box labeled phased above:

14. Stop the CPU D] and exit Debug mode. @

TIP: You can also enter these variables into the Watch and Memory windows to display and change them in real-time.

TIP: You can view signals that exist mathematically in a variable and are not available for measuring in the outside world.
This has proved to be very useful in debugging tricky problems.

17 Copyright © 2016 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F7 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

24) DSP SINE example using ARM CMSIS-DSP Libraries:

ARM CMSIS-DSP libraries are offered for ARM Cortex-M series processors. DSP libraries are provided in MDK in
C:\Keil_v5\ARM\Pack\ARM\CMSIS. See www.keil.com/cmsis/dsp for DSP documentation. CMSIS is an acronym for

Cortex Microcontroller Software Interface Standard. CMSIS is an ARM standard.
This example creates a sine wave with noise created and then added, and then the noise is filtered out. The waveform in each

step is displayed in the Logic Analyzer using Serial Wire Viewer.

This example incorporates Keil RTX RTOS. RTX is available free with a BSD type license. RTX source code is provided.
1. Open the prolect file sine: C:\MDK\Boards\ST\STM32F746G_Discovery\DSP\sine.uvprojx

3. Enter Debug mode by clicking on the Debug icon.@ Select OK if the Evaluation Mode box appears.

Click on the RUN icon. Open the Logic Analyzer window.

5. Four waveforms will be displayed in the Logic Analyzer using the Serial Wire Viewer as shown below. Adjust
Zoom Out for an appropriate display. Displayed are 4 global variables: sine, noise, disturbed and filtered.

TIP: If one variable shows no waveform, disable the ITM Stimulus Port 31 in the Trace Config window. (is by default)

TIP: Serial Wire Viewer can be limited since all data comes out one pin. A Keil ULINKpro handles SWV information much
better since it uses Manchester mode at a higher frequency than the ST-Link. Using the 4 bit trace port is even better.

6. The project provided has Serial Wire Viewer configured and the Logic Analyzer loaded with the four variables.
Watch 1 window is configured to display the four global variables as shown below:

Logic Analyzer

M Min Time Max Time Girid Zoom

| Min/Max |UpdaiESuEen

Transition Jump ta

Save.. ||[42356215 [512.1688 |015 |[n ||0ut||AII |||Mo|m||5tart [[Cear |

Wll—\

[Eade ”TIEICE |

32767

f\f’\f\/\/"\/\

/\/\f\/\/\/\/\

™ Signal info [~ Amplitude ¥ Timestamps Enatile
|- Show Cycies ' Cursor

X

-32768
32767

S‘”e\/\/‘\/\/\/\j

J\/\/\/\/\/\/

LW .y Ly
LT i A T T T

A h p)
A e A

-32768
32767

A AA L o LY Al Al
noise R T e e Y T Y Y Y Y

J‘“’\J“’\J‘“WJ‘“WJ‘"\J"\

J"hJ‘ﬂJ‘“\J‘“\J‘%J‘WJ"\

S W W Y

AR AR

-32768

32787 :
i f\ /\ /‘\ /‘\ f\ /’\ VAN /\ /’\ NN

e \/ \./ k/ \/ \j \/ \/ \/ \/ \/ \J \/
jlinTsasﬂN I 511.2721s ' 512.E1_>5">I|

@Disassemhl}-‘ | ﬂ Logic Analyzer

Open the Trace Records window and the Data Writes to the four variables are listed as shown here:

Leave the program running.

Close the Trace Records window. x4
Type Ovf [Num Address | Data | FC |Dy[Cydes [Timel] B

TIP: The ULINKpro trace display is different Data Viitte 2001001AH FEAFH 133242735769 616.86451745 :I
Data Wite 2001001CH 1912H 133242744210 616.85455653
and the program must be stopped to update it. Data Wit 2001001EH 3E43H 133242756147 616.85461179
. S Data Wite 2001001EH IDECH 133243004800 616.85576256
The Watch 1 window will display the four Datz Wite 2001001CH 1912H 133243016281 616.86581612
; i ; . Data Wite 2001001AH FOGEH 133242026290 616.86586245
variables updating in real time as shown below: Data Wite 20010018H 2004H 133242035653 616.85590583
. . Data Wite 20010018H 1ce3H 133243278664 616.85703085
If these values are changing, the program is Data Vit 2001001AH ECB3H 133243288709 616.86707736
- Data Wit 2001001CH 0936H 133243297110 616.85711625
probably working correctly. Data Wite 2001001EH 3DEDH 133242309047 G16.86717151
Data Wite 2001001EH 3CCFH 133243558444 616.85832613
Data Wite 2001001CH 0936H 133242569925 616.85837928
Data Wite 2001001AH EADDH 133243579934 616.85842562
Data Wite 20010018H 18E8H 133243589303 616.86845900
: Data Wit 20010018H 152FH 133243831552 616.85353052
~ @ noise Data Wite 2001001AH EB17H 133243841597 616.26963702
- @ disturbed Data Wite 2001001CH 0046H 133243843998 616 85967552
W Data Wite 2001001EH 3CB4H 133243061935 616.85973118

; : Data Wite 2001001EH 3B43H 133244110672 61687088274 | o

< Enter expression>
18 Copyright © 2016 ARM Limited or its affiliates. All rights reserved

STMicroelectronics Discovery STM32F7 Lab with ARM® Keil™ MDK toolkit

www.keil.com/st

http://www.keil.com/cmsis/dsp

Signal Timings in Logic Analyzer (LA):

1. Inthe LA window, select Signal Info, Show Cycles, Amplitude and Cursor.

2. Click on STOP in the Update Screen box. You could also stop the program but leave it running in this case.
3. Click somewhere in the LA to set a reference cursor line.
4. Note as you move the cursor various timing information is displayed as shown below:

f

\/,’\,_/

Min Time Max Time Grid Zoom Min/Max |Update Screen| Transtion Jump to [V Signal Infe [~ Amplitude ¥ Timestamps Enable
Os |-1342ms [01s [n ||O|.rt|| Al | -m [Stat |[Clear | |F'rev||Next| |C0de||T|E|ce| |— Show Cydes Vv Cursor
AN | AN f\i /-'\ L/“‘\ aN /'\ /\ /"'\ /\\ /“‘\ /‘\
N \/’ ! \;/ AN N NS N

L. .Y
V\J\JV:VVVU

LT L A A W ...
R A A R i T AT L T

£, LA .Y L . .Y LA A W L. W W .. W
ACRTASE AR AT R SRR S T I T LT S SV g S v

noise A \J o
-32768 |m 5415, 4. 1334 :
32767 ; : noise .
disturbed M m i Ti Tzooussg‘t:m ?fr;srsg:e Foint (? Pilzt 552 s 7.966853 H E M M M
me: | 5 B 5 . =1 i H
29788 W w O 1}[‘)""?! Value: -5419 4085 1334 W w mw "
. |- PCS: N/A [y
32767 : . !
fitered f\ : LN ;’n\ N N /\ S\ /‘h\ ﬁ\ P\ /_\\
S '\Jl \+/| LN ‘\/ NSNS \/ \J/ \/ NSNS
-32768 : Im |[7527_a:-1458] :
41742465 [41.960594 =] [42.08646 =, d. 0.17557 5| 42 542465 43442465
9016371143 5063562907]3090675143_d. 27112236 9189171143 93835I?1 1I-|13 |
3| Edl

il
@Disassembly | Q Logic Analyzer

RTX Tasks and System:

5. Click on Start in the Update Screen box to resume the collection of data.

6. Open Debug/OS Support and select System and Thread Viewer. A window similar to below opens up. You probably
have to click on its header and drag it into the middle of the screen.

7. Seta breakpoint in each of four of the threads in DirtyFilter.c by clicking in the left margin on a grey area.

Click on Run and the program will stop at each thread in turn and the Thread Viewer window will be updated
accordingly. In this case, | set a breakpoint in the thread disturb_gen.

9. Clearly, below you can see that disturb_gen was running when the breakpoint was activated.

10. Remove the breakpoints. Click on them or enter Ctrl-B and select Kill All. Then click on Close to close this window.

TIP: You can set hardware breakpoints “‘*“‘“‘”""“ "‘*“'*' &
- . - Topel alue
while the program is running. Booystem [T NFaTE
TIP: Recall this window uses the CoreSight T ot
DAP read and write technology to update this Default Thread Stack Size: 200
window. Serial Wire Viewer is not used and 1:'%: Suta‘kOVE”"’W Check: :“_I —
. - . - - rea sage: wvallable: b, Used:
is not required to be activated for this window
to display and be updated. =
. . El-Threads ETT Priority State Delay Event Value Event Mask Stack Load
The Event Viewer does use SWV and this is 255 | os._idle_demon 0 Ready 323
demonstrated on the neXt page [sync_tsk Marmal Wait_AND 0x0000 0x0001 40%
' 5 filter_tsk Marmal Wait_AND |65514 0x0000 0x0001 40%
4 disturb_gen Maormal 65504 00000 0x0001
3 noise_gen Marmal
2 sine_gen Marmal Wait_ AND (1014 0x0000 0x0001 40%
1 main Normal [wait pry | [32%
19 Copyright © 2016 ARM Limited or its affiliates. All rights reserved

STMicroelectronics Discovery STM32F7 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

Event Viewer:

1. Stop the program. Click on Setup... in the Logic Analyzer. Select Kill All to remove all variables. This is necessary
because the SWO pin will likely be overloaded when the Event Viewer is opened up. Inaccuracies might occur. If
you like — you can leave the LA loaded with the four variables to see what the Event Viewer will look like.

2. Select Debug/Debug Settings.
3. Click on the Trace tab.

in Time: lax Time rid oom pdate Screen Ly ransition | W Timing Inf ursar
4. Select ITM Stimulus Port 31. I 9!4517—96 ms | 32&231:125 bGs ms || In ﬁomH ar]| |||usm:|\sclear |}‘C:de|||:i|?‘r::ce‘ hhﬂ F;hn:g;;;rlc . .
Event VleWer usesport 31 tO All Threads Idle: {255}1 <<<Iqle (255) <<< de\a PES} ((((3(\11\5 [255] <(<)(Idlel (255) <(<{ (Idla t?jL}
collect its information. e P
. . main (1) N oo
5. Click OK twice. | | ; 5 5 | i i ; ; :
. — I A A
6. Click on RUN. o | I | : I : I | | | I ; ; I ;
e : : : : : : : : : : :
Open Debug/O_S Support and st oot e | 1 1l Ll
select Event Viewer. The | ; I 3 | : A"
window here opens up: frersk § I o l I P I 1
8. Note the main(1) thread. This e I | I N I I I
screen is scrolled to the e 255 - _ _ _ _ _
beginning after RESET. Main() m 9545756 ms 125458ms o
runs Only once. Event Viewer | System and Thread Viewer |

Important TIP: If SWV trace fails to work after this change, exit Debug, cycle the board power and re-enter Debug mode.

TIP: If Event Viewer is blank or erratic, or the LA variables are not displaying or blank: this is likely because the Serial Wire
Output pin is overloaded and dropping trace frames. Solutions are to delete some or all of the variables in the Logic Analyzer
to free up some bandwidth. Using a ULINKQpro in either Manchester mode or using the 4 bit trace port will help.

If you see <No Address> Threads, this is because of SWO overload. Using a ULINKpro is a good solution.

ULINKQpro is much better with SWO bandwidth issues. These have been able to display both the Event and LA windows.
ULINKpro uses the Manchester format at a higher speed than the UART mode that ST-Link, ULINK2 and J-Link uses.

ULINKQpro can also use the 4 bit Trace Port for faster operation for SWV. The Trace Port is mandatory for ETM trace.

9. Note on the Y axis each of the 5 running tasks plus the idle daemon. Each bar is an active task and shows you what
task is running, when, for how long and in what order.

10. Click Stop in the Update Screen box.

11. Click on Zoom In so three or four tasks are displayed.

12. Select Cursor. Position the cursor over one set of bars and click once. A red line is set at the first arrow:
13. Move your cursor to the right over the

next set (where the second arrow is) and [od..]| MinTme mMaxTme Grd | | pdate Saeen | umpte | Wanston | Taskinfo [cursor
total time and difference are dlsplayed Bae| [275165 | 2881353 bsms || Tn ||Dut|| Al St |[ar] |[Code \|Traue\ |PrevHNaxt\ ™ shomCydes ‘
14. Note, since you enabled Show Cycles, the ~ “™ 'd'gmi e)«'d?gm)@d§em')@
total cycles and difference is also shown. .,
15. Hover your mouse on one of the threads oo | | | |
blue block. It will turn yellow and display o TR I I rerarcB =
information abOUt thIS event as Shown noise_gen (3) : (0:080002dd) 17.35491 us 0.2544533 ms 17.76414 us 1681
bel ow: disturb_gen {4) :‘me: IQJIS?;OE;SOS . zp'\se Eé;::es il “Eirrl‘-tsaz_mm.ﬁz)"
TIP: ITM Port 31 enables sending the Event e |0 5 | | i 5 |
Viewer frames out the SWO port. Disabling this - \ | i s I ” ” ”
- . sync_t !
can save bandwidth on the SWO port if you are not :
using the Event Viewer because data is still sent. Icle (255) - - _ - - |
Port 0 is used for ITM printf operations. ‘ 2880768 s (o055, 4 Tms} 81068 zmtmsj
Timing of 'sine_gen’ (Thread #2 @0x0800031d) Event WViewer | System and Thread Viewer |
Current Slice: Begin End Duration
No. 4294 93.00956 5 93.00961 s 48.06019 us
All Slices: Min Max Average
Count: 14522 4511574 us 0963153 ms 46.67593 us
Cursors: Mouse Reference Difference
93.0096 s 93.01105 s -0.001456 s = 686.891815 Hz
20 Copyright © 2016 ARM Limited or its affiliates. All rights reserved

STMicroelectronics Discovery STM32F7 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

25) Keil Middleware: Network (TCP/IP), Flash File, USB, CAN and Graphics:

MDK Professional provides commercial grade middleware with extensive capabilities designed for demanding applications.
See www.keil.com/mdk5/middleware/ for more information.
Working examples are provided for various ST boards including STM32F746G-Discovery and STM32F756G-Eval. You can

A,
access and copy these examples using Pack Installer . “» Here is the listing for STM32F746G-Discovery:
This window is displayed by selecting STM32F746G-Discovery in the Boards tab:

ﬂ Paclcs/ Examples] ﬂ
|7 Show examples from installed Packs only
Example Adtion Description
BSD Client [STM32F746 G-Discavery) Co Example using BSD sockets to send commands to remote server
~-BSD Server [STM32FT46G-Discovery] ‘ Copy Example using BSD sockets to accept commands from remaote clients
~-CMSIS-RTOS Blinky (STM32F746G-Discovery] 1 Copy CMSIS-RTOS based Blinky example
- CMSIS-RTOS Blinky with STM32CubeMX [STM32F74.., 1 Copy CMSIS-RTOS based Blinky example configured with STM32CubeliX
--FTP Server [STM32F746G-Discovery) ‘ Copy File Server using FTP protocol with SD/MMC Memory Card as storage media
~-File System Demao (STM32F746G-Discavery) ‘ Copy File manipulation example: create, read, copy, delete files on any enabled drive [SD/MMC Card, MNOR/MAND Flash, RAM] and format each drive
~HTTP Server [STM32F746G-Discovery) ‘ Copy Compact Web Server with CGIinterface
~-HTTP Upload (STM32F746G-Discovery) ‘ Copy Web Server with CGI interface and 50/MMC Memory Card as storage media
-~ SMTP Client [STM32F746G-Discovery) ‘ Copy Example showing how to compose and send emails
~SMMP Agent (STM32F746G-Discovery) ‘ Copy Example showing how to use a Simple Metwark Management Protocal [SHNMP)
~Telnet Server (STM32FT46G-Discovery) ‘ Copy Command-line Host service example using Telnet protocol
~-USE Device HID (STM32FT46G-Discovery) & Copy USE Human Interface Device providing access from PC to board LEDs and push buttons
~-USE Device Mass Storage (STM32F746G-Discovery) ‘ Copy USE Mass Storage Device using RAM as storage media
~-USE Device Virtual COM [STM32F746G-Discovery) ‘ Copy Bridge between PC USE Virtual COM Port and UART port
~-UUSE Host Keyboard [STM32F746G-Discovery) ‘ Copy Measure example using USE HID Keyboard as input device
~-UUSB Host Mass Storage (STM32F746G-Discovery] ‘ Copy USE Host file manipulation example: create, read, copy, delete files from USE Mass Storage Device and format the storage device
~-emWin Example (STM32F746G-Discovery) ‘ Copy emWin Graphics simple example
~-emWin GUI Demo [STM32F746G-Discovery) ‘ Copy emWin Graphics Demo example
emWin VMNC Server with STM32CubeMX (STM32F74... * Copy emWin VMNC Server example configured with STM32CubeMX
License:
An MDK Pro license is needed for Keil Middleware. A 7 day one-time license is available in pVision under File/License
Management. If you qualify, this button is displayed: Evaluate MDK rofessional |

To obtain a temporary MDK Professional license for evaluation purposes, contact Keil sales as listed on the last page.

Instructions: Each example contains the file abstract.txt which provides instructions. These projects compile and run "out-
of-the-box". If you have any questions regarding Keil Middleware operation during your evaluation phase, please contact Keil

Technical Support as listed on the last page of this document. T =
Conf|guring the examples: D:HEE::S%:‘;:ZTR = STEF\’E:H%GVD\smv LSEM iTEl‘:’r‘:':I\:rt‘tmm:s \S\TM?ZZZ“T‘:{:W(’“ : =
. . . . 0 CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Spegifici
The Middleware examples make extensive use of the Configuration Seeemsn 20| ahene ACand F3 D 1L Cotel
Wizard. This permits easy modifications to various settings with o i
mouse clicks instead of digging through source code. Ty 202 IBCDmeraftor Conectd
NAND (AP 201 MAND Flash Driver APLfor Cortex-M
Selecting the Middleware: o N T
4 USART (AP 201 USART Driver API for Cortex-M
Keil Middleware is selected using the Manage Run-Time Environment 1522321‘;‘;” 2t |usm o rver s or o
-y - - - Compiler ARM Compiler Software Extensions
utility. This selects the various components you desire and place them § owein Softwane Compannts fo Dot Fchangs
into your project. Open the Manage Run-Time Environment utility @ riesrten B N ¥ —
. . . . 4 Drive Storage Devices and Media Types
and this window is displayed: tome e esmom
@ VNC Server r 5.30.0 Enable Remote access via TCP/IP
Help and Documentation :E:s:;y ;waymma.ﬂ.Grapm:a\User[ntenaufeatuus
‘ Input Device Devices used to control the Graphical User Interface
This is available both online and embedded in MDK: Fodi e s isang coiosraan o i
. Network WP - (141 Network IwlP Bundle
www.keil.com/pack/doc/mw/General/html/index.html o merace . —Canmetion e
0 core A T T
and " Gonee 0 €50 [bsmbmme
g Host [6.50 USB Host =
C:\Keil_v5\ARM\Pack\Kei\MDK-Middleware S s
In each of the projects is a file abstract.txt that provides basic [Exliz
instructions and a link to more details. i [satrnsa] o |] s
21 Copyright © 2016 ARM Limited or its affiliates. All rights reserved

STMicroelectronics Discovery STM32F7 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

http://www.keil.com/mdk5/middleware/
http://www.keil.com/pack/doc/mw/General/html/index.html

26) Creating your own MDK 5 project from scratch:

All examples provided by Keil are pre-configured. All you have to do is compile them. You can use them as a template for
your own projects. However, we will start an example project from the beginning to illustrate how easy this process is. Once
you have the new project configured; you can build, load and run a bare Blinky example. It will have an empty main()
function so it does not do much. However, the processor startup sequences are present and you can easily add your own
source code and/or files. You can use this process to create any new project, including one using an RTOS such as RTX.

Install the STM32 Software Pack for your processor:
1.

Start pVision and leave in Edit mode. Do not be in Debug mode.

2. Pack Installer: The Pack for the STM32F7 processor must be installed. This has already been done on page 4.
- d - . T Create New Project x|
Create a new Directory and a New Project: e & [erorirer
1. Click on Project/New pVision Project... T o ”wa"‘dil | ii? - @
2. Inthe window that opens, shown here, go in: i Mmm .
C:\MDK\Boards\ST\STM32F746G_Discovery\ iz
3. Right click in this window and select New and create a new pd
folder. I called it BlinkyNEW. —
Double click on BlinkyNew to open it or select Open. ; ;H y N
In the File name: box, enter Blinky. Click on Save. (- ‘_:_E'u j
Save as type: [Project Files (*.uvproj; *.uvprojx) -
This creates the project Blinky.uvproj in
C:\MDK\Boards\ST\STM32F746G_Discovery\BlinkyNEW\.] 1)
7. Assoon as you click on Save, the next window opens:
Select the Device you are using: =]
1. Expand STMicroelectronics, then STM32F7 Series, then STM32F746, then | Sotwars Packs
STM32F746NG and then finally select STM32F746NHXx: > I
Device: STM32F746NGHx
TIP: You must select the deepest level of processor else this will not work correctly. Toclset: ARM
. . . - 3l
2. Click OK and the Manage Run Time window shown below bottom right opens. Seart
Select the CMSIS components you want: 5 STMDZF745 |
- % STM32F746
1. Expand CMSIS and Device as shown below. Select Core and Startup as shown below. 7 i sTME2F746BE
They will be highlighted in Green indicating no other files are needed. f% EREEE:ZIB:
Select the Discovery board in Board Support. Click OK to close this window. [T STMAZF746LG
The project Blinky.uvproj is now changed to Blinky.uvprojx. " E-”f%_;mmm
You now have a new project list as shown on the bottom left below: The appropriate ‘\ =13 STMEIFTAGVE
CMSIS files you selected have been automatically entered and configured.
5. Note the Target Selector says Target 1. Highlight Target 1 in the Project window. I]
6. Click once on it and change its name to ST-Link Flash and press Enter. The Target selector name will also change.
7. Click on File/Save All or select the Save All icon: ﬂ

¥. Manage Run-Time Environment

x|

What has happened to this point:

Software Component

Sel. | Variant Version Description

You have created a blank pVision project using MDK 5 Software
Packs. All you need to do now is add your own source files.

Project o x
=T Project: Blinky
El4s5 ST-Link Flash
: Source Group 1
i CMSIS
E|‘ Device
----- _] startup_stm32f746:00s [Startup)

-

4p Board Support
4y CMsIs

STMicroelectranics STM32F746G-Discove &
Cortex Microcontroller Software Interfac

STM32F746G-Discovery ~ 1.0.0

-# CORE

410 CMSIS-CORE for Cortex-M, SC000,_and 5

-# DSF
4 RTOS (AP])

4 CMSIS Driver

& Compiler

4p Data Exchange

=l Deyiy

145
1.0

CMSIS-DSP Library for Cortex-h. 5C000
CMSIS-RTOS APl for Cortex-M. 5C000. an
Unified Device Drivers compliant to CMS
ARM Compiler Software Extensions
Software Components for Data Exchang
Startup. System Setup

@ Startup
5

4 File System
I’ Graphics
“

UBTFramew..
4 STM32Cube HAL

System Startup for STMicroelectronics ST
STM32Cube Framework

STM32F4xx Hardware Abstraction Layer
File Access on various storage devices

User Interface on graphical LCD displays ™
| r

6.5.0
530.0

MDK-Pro
MDK-Pro

|] system_stm32fTwec (Startup) T I

Validation Output

| Description

LIS

Resove | Select Packs

=

Detais Careal |

1| | 3
Ii=] Project @B-J-Jks | {} Functi-:unsl [].,Tenmlatesl

22
STMicroelectronics Discovery STM32F7 Lab with ARM® Keil™ MDK toolkit

Copyright © 2016 ARM Limited or its affiliates. All rights reserved

www.keil.com/st

Create a blank C Source File:

1. Right click on Source Group 1 in the Project window and select |~ AddNew ltem to Group Source Group L.
2. This window opens up: x
3. nghllght the upper Ieﬂ iCOﬂ: C flle (.C): : @C%(C) Create a new C source file and add it to the project.
4. Inthe Name: field, enter Blinky. I‘;jc”*n'mm
Asm File (s)
5. Click on Add to close this window.] Hosiie 1
6. Click on File/Save All or Q%TME =
2| mage Fie ()
7. Ex_pand So_urce Grqup 1 in the Project window and) e ot Tt
Blinky.c will now display.
8. It will also open as a Source window. Tipe: EEE
o C Birky p)
Location: | C:WMDK\Boards\ST\STM32F 746G_Discovery BlinkyNEW _I
Add Some Code to Blinky.c: dose e
9. Right click in Blinky.c and select Insert ‘#include file'
Insert ‘Finclude file' 3 stm32ffouh /f Device header
Go to Headerfile RTE_Components.h /f Component selection

10. Select stm32f7xx.h and then repeat for RTE_Components.h. These are added to Blinky.c.

11.

In the blank portion of Blinky.c, add the C code below:

unsigned int counter = 0;

int main (void) {

while (1) {
counter++;
if (counter > 0x0F) counter = 0;
}
}

12. Click on File/Save All or (i

13. Build the files.

There will be no errors or warnings if all was entered correctly.

TIP: You can also add existing source files: addiiistinoRilesltC10unis ouleaboy ol No need to do this at this time.

Configure the Target St Link Flash: Please complete these instructions carefully to prevent unusual problems...

1.

SANE S A

8.
9.

Select the Target Options icon ﬂ‘l:“ Select the Target tab.

Select Use MicroLIB to optimize for smaller code size. Note the memory locations are entered for your convenience.
Select the Debug tab. Select ST-Link Debugger in the Use: selection box. ' Use: [ST-Link Debugger =] ﬂl
Select the Settings: icon. -

Select SW as shown here in the Port: box: ™ = JTAG will not work with SWV. If your board is connected to
your PC, you must now see a valid IDCODE and Device Name in the SW Device box.

Click on OK once to go back to the Target Configuration window. Otherwise, fix the connection problem.

Click on the Utilities tab. Select Settings and confirm the correct Flash algorithm as shown: Shown is the correct
one for the STM32F7 series processors:) ¢ ommming Algorthm

Click on OK twice to return to the main menu. Description | DeviceSize | Device Type | Address Range
STM32Ffcc 1MB Flash ™ On-chip Flash 0B0000DDH - 0BOFFFFFH

Click on File/Save All or tj

10. Build the files. = There will be no errors or warnings if all was entered correctly. If there are, please fix them !

The Next Step ? Let us run your program and see what happens ! Please turn the page....

23 Copyright © 2016 ARM Limited or its affiliates. All rights reserved

STMicroelectronics Discovery STM32F7 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

Running Your Program:
1. Enter Debug mode by clicking on the Debug icon @l Your program will be programmed into the ST Flash.
2. Click on the RUN icon. It will run to the beginning of main() and stop.

Note: you stop the program with the STOP icon. @
3. No LEDs will blink since there is no source to accomplish this task. You could add such code yourself later.

4. Right click on counter in Blinky.c and select Add counter to ... and select Watch 1.
5. counter should be updating as shown here; S ——————)
6. You can also set a breakpoint in Blinky.c and the program should stop at | Mame e L
this point if it is running properly. g e Q20 D Jemsisnesint 4
If you do this, remove the breakpoint. | | -
4 »
7. You should now be able to add your own source code to create a & Call Stack - Locals | Watch | [Memory 1 |

meaningful project.
Since we did not configure any clocks, the CPU is running at the default of 16 mHz.

TIP: Watch 1 is updated periodically, not when a variable value changes. Since Blinky is running very fast without any time
delays inserted, the values in Watch 1 will appear to jump and skip sequential values you know must exist.

TIP: If you want to save or send the project files to someone, you can delete the folder Flash to reduce file size. This folder
and its contents are easily reconstructed with a Build.

There are three main methods to create your own projects:
We are using 3) in this exercise:

1) STM32CubeMX. This configures your processor and exports a pVision project in MDK 5 format. See Page 28.
STM32CubeMX can be downloaded from www.st.com/stm32cubemx/ For information on creating projects with
STM32CubeMX see: www.keil.com/pack/doc/STM32Cube/General/html/

2) Standard Peripheral Libraries from ST. STM32CubeF7. Contains extensive examples and source code for Keil
MDK 5. These libraries are also available from www.st.com/stm32cubemx/

3) WVision Software Packs, examples and Keil Middleware. A Software Pack includes examples and files that you
can use. See Page 21 and www.keil.com/pack/doc/STM32Cube/General/html/index.html

STM32CubeMX provides software in MDK 5 format consistent with Software Packs. Keil Middleware supports STM32F7.

MDK 5 and MDK 4 projects: MDK 5 uses Software packs and MDK 4 does not. This tutorial uses MDK 5 projects which have
a filename extension .uvprojx. Legacy MDK 4 projects (with an extension .uvproj) can be converted to MDK 5: Select
Project/Manage/Migrate to Version S format...

You can also use the MDK 5 Legacy support for processors not supported with a Software Pack. Go to www.keil.com/mdk and
select MDK v4 Legacy Support. This adds all the files required for MDK 4 projects.

ELF/DWARF: The ARM compiler produces an .axf file which is ELF/DWARF compliant. pVision can load similar compiler
output such as from GCC with all debug information visible. You can also use GCC as your compiler of choice in pVision.

24 Copyright © 2016 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F7 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

http://www.st.com/stm32cubemx/
http://www.keil.com/pack/doc/STM32Cube/General/html/index.html
http://www.st.com/stm32cubemx/
http://www.keil.com/pack/doc/STM32Cube/General/html/index.html
http://www.keil.com/mdk%20and%20select%20MDK%20v4
http://www.keil.com/mdk%20and%20select%20MDK%20v4
http://www.st.com/stm32cubemx/
http://www.keil.com/pack/doc/STM32Cube/General/html/index.html
http://www.st.com/stm32cubemx/
http://www.keil.com/pack/doc/STM32Cube/General/html/index.html
http://www.keil.com/mdk%20and%20select%20MDK%20v4
http://www.keil.com/mdk%20and%20select%20MDK%20v4

27) Creating your own RTX MDK 5 project from scratch:
The MDK Software Packs makes it easy to configure an RTX project. We will use the RTX that is CMSIS-RTOS compliant.

Configuring RTX is easy in MDK 5. These steps use the same configuration as in the preceding Blinky example.
For RTX documentation see: www.keil.com/pack/doc/CMSIS/RTX/html/_example r_t x__tutorial.html

Using the same example from the preceding pages, Stop the program @ and Exit Debug mode. Q

1.
2. Select ST-Link Flash: STink Flasn -
. R . ’ Software Component Sel. | Variant Ver
3. Open the Manage Run-Time Environment window: =@ CMss
4. Expand all the elements as shown here: —— —— — — ———) :: ESEE : fjc
5. Select Keil RTX as shown and click OK. T m—
—_ @ Keil RTX] 474
6. Appropriate RTX files will be added to your project. See the Project window =% Deiiee
under the CMSIS group. - i - =
7. InBlinky.c, at the top, add this line: #include "cmsis_os.h". You can also ——
right-click inside Blinky.c and select Insert ‘#include' and select cmsis_os.h.

8. Cllck on File/Save A“ or ﬂ Resolve Details | OK I
Configure RTX:
1. Inthe Project window, expand the CMSIS group.

2. Double click on RTX_Conf_CM.c to open it.
3. Select the Configuration Wizard tab: Select Expand All.) mxconame |) oen dndtac |) Binkyc |) stop stn32misn
. o Bpand Al | Collapse Al | Hep | T ShowGnd
4. The window is displayed here: —————) ontion [vae
5. Set Timer clock value: to 16000000 as shown: (16 MHz) ey entranning user threads ;
6. Unselect User Timers. Use defaults for the other settings. e sta s -
Bu"d and Run Your RTX Prog ram: :oi:lb:t;:l::;:[ab?t::]ltfr:::;pa:v:;: :Jtsae‘:::::\ded stack size g
R . Stack overflow checking cd
1. Click on File/Save All or i | Stack usage watermark r
. -Processor mode for thread execution Privileged mode
H H Ié|--RTXK I Ti Tick Confi ti
2. Build the files. T e Cote Mot oo O s .
<_ -~ RTOS Kernel Timer input clock frequency [Hz] 16000000 >
3. Enter Debug mode: @Q Click on the RUN icon. i 0
4. Select Debug/OS Support/System and Thread Viewer. The T e v
window below opens up. B User Timers r
: A i-Timer Thread Priority High
5. You can see two threads: the main thread is the only one User Timers

Enables user Timers

running. As you add more threads to create a real RTX [7=2E55 . configurstion wizard
program, these will automatically be added to this window.

What you have to do now:

1. You must add the RTX framework into your code and create your threads to make this into a real RTX project
configured to your needs. See the next page.

2. Getting Started Guide MDK EEEErre 5:
Obtain this useful book here: Property Vaue
keil.com/gsg/. Ith T B
WwWw.Kell.com/gsg/. as Tick Timer: 1,000 mSec very
Useful |nf0rmat|0n on Round Robin Timeout: 5.000 mSec
H H Default Thread Stack Size: 200
Implementlng RTX' Thread Stack Overflow Check: Yes
Thread Usage: Available: 6, Used: 2 + os_i...
El-Threads Priority State Delay Event Value Event Mask Stack Usage
1 main Normal ‘Wait_DLY 32%
2 jobl Normal Wait_DLY 32% =
255 |os_idle_demon None Running 0%
| | _’,J
25 Copyright © 2016 ARM Limited or its affiliates. All rights reserved

STMicroelectronics Discovery STM32F7 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

http://www.keil.com/pack/doc/CMSIS/RTX/html/_example_r_t_x__tutorial.html
http://www.keil.com/gsg/

28) Adding a Thread to your RTX_Blinky:
We will create and activate a thread. We will add another global variable counter2 to give it something to do.

1. Stop the program @ and Exit Debug mode. @
2. InBlinky.c, add this line near line 6 before the main() function;

6 unsigned int counter2=0;

Create _the Thread JobL: . . 8 void jobl (void const *argument) {
Add this code to be the thread jobl before main(): 9 for(){
. 10 counter2++;
TIP: osDelay(500) delays the program by500 clock ticks 11 if (counter2 > OxOF) counter2=0:
to slow it down so we can see the values of counter and 12 osDelay(500);
counter2 increment by 1. 13 }
Add osDelay to main(): 14 }

4. Add this line just after the second if statement near line 19: | 19 0sDelay(500);
Define and Create the Thread:

5. Define jobl near line 15 just before main():

6. Create the thread jobl near line 18 just

15 osThreadDef(jobl, osPriorityNormal, 1, 0);

before the while(1) loop: 23 osThreadCreate(osThread(jobl), NULL);
7. Click on File/Save All or 'j
"F"l'
8. Build the files. == There will be no errors or warnings. If there are, please fix them before continuing.

Run the Program and configure Watch 1 and see RTX running:

9. Enter Debug mode: @ Click on the RUN icon.
10. Right click on counter2 in Blinky.c and select Add counter? to ... and select Watch 1.
11. Both counter and counter2 will increment but slower than before:

Watch 1 . X

The two osDelay(500) function calls each slow the program down by 500 Nome Value Type

msec. This makes it easier to watch these two global variables increment. - @ counter 0100000005 | unsigned int

OsDelay() is a function provided by RTX. g T Cun000000: [unsignedling
~ = Enter expression=

12. Open the System and Thread Viewer by selecting Debug/OS Support.
13. Note that job1 has now been added as a thread as shown below: Gaconstack + Locls | Wetei| Ewemor1 |

14. Note os_idle_demon is always labelled as Running. This is because the program spends most of its time here.

15. Set a breakpoint in jobl and the program will stop there and jobl is displayed as "Running" in the Viewer.

16. Set another breakpoint in the while(1) loop in main() and each time you click RUN, the program will change threads.
17. Remove all breakpoints before continuing.

18. There are many
attributes of RTX you | praperty Value
can add. Seethe RTX | E-system Item Value
documentation Tick Timer: 1,000 mSec
mentioned on the Round Robin Timeaut: 5.000 mSec
. Default Thread Stack Size: 200
preVIous page and the Thread Stack Overflow Check: Yes
MDK 5 Gettmg Thread Usage: Available: 7, Used: 4 + o...

Started Guide.

=l Threads State Delay Event Value Event Mask Stack Usage

1 osTimerThread High wait MBX | | 36%
main Mormal Wait_DLY 36%
3 jobl MNaormal Wait_DLY 36%
255 |os_idle_demon MNone Running
26 Copyright © 2016 ARM Limited or its affiliates. All rights reserved

STMicroelectronics Discovery STM32F7 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

1) Stop the program @ and exit Debug mode. @-
2) In Blinky.c there are two lines osDelay(); .

29) Using Event Viewer to examine your RTX_Blinky Timing:
We will demonstrate the utility of the Event Viewer.

Comment both of these out. We will run the program really fast.

3) Open Select Target Options AN or ALT-F7. Select the Debug tab and the Settings. Select the Trace tab.
4) Set Core Clock: to 16 MHz. Unselect EXCTRC: and Periodic. Leave everything else at their default settings.

5) Click on OK twice to return to the main pVision menu.

6) Build the files.

Enter Debug mode: @ Click on the RUN icon.

7) Open the Event Viewer by selecting Debug/OS Support and select Event Viewer. This window will open:

8) Adjust Zoom In and Out for a comfortable view.

Event Viewer

o x

timeout of 5 ticks.
4) The Thread timing is this 1 msec * 5 ticks = 5 msec.

5) Every 5 msec the Thread is switched to the next one
and these sequences are displayed in the Event
Viewer. There are other ways to switch a thread.

6) Itis quite easy to view how RTX is running to make
sure it is performing as you designed.

7) There are many other RTX features you can use.
Refer to the extensive RTX documentation.

8) Stop the program @ and exit Debug mode. @-

oad Min Time Max Time Grid ‘ Zoom | Update Screen ‘ Jump to Transition ([TmingInfo [1
[Bave...| |\ 0.359125ms | 3.135406s | 5ms H In ||0utH Al ||| Start | clear H|Code||Traoe| ME r Show Cydes
All Threads | main (1) Jjob1(2) [main (1) [job1 (2) ['main (1) job1 @) |main (1) [job1{2) [main (1) [job1(2) |main {1} |
. E EEEEN
<~ H Il H H N |
30806365 3110636 3140686 5
[_L 0>
Event Viewer | System and Thread Viewer
9) Hold your cursor over one of the blue blocks o : ' -
. - - . - main i [
and a yellow information window is displayed 5 " [rmina T Mhresi s B005000530]
as Shown here' E Current Slice: Begin End Duration
. . b1 i . ! . .
10) Note each thread duration is about 5 msec. oo T 300806 s o ez
! ! All Slices: Min Max Average
3080636 s Count: 314 4.996688 ms 5.04625 ms 4.999375 ms
. . ;I . —] Cursors: Mouse Reference Difference
What is Happenn’]g Here: Event Viewer | Systzm and Thread Vig 3.003485 5 M/A /A
1) Open RTX_Conf_CM.c and select the Configuration Wizard tab as shown below:
2) The CPU speed is set to 16 MHz with a Timer tick value of 1000 us or 1 msec.
3) Note Round Robin switching is selected with a tick ——

] RIX ConfCM.c |] Blinkyc |] startup_stm32746xcs |

Bpand Al | Collapse Al | Hlp | T~ ShowGid
Option | Value
E---RT)(Kernel Timer Tick Configuration ;I
| Use Cortex-M SysTick timer as RTX Kernel Timer lcd
RTOS Kernel Timer input clock frequency [Hz] 16000000

: - RTX Timer tick interval value [us]
E---System Configuration

E---Round-Robin Thread switching

. “-Round-Robin Timeout [ticks]

- i

Round-Robin Timeout [ticks]

Defines how long a thread will execute before a thread switch.
Default: 5

Configuration Wizard j’

27

STMicroelectronics Discovery STM32F7 Lab with ARM® Keil™ MDK toolkit

Copyright © 2016 ARM Limited or its affiliates. All rights reserved
www.Kkeil.com/st

30) Using STM32CubeMX to create a simple Blinky program:

Using STM32CubeMX to create your pVision project is a very good idea. It configures the multiplexed pins on your
processor, calculates the clock settings and creates a MDK 5 project using CMSIS to use as your starting point.

Download and Install STM32CubeMX:
1. Download and install STM32CubeMX from www.st.com/stm32cubemx

2. Download and install STM32CubeF7 Embedded Software package for the STM32F7 series from the same place.
D . . New Pro]ect MCU Selector | Board Selector
3. Open STM32Cube MX and select New Project: =
Create a new Project: select your processor and configure user LED Port Pl pin 1 as GPIO: e -
1. Inthe New Project window, in the Series pulldown menu, select STM32F7 as shown here:) | .50
2. Inthe MCUs List window, select STM32F746NGHXx as shown below: ﬂ %gg%—j
3. Click OK. Wait for the Pinout window to ‘ STM32F7461GTx STM32F7x6|LQFP176 |1024 (320 [0 140
display. It will have a graphic pinout diagram STM32F746NGHx D z;:;;ii: IE:E?E: f;; ;;g g i::
of your processor. The Pinout tab is selected. HW STM32F7x6|LQFP100 |512 320 [0 82
STM32F746WGTx STM32F7x6|LQFF100 1024 320 a 82

4. The green user LED LD1 is attached to Port |
pin 1 as found from the Discovery board schematics. We will select and configure this pin as GPI1O output.

In the Find box, enter Pil or PI1. [pr =l Inthe List box that opens, select P11.
The PI1 circle (or pad) will turn darker grey and blink.
7. Click once on the circle P11 and this menu selection opens: Select GPIO_Output as shown here:)

8. The PI1 circle will turn green with a check as shown here indicating a successful configuration: .
Configure the Processor clocks: You set the CPU speed here. The default CPU clock speed is 16 MHz.
1. Select the Clock Configuration tab: Cleck Configuration

PIL
Reset_State
DCMI_D8
FMC_D25
1252_CK
LTDC_G6
SPI2_SCK
TIM8_BKINZ

GPI ut
GPIO_Outpul
GPIO_Analog

EVENTOUT
GFIO_EXTI1

2. Find the HCLK box and insert 216 and press Enter as shown here:

HSI
NI

3. Ainfo window will display stating no solution exists. Select Ok to find SYSQK(MH) | AHBPrescsler f HOK (MHZ)

HSE

a solution. (Clock source will be changed from HSI to PLLCLK) e[e —ee[1 7]

‘PLLCLK
— ("

4. Note your final clock value is calculated backwards to obtain the P
correct clock register settings.

A

TIP: You can lock a value by right clicking on a box. This value will stay constant as you change other values.
Inspect Pin Configuration Settings: You can modify the settings of the pin items you have set here.
1. Select the Configuration tab: Cenfiguration

2. Under the System column, select GPIO. This window opens: ﬁ

3. Highlight GP1O: The bottom part opens: =]
4. Note the various items you can modify. Bl

5. In User Label enter LD1. e - Sho anly wadiied i
6- CIiCk Ok to Close this WlndOW Pin Name / Signal on Pin GPIO mode Maximum output speed| User Label | Modified

Qutput Push Pull

Configure your Project:

1. Inthe main STM32CubeMX window, select Project/Settings or press Alt-P. The Project Settings window opens.

2. InProject Name box enter Blinky.

3. For Project Location box, browse to C:\Cube_Projects.

4. Inthe Toolchain/IDE field, select MDK-ARM V5.

5. Click on Ok to save and close. Blinky.ioc will be created in C:\Cube_Projects\Blinky\.

What you have so far: You have setup up GPIO Port | pin 1 to turn LD1 green LED on. The CPU speed is set to 216 MHz.

Many other configuration items have been automatically set by STM32Cube for you. You can still modify them.

28 Copyright © 2016 ARM Limited or its affiliates. All rights reserved

STMicroelectronics Discovery STM32F7 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

http://www.st.com/stm32cubemx/
http://www.st.com/web/en/catalog/tools/PF261909

Generate pVision Project Code:
1. Close pVision. Otherwise, you will end up with two instances of pVision running and this can be confusing.
2. Inthe main STM32CubeMX menu, select Project/Generate Code. This will create the MDK 5 project files.
3. Aprogress bar will display. When it is finished this window will display: ﬁ

4. Select Open Project and pVision will be started and load Blinky. x|
Examine and Build the PI’OJ ect Files: [6] The Code is successfully generated under C:/Cube_Projects/Blinky

1. Build the files. Open Foider |[iOpen Project] ~ dlose |

errors or Warnings

In the Project window in pVision the file structure is displayed. —

The Build Output window will show no

Expand the Application/User folder as shown below here: =- ”‘f? Project: Blinky
4. Double click on main.c to open it. At this point, all you need to do is add your = “';___;;'”"CYJS"I:{QW“‘)”
own source co_de. main.c has a mai_n() function containing some calls to G & Application/MDKARM
initialization files but an empty while(1) loop. There are sections created where LD startup stm32746us
you can enter your own source code. §3 Drivers/STM32F70x HAL Driver
Add Source Code to Blink LED LD1: <8 Drivers/cMsIs

R " . R . . i system_stm32f7xoec
1. Inmain.c, in the while(1) loop near line 88 is a User Code section 3.

2. Add these two lines near line 89:

4 Application/User

J stm32f7xx_hal_msp.c
: A3 mainc

J stm32f o itc

88 HAL_GPIO_TogglePin(GPIOI, GPIO_PIN_1);
| >~
89 HAL_DeIay(100)= jProJect @Books | {} Functions |“+Templates |

3. Select File/Save All. 'j
TIP: You can see where these functions are located by right clicking on the function name and selecting Go To Definition:
Go To Definition Of 'HAL_GPIO_TogglePin'
Running your Program:
1. Connect your PC to the board with a USB cable to CN14.
2. By default, the ST-Link Debugger is selected.

3. Compile the source files by clicking on the Rebuild icon. |—| You can also use the Build icon beside it. The Build
Output window will show no errors or warnings. If there are, please fix them now.

4. Enter Debug mode by clicking on the Debug icon.@ Select OK if the Evaluation Mode box appears.
The Flash will be programmed with progress indicated in the Build Output window.

5. Click on the RUN icon.

The LED LD1 on the STM32F7 Discovery board will blink.
Congratulations — you have created your first program with STM32CubeMX !

See various STM32CubeMX tutorials and documentation available on www.st.com/stm32cubemx

USING Keil RTX RTOS: At this point, you can easily add RTX to this project. See page 25 and the MDK 5 Getting
Started Guide. RTX online documentation: www.keil.com/pack/doc/CMSIS/RTX/html/ _example r t x__tutorial.html

29 Copyright © 2016 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F7 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

http://www.st.com/stm32cubemx/
http://www.keil.com/pack/doc/CMSIS/RTX/html/_example_r_t_x__tutorial.html

31) ETM Trace Examples:

These examples were run on the STM32756G-EVAL evaluation board. A ULINKpro debug adapter is required for ETM
operation. You can use a ULINKpro on your own custom board if it has the 20 pin CoreSight ETM connector to provide the 5
signal Trace Port (4 data + clock). Many STM32 processors have ETM. ETM and Serial Wire Viewer are separate CoreSight
components. ETM and SWV are available on nearly every STM32 processor except for Cortex-M0. ETM provides serious
debugging capabilities as shown on the next few pages. It is worth the small added cost given all the advantages provided.

Install STM32756G-EVAL Examples:

1.

Noe g ~ow

Connect your computer to the Internet. This is normally needed to download the Software Pack examples.

7
Start pVision by clicking on its desktop icon. w!m

Open the Pack Insta

&

ller (PI) by clicking on its icon:

The Pack Installer window opens as shown below:

Note: “ONLINE” is displayed at the bottom right. If “OFFLINE” is displayed, please connect to the Internet.

Packs/Check for Updates or R to refresh once you have connected to the Internet. It is not done automatically.
Under the Boards tab, in the Search box, type ST as shown below:
Select STM32756G-EVAL: This will filter the list under the Packs and Examples tabs.

L=
File Packs Window Help
: o ‘ Board: STM32756G-EVAL [Rev.B)
ﬂ De\ﬂ:es/ Boards] ﬂ ﬂ Packs/ Examples } ﬂ "
Search: st - x F Show examples from installed Packs only ”l
Eoard /| summary Example Adtion Description
B4 SN32F100 Starter Kit ul.2) SN32F10 B ~BSD Client (STM32756G-EVAL) & Copy Example using BSD sockets to send commands to remote server -
B sN32F7076 Starter Kit Revl_0 fv.. |SN32F70°B ~BSD Server (STM32756G-EVAL) ‘ Copy. Example using BSD sockets to accept commands from remote clients
B8 SN32F780 Starter Kit i1} SN32F769 CAN Data (STM32756G-EVAL} ‘ Copy CAN example that sends and receives data messages
o B sN32F760 Starter Kit Revl_1 [v1.1) |SN32F76% - CAN RIR(SH T T L <amansigies Remote Ti 1 Request [RTR) usage
B STM32F3-Discovery Rev.B.0) STM32F303VC q : CMSIS-RTOS Blinky (STM32756G-EVAL) £ Copy CMSIS-RTOS based Blinky example >
B sTM32F4-Discovery [Rev.C.1) STM32F407VG FIP ServerTs? . Eil TPpTOTOCOT with SD/MMC Memary Card as storage media
B STM32F030-Discovery (Rev.B) STM32F030RS ~File System Dema (STM32756G-EVAL) * Copy File manipulation example: create, read, copy, delete files on any enabled drive (¢
B8 sTM32F051-Discovery (Rev.E} STM32F051R8 HTTP Server (STM32756G-EVAL) ‘ Copy. Compact Web Server with CGI interface
Bl STM32F072-Discovery (Rev.B} STM32FO072RB ~HTTP Upload (STM32756G-EVAL) * Copy ‘Web Server with CGI interface and SD/MMC Memory Card as storage media
Bl STM32F401C-Discovery [Rev.B.1) | STM32F401VC ~SMTP Client (STM32758G-EVAL) * Copy. Example showing how to compose and send emails
Bl STM32F4291-Discovery [Rev.E) STM32F42971 1 x 654 MB... SNMP Agent [STM32756G-EVAL) £ Copy Example showing how to use a Simple Netwark Management Protocal (SNMP)
B STM32F746G-Discovery [Rev.1) STM32F746MNGHx, 1 x 12... ~Telnet Server (STM32756G-EVAL) * Copy Command-line Host service example using Telnet protocol
Bl sTM321053-Discovery (Rev.B) STM32L053C8 3B Device HID (STM32756G-EVAL) ‘ Copy. USEB Human Interface Device providing access from PC to board LEDs and push b
B STM321073Z-EVAL [Rev.A) STM32L073VZ USB Device Mass Storage (STM32756G-EVAL) ‘ Copy USB Mass Storage Device using RAM as storage media
B STM321476G-EVAL (Rev.A) STM32L476ZG ~U3SE Device Virtual COM (STM32756G-EVAL) * Copy Bridge between PC USE Virtual COM Port and UART port
B sTM32303C USE Host Keyboard (STM32756G-EVAL) ‘ Copy. Measure example using USB HID Keyboard as input device
~USB Host Mass Storage (STM32756G-EVAL) & Copy USE Host file manipulation example: create, read, copy, delete files from USE Ma
~emWin Example (STM32756 G-EVAL) * Copy emWin Graphics simple example
emWin GUI Demo [STM32756G-EVAL) ‘ Copy emWin Graphics Demo example

Ready

Output 2 X

=
[lonmme

10.
11.

12.

Select the Examples tab and note the many examples you can try. The Middleware examples need an MDK license.
Beside CMSIS-RTOS Blinky (STM32756G-EVAL), click on Copy. & Copy |

Close the Packs Installer. Open it any time by clicking on its icon.

&3

The Copy Example window below opens up: Select Use Pack Folder Structure: Unselect Launch pVision:
Type in C:\ as shown to the right: Click OK. Blinky will be copied to C:\MDK\Boards\ST\STM32756G_EVAL\

Copy Example

Destination Folder
’7| c:\

[V Use Pack Folder Structure

X

Browse...

™ Launch pvision

Cancel

TIP: The default directory for copied examples the first time you install MDK is C:\Users\<user>\Documents. For
simplicity, we will use the default directory of C:\MDK\ in this tutorial. You can use any directory you prefer.

TIP: An Update icon means there is an updated Software Pack available for download.

30

STMicroelectronics Discovery STM32F7 Lab with ARM® Keil™ MDK toolkit

Copyright © 2016 ARM Limited or its affiliates. All rights reserved

www.keil.com/st

Configure and RUN ETM Trace for the Blinky Example:
Connect the ULINKpro and load the Blinky example:

1.
2.

Connect the ULINKpro to the STM3240G board using the 20 pin CN13 Trace connector. See the photos below:
Select Project/Open Project. Open C:\MDK\Boards\ST\STM32756G_EVAL\Blinky.uvprojx.

Create a new Target Options configuration:

1.

3.
4,

Configure the ETM Trace:

5.

8.
9.

10.
11.
12.

13

15.

16.
17.
18.
19.

. SE|eCt File/save A” ﬂ T Trace Events
. R Sync Trace Port with 4bit Data |+ { ¥ Enable Prescalzr |1 VI I CPI: Cycles per Instruction
Compile Blinky and Enter Debug Mode: @ {r SE Emmmew
CLK: J0.0ns =] DO:[0.0ns ~ PC Samplin
[e 1 | T SLEEP: Slesp Cycles

14.

Select Project/Manage/Project Items: dh projectitems..

Click on the Insert icon: - Enter ULINKpro Flash (or whatever you want). Enter and then click Ok to close.
Select the Target Option you just created: 'YUNKpro Flash T E— x|

Linker Debug | Ltilities I

o se: ILILINK Pro Cortex Debugger j Settings |

Select Target Options #N or ALT-F7. Select the Debug tab. Select

ULINK Pro Cortex Debugger as shown here: e - _

¥ Load Application at Startup ¥ Run to main
Select Settings: on the right side of this window. Inttalization File:
In the next window, confirm that a valid ID Code and Device Name are | J Edi.. |
displayed. If not, you must fix this before continuing. [~ Restore Debug Session Settings———————————

Select the Trace tab.

In the Trace window, select Trace Enable as shown below. Set Core Clock: to 100 MHz.
In the Trace Port box, select Sync Trace Port with 4 bit Data as shown below:

Select ETM Trace Enable as shown here: 1

Click OK twice to return to the main pVision Cortez M Tarmct DERaioet 2
menu. ETM trace is now configured. S e

@ 100.000000 Mz [# Trace Enable [~ Urlnit=dTrace 7 ETM T@
T

In Blinky near line 60 change PLLN to 200.
This is to slow the CPU clock to 100 MHzZ. g | 60 | RCC_OscInitStruct.PLL.PLLN = 200;|

Enter Debug mode by clicking on the Debug icon.)} . The program will run to the first instruction in main().
DO NOT CLICK ON RUN YET Il

Open the Data Trace window by clicking on the small arrow beside the Trace Windows icon.
The Trace Data window will open and some frames will be displayed. Please turn the page.

Event Counters

BRI An STM32756G_EVAL board connected
o to a Keil ULINKpro using the special
g CoreSight 20 pin ETM connector CN12

Close-up of the CoreSight ETM
20 pin connector:

31 Copyright © 2016 ARM Limited or its affiliates. All rights reserved

STMicroelectronics Discovery STM32F7 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

Examine the Trace Data Window:

1. Examine the Instruction Trace window as shown below: This is a complete record of all the program flow since
RESET to the start of main(). uVision halted the program at the start of main() since Run To main is selected.
2. The last two frames are actually SWV Exception frames and not instruction frames. Open the Exception Trace
window and click on the Count column to bring SVCALL to the top. In my case, two exceptions were executed.
3. Inthis case, 100 060 s shows the last instruction to be executed. (BX Ir). In the Register window, the PC will display
the location of the next instruction to be executed (0x0800_2428 in my case).
4. Features of The Trace Data window:
a. Address of the instruction with its mnemonic is shown with other information.
b. Any Serial Wire Viewer (SWV) events are displayed — see the last two frames.
c. Source Code if available is displayed.
d. The function the instruction belongs to is displayed. The start of a sequence is in orange as shown:
5. Click on an instruction frame and it will be displayed in the Disassembly and source windows.
Trace Data o =
Display: Al S = e~ B - in Al -
Time Address /Port | Instruction / Data Src Code / Trigger Addr Function
X:0x08003CC4 | LDR 1, [0, £0x00] {os_tsk.run->stack[0] != MAGIC_WORD)} { rt_stk_check -]
X:0x08003CC6 | LDR r1,[pc,£16] ; @0x0800... rt_stk_check
X 0x0B003CCE | CMP r,rl rt_stk_check
0.000 099 490 5| ¥ : 0x03003CCA | BEQ 0x08003CD2 rt_stk_check
¥ 0x03003CD2 | BX Ir 1 rt_stk_check
X :0x08000354 | POP {r2-13} POP {R2,R3} SVC_Handler
X : Dx08000356 STR r2,[r3,#0x00] STR RZ,[R3] ;os_tskirun = os_tsk.new SVC_Handler
¥ :0x08000358 | LDR r12,[r2,#0x28] LDR R1Z,[R2,#TCEB_TSTACK] : os_tsk.new-»tsk_stack SVC_Handler
X : 0x000035C | LDM r12!,{r4-ri1} LDMIA R12!{R4-R11} : Restore New Context SVC_Handler
¥ :0x03000360 | LDRB 10, [r2,£0%25] LDRE RO,[R2,#TCB_STACKF] : Stack Frame SVC_Handler
¥ 0x03000364 CMP 0, #0x00 CMP RO#0D : Basic/Extended Stack Frame SVC_Handler
¥ 0x03000366 ITEE EQ MVNEQ LR #MNOT:0xFFFFFFFD ; set EXC_RETURN value |SVC_Handler
¥ : 0x03000365 MVMNEGQ Ir, #0002 SVC_Handler
¥ 0x0300036C | MVNME Ir#0x12 MVMMNE LR,#:MNOT:0xFFFFFFED SVC_Handler
X2 0x03000370 VLDMIAME rl2!, {s16-s31} VLDMIAME R12!{516-531} : restare VFP hi-registers SVC_Handler
¥ 0x03000374 MSR PSPr12 MSR PSPR12 » Write PSP SVC_Handler
0.000 100 080 5| X : 0x08000378 BX Ir BX LR SVC_Handler
0.000 100 290 s Exception Exit - SVCall
0.000 100 640 s Exception Return

4]

—

6. Click on Single Step once. £} The instruction at 0x0800 2428 is executed as shown below: This is a BL.W
instruction branching to the MPU_Config function which is the 1% function call in main()..

X 00B000374

M5R P5P,r12

M5R PSPR12

» Write PSP

SVC_Handler

0.000 100 060 s| X : 0x05000375

BX Ir

EX LR

SVC_Handler

0.000 100 290 s

Exception Exit - SVCall

0.0

CEpLion RETUrN

0,000 100 690 s| X 0x05002423

BLW MPU_Config [0x0800...

MPU_Config();

J/* Configure the MPU

I

4

——

main
1 L4

8. Scroll to the top of the Instruction Trace window to frame # 1. This is the first instruction executed after RESET.

Trace Data o x
Display: All - @ A RSB B vl * in Al -

Time Address / Port | Instruction / Data Src Code / Trigger Addr Function

2 0x03000424 LDR i, [pc#36] ; @0x0800.., LDR RO, =Systemlnit Reset_Handler ﬁl
0.000 000 000 5| X: 0x03000426 | BLX i} BLX RO Reset_Handler

¥:0x08002140 | LDR 10,[pc#80] ; @0x0800... SCB-> CPACR |= [BUL << 10%°2)|3UL << 11*2)}; /* set CP10 a... | Systemlnit
X:0x08002142 | LDR 10, [r, £0300] SystemInit
¥ 0x0E002144 ORR 0, r0, #0xF00000 SystemInit
Vo MRNNT AR [al=] il Tmre 77« A0un2nn CuctamInit

9.

Note the RESET_Handler at location 0x0800 0424. If you enter 0x0800 0000 in the Memory window, the second

word is the initial PC. It will be 0x0800 0425. The least significant bit means this is a Thumb2 instruction.

Concept: Think of the Source and Disassembly windows as displaying the source code as it was written. ETM instruction
trace displays the source code in the order it was actually executed making this feature extremely useful for debugging.

32

STMicroelectronics Discovery STM32F7 Lab with ARM® Keil™ MDK toolkit

Copyright © 2016 ARM Limited or its affiliates. All rights reserved

www.keil.com/st

Searching for Trace Frames:

Capturing all the instructions executed is possible with ULINKpro but this might not be practical. It is not easy sorting
through millions and billions of trace frames or records looking for the ones you want. You can use Find, Trace Triggering,
Post Filtering or save everything to a file and search with a different application program such as a spreadsheet.

Trace Filters: [|
In the Trace Data window you can select various types of frames to be displayed. Open the Display: [-Code Bxec [
box and you can see the various options available as shown here: These filters are post collection. T - All
Future enhancements to pVision will allow more precise filters to be selected. T~ o St
- Event Counters
ITK - Exceptions
i ITK - PC Samples [
Find a Trace Record: T - Data Read ~
1. Inthe Find a Trace Record box enter bx as shown here:
= [bx [-] in an -
2. Select the Find a Trace Record icon & and the Find Trace window X
screen opens as shown here: Click on Find Next and each time it FindVirat: - [ox =
will step through the Trace records highlighting each occurrence of In Column: [a] [
the instruction bx. Where: | Available Data 2
3. Click on Cancel to close the Find Trace window. Find Opfions ———————————— -Find Direction
™ Match whole word only " up
[~ Match case ’76 Down
TIP: You can select properties where you want to search in the “in” box. All
is shown in the screen above Frdvext | [Concl |

Trace Triggering: coming soon for Cortex-M7

pVision has three trace triggers currently implemented:

TraceRun: Starts ETM trace collection when encountered.

TraceSuspend: Stops ETM trace collection when encountered. TraceRun has to have been encountered for this to have an
effect.

These two commands have no effect on SWV or ITM. TraceRUN starts the ETM trace and TraceSuspend stops it.

TraceHalt: Stops ETM trace, SWV and ITM. Can be resumed only with a STOP/RUN sequence. TraceStart will not restart
this.

Insert Tracepoint at ‘0x0000027E ... 4 TraceRun (ETM])
E Disable Tracepoint TraceSuspend [ETM)
TraceHalt

How it works:

When you set a TraceRun point in assembly language point, ULINKpro will start collecting trace records. When you set a
TraceSuspend point, trace records collection will stop there. EVERYTHING in between these two times will be collected.
This includes all instructions through any branches, exceptions and interrupts.

TIP: How to Easily Configure the STM32F7 Clocks:

The smartest way is to utilize STM32CubeMX to determine the values to be used for a clock speed. Select the Clock
Configuration tab after you have chosen your processor. This works backwards: select the final clock speed you desire in the
HCLK box and press Enter. The various divider values will be calculated. You can then fill them in the appropriate places in
Blinky.c and you did on the previous page 31. You can also right-click on a box to force it to remain (lock) the same. This is
useful if you need to keep a clock value for a peripheral such as USB or CAN a specified value and the CPU clock different.

33 Copyright © 2016 ARM Limited or its affiliates. All rights reserved

STMicroelectronics Discovery STM32F7 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

How to Set Trace Triggers:

Coming Soon for Cortex-M7 Processors:

34 Copyright © 2016 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F7 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

Code Coverage (CC):

10. Click on the RUN icon. After a second or so stop the program with the STOP icon. D
11. Examine the Disassembly and Blinky.c windows. Scroll and notice different color blocks in the left margin.
12. This is Code Coverage provided by ETM trace. This indicates if an instruction has been executed or not.

Colour blocks indicate which assembly instructions have been executed.

Green: this assembly instruction was executed.
Gray: this assembly instruction was not executed.
Orange: a Branch was always not taken.

Cyan: the Branch was always taken.

Light Gray: there is no assembly instruction here.
RED: a Breakpoint is set here.

The next instruction to be executed.

No gk~ owbdPR

&
>

In the window on the right you can easily see examples of each type of
Code Coverage block and if they were executed or not and if branches
were taken (or not).

O0x08001042 F1BOTF80 CHMP r0, #0x1000000
0x08001046 D300 ECC 0x0800104n
0x08001048 EOQIAC B 0x08001084

1141:
0x0800104A FO20417F
Ox0800104E 1E49
0x08001050 FO4F22E0 MOV

SysTick->LORD
BIC
SUES

O0x08001054 6151 STR

= (i

1142: NVIC SetPriority (5y
0x08001056 BFOO NOP

1014: if (IRgn < 0)
0x08001058 1751 ASES
O0x0800105& 2300 CHP
0x0800105C DROS BGE

1015: SCB->SHP[((uint32_

1016: else {
0x0800105E 210F MCVS
0x08001060 0109 L5LS5

cks & SysTick_]
rl,r0, #0RFFOOO¢
rl,rl,#1
r2,#0xEQQ0EQQD
rl, [r2,#0x14]

ysTick IR{m, (1-

rl,r2, #2939
rl,#0x00
0x0800106R

t) (IRgn) & O=xF

rl,#0x0F
rl,rl,#4

4
@Disassembly Q Logic Analyzer | ﬂ Instruction Trace |

Why was the branch BCC always taken resulting in 0x0800_1048 never being executed ? Or why the branch BGE at
0x800_105C was never taken ? You should devise tests to execute these instructions so you can test them.

Code Coverage indicates what assembly instructions were executed. It is important to ensure all assembly code produced by
the compiler is executed and tested. You do not want a bug or an unplanned circumstance to cause a sequence of untested
instructions to be executed. The result could be catastrophic as unexecuted instructions obviously have not been tested. Some

agencies such as the US FDA require Code Coverage for certification.

Good programming practice requires that these unexecuted instructions be identified and tested for proper operation.
Code Coverage is provided by ETM instruction trace. Code Coverage is also available in the Keil Simulator.
A Code Coverage window is available as shown below. This window is available in View/Analysis/Code Coverage.

Your display may look different due to different compiler options.

Code Coverage

| Module: I:}-‘-.II Modules=
Modules./Functions | Execution percentage =
El-- HAL_CM4.c -
....... i_set PSP 0% of 2 instructions
....... rt_get PSP 0% of 2 instructions
"""" oz_set_env 0% of 10instructions
----- _alloc_box 0% of 11 instructions
"""" _free_box 0% of 11 instructions
....... SVC_Handier 66% of 57 instructions, 4 condjumpis) not fully executed
"""" PendSY_Handler % of 31 instructions
....... SysTick_Handler 0% of 3instructions
"""" 05 _Tick_Handler 0% of 4 instructions
Bl /HAL_CMc
"""" it_ret_regs 0% of 7instructions
....... dbg_task_switch 100% of & instructions, 1 condjump(s) not fully executed
....... dbg_task_notify 100% of 13 instructions, 2 condjump(s) not fully executed -

cf;E Code Coverage

@Disassemhly

35
STMicroelectronics Discovery STM32F7 Lab with ARM® Keil™ MDK toolkit

Copyright © 2016 ARM Limited or its affiliates. All rights reserved

www.keil.com/st

Saving Code Coverage (CC) information:

Code Coverage information is temporarily saved during a run and is displayed in various windows as already shown.

It is possible to save this information in an ASCII file for use in other programs.

TIP: To get help on Code Coverage, type Coverage in the Command window and press the F1 key.

You can Save Code Coverage in two formats:
1. Inabinary file that can be later loaded back into pVision. Use the command Coverage Save filename.
2. Inan ASCII file. You can either copy and paste from the Command window or use the log command:

1) log > c:\cc\test.txt ; send CC data to this file. The specified directory must exist.

2) coverage asm ; you can also specify a module or function.
3) log off ; turn the log function off.
1) Here is a partial display using the command coverage. This displays and optionally saves everything.
\\Blinky\HAL CM4.c\rt_set PSP - 0% (0 of 2 instructions executed)

(

\\Blinky\HAL CM4.c\rt _get PSP - 0% (0 of 2 instructions executed)
\\Blinky\HAL CM4.c\os set env - 0% (
\\Blinky\HAL CM4.c\ alloc box - 0% (0 of 11 instructions executed)
\\Blinky\HAL CM4.c\ free box - 0% (0 of 11 instructions executed)
\\Blinky\HAL CM4.c\SVC Handler - 66% (38 of 57 instructions executed)

4 condjump (s) or IT-block(s) not fully executed
\\Blinky\HAL CM4.c\PendSV_Handler - 0% (0 of 31 instructions executed)
\\Blinky\HAL CM4.c\SysTick Handler - 0% (0 of 3 instructions executed)
\\Blinky\HAL CM4.c\OS Tick Handler - 0% (0 of 4 instructions executed)
\\Blinky\../HAL CM.c\rt ret regs - 0% (0 of 7 instructions executed)
\\Blinky\../HAL CM.c\dbg task switch - 100% (6 of 6 instructions executed)

1 condjump(s) or IT-block(s) not fully executed
\\Blinky\../HAL CM.c\dbg task notify - 100% (13 of 13 instructions executed)

0
0 of 10 instructions executed)
0

2) The command coverage asm produces this listing (partial is shown):
EX | 0x080004D6 468D MOV sp,rl
EX | 0x080004D8 4770 BX 1r
\\Blinky\Blinky.c\ use no semihosting swi - 0% (0 of 1 instructions executed)
NE | 0x080004DA ISuse$semihosting:
NE | 0x080004DA 4770 BX 1r
\\Blinky\Blinky.c\ fp init - 100% (3 of 3 instructions executed)
EX | 0x0800443C fp init:
EX | 0x0800443C F04F7040 MOV r0, #0x3000000
EX | 0x08004440 EEE10A10 VMSR FPSCR, r0
EX | 0x08004444 fplib config fpu vfp:
EX | 0x08004444 4770 BX 1r
3) The first column above describes the execution as follows:
NE Not Executed
FT Branch is fully taken Command » x]
i |
NT Branch is not taken
- coverage \Blinky\main details
AT BranCh IS a.IWa.yS taken' \\Blinky\Blinky.c\main - 92% (89 of 96 instructions executed)
EX Instruction was executed (at least once) 3 condjump(s) or IT-boock(s) not fully executed
taken: 0x000002EQ D300 BCC 0x000002E4
not taken: Ox000002F2 DAOT BGE 0x00000304
fully taken: O0x00000364 D102 BNE 0x0000036C
4) Shown here is an examp|e using: taken: 0x0000036E DAO1 BGE 0x00000374
coverage \Blinky\main details m }'
If the log command is run, this will be >coverage \Blinky\main details
saved/appended to the specified file. COVERAGE

You can enter the command coverage with various options to see what is displayed.

36 Copyright © 2016 ARM Limited or its affiliates. All rights reserved

STMicroelectronics Discovery STM32F7 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

Performance Analysis (PA):

Performance Analysis tells you how much time was spent in each function. The data can be provided by either the SWV PC
Samples or the ETM. If provided by the SWV, the results will be statistical and accuracy is improved with longer runs. Small
loops could be entirely missed. ETM provides complete Performance Analysis. Keil provides ETM and not SWV PA.

Keil provides Performance Analysis with the pVision simulator or with ETM and the ULINKpro. The number of total calls
made as well as the total time spent in each function is displayed. A graphical display is generated for a quick reference. If
you are optimizing for speed, work first on those functions taking the longest time to execute.

1. Use the same setup as used with Code Coverage.
2. Select View/Analysis Windows/Performance Analysis. A window similar to the one below will open up.

3. Exit Debug mode and immediately re-enter it. @ This clears the PA window and resets the STM32 and reruns it to
main() as before. Or select the Reset icon in the PA window to clear it.
Click on the RUN icon. After a second or so stop the program with the STOP icon. D)

Expand some of the module names as shown below:

Note the execution information that has been collected in this initial short run. Both times and number of calls are
displayed. You will probably see a different set of data in your program.

7. We can tell that most of the time at this point in the program has been spent in the os_idle-demon.

Performance Analyzer

Reset || Show: |Modules j
Madule/Function Calls | Time(Sec) Time(%) I;l
t--_t_CMSIS.c 122620us (0% |
RTE/Device/STM32F75EMNGHx/zystem_stm3X Fece 1260us 0% |
RTE/Device/5TM32F756NGHx startup_stm 32 7560c.s 0.240us 0% |
Keil_v5/ARM/PACKKeil /STM3I2F Poc_DFP/2.3.0/D... 43.080us (0% |
</ Keil_vB/ARM/PACK Keil /STMIA2F Ao _DFP/2.3.0/D... 1510us |0% |
Keil_v5/ARM/PACKKeil /STM3I2F Po_DFP/2.3.0/D... 24831ms (2%]
1 Keil_vB/ARM/PACK Keil /STMI2F Ao _DFP/2.3.0/D... 12510us (0% |
/Keil_vB/ARM/PACKKeil /STM3ZF fo_DFP/2.3.0/D... 767/0us |0% |
1 Keil_vB/ARM/PACK Keil /STMI2F Ao _DFP/2.3.0/D... 8620us (0% |
TE/CMSIS/RTX_Conf_CMc 1079s (57 I
"""" _mutex_release i} Jus %o
_mutex_acquire 0 lus %o
os_emor 0 Dus %
os_idle_demon 1 1079: (57 D |
TE/CMSIS/RTX_Conf_CMc 0470us (0% |
_platform_paost_lib_init 1 0.470us 0% |
Keil_vB/ARM/PACKKail /STMI2F Poc_DFP/2.3.0/... 4840us (0% |
LED_GetCourt 1 0.050us |0% |
LED_Off 1 0.4%0us (0% |
LED_On 1 0.740us 0% |
e LEDInitialize 1 3560us |0% | i
Bl Caf Wil _wB/ARM/PACK Keil 'STM32F Rox_DFP/2.3.0/ ... 1.330us (0% |
Bl C:/Keeil_w5/ARM/P ACK/Keil 'STM32F Ao_DFP#2.3.0/0... 6.070us |0% | -
@ Disassembly E Performance Analyzer |

Click on the RUN icon.

Note the display changes in real-time while the program Blinky is running. There is no need to stop the processor to
collect the information. No code stubs are needed in your source files.

10. Select Functions from the pull down box as shown here and notice the difference. I Functions :I'
11. Exit and re-enter Debug mode again and click on RUN. Note the different data set displayed. :

12. When you are done, Stop the program o and exit Debug mode. @

37 Copyright © 2016 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F7 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

Execution Profiling:

Execution Profiling is used to display how much time a C source line took to execute and how many times it was called. This
information is provided by the ETM trace. It is possible to group source lines (called collapse) to get combined times and
number of calls. This is called Outlining. The pVision simulator also provides Execution Profiling.

Enter Debug mode. @Q Execution Profiling ’ Disabled

Select Debug/Execution Profiling/Show Time. Memory Map... v'| Show Time

You can glzo select this by right-clicking in a Inline Assembly... Show Calls
SOurce Window. Function Editor (Open Ini File]... Reset Information

3. Inthe left margin of the Disassembly and C
source windows will display various time values.

Click on RUN .

4.

5. The times will start to fill up as shown below right:

6. Click inside the yellow margin of Blinky.c to refresh it.

7. This is done in real-time and without stealing CPU cycles.

8. Hover the cursor over a time and and more information appears as in the yellow box here:
Time: Calls: Average:
19,599 5 139910257 * 0.140 ps

9. Recall you can also select Show Calls and the calls rather than the execution times will be displayed in the margin.

Disassembly
TO: RCC ClkInitStruct.SYSCLESource = RCC SYSCLESQURCE PLLCLE: ﬂ
0.010 u= 0x080021T7E 2002 MCOVS r0, #0x02
0.010 u= 0x08002180 200D 5TR rd, [sp, #0x34]
T1: RCC ClkInitStruct.AHBCLEDivider = RCC SYSCLE DIV1:
0.010 u= 0x08002182 2000 MCOVS r0, #0x00
0.010 u= 0x08002184 9S00E 5TR rd, [sp, #0x38]
T2: RCC ClkInitStruct.APBICLEDivider = RCC_HCLE DIV4:
0.010 u= 0x08002186 F44F50A0 MOV r0, $#0x1400
0.010 u= 0x08002182 900F 5TR rd, [sp, #0x3C]
T3: RCC ClkInitStruct.APB2CLEDivider = RCC_HCLE DIVZ:
0.010 u= 0x0800218C F44F5080 MOV r0, #0x1000
0.010 u= 0x0800219%0 9010 5TR rd, [sp, #0x40]
T4: HAT. RCC ClockConfig(&RCC ClkInitStruct, FLASH LATENCY 7): -
_] Biinky.c |] startup_stm32f756xcs |] R ConfcMc |] Thread teDc | [] HaLcmac | T mixstmsznsze | ¥
6l RCC OscInitStruct.PLL.PLLF = RCC PLLP DIVZ; ‘:J
a2 RCC OscInitStruct.PLL.PLLYQ = 3;
683 0.210 us HAL RCC OscConfig(&RCC OscInitStruct);
64
L1 f* Actiwvate the COverDriwve to reach the 216 MHz Fregquency */
66 0.080 us HAL PWREx EnableCverDrive(): _J
a7
L33 f/* Belect PLL as svstem clock source and configure the HCLE, PCLEl =
69 0.020 us ~ ClkInitStruct.Clock CC CLOCKTYPE SYSCLE | RCC CLOCKTIYPE
T0 0.02 us Time: Calls: Lyerage: |= SYSCLESOURCE PLLCLE;
71 0.028 = | 0.020 us=s 1 = 0.020 usf = C SYSCLE DIV1;
T2 0.020 US™ P BCC ClkInitStruct.APBICLEDLS RCC HCLE DIV4; _J:J
1 | 3

38 Copyright © 2016 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F7 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

In-the-Weeds Example: A ULINKpro is needed for ETM Instruction Trace:

Some of the hardest problems to solve are those when a crash has occurred and you have no clue what caused this. You only
know that it happened and the stack is corrupted or provides no useful clues. Modern programs tend to be asynchronous with
interrupts and RTOS task switching plus unexpected and spurious events. Having a recording of the program flow is useful
especially when a problem occurs and the consequences are not immediately visible. Another problem is detecting race
conditions and determining how to fix them. ETM trace handles these problems and many others easily and is easy to use.

If a Hard Fault occurs, the CPU will end up at the address specified in the Hard Fault vector located at 0x0800 042E. This
address points to the Hard Fault handler. This is a branch to itself by default and this Branch instruction will run forever. The
trace buffer will save millions of the same branch instructions. This is not useful. We need to stop the CPU at this point.

This exception vector is found in the file startup_stm32f756xx.s. If we set a breakpoint by clicking on the Hard Fault handler
and run the program: at the next Hard Fault event the CPU will jump to the Hard Fault handler (in this case located at 0x0800
042E as shown to the right) and stop.

220: ENDP
221: MemManage Handler\
222: PROC
223: EXPORT MemManage Handler [WEARK]
0x0800042E ETFE B HardFault Handler (Ox0800042E)
224: B .

225: ENDP

22f: BRuaFanlr Handler _|L|
3

2. Locate the Hard Fault vector in startup_stm32f756xx.s near line 219 or at 0x0800 042E in the Disassembly window.
3. Set a breakpoint at this point. A red circle will appear as shown above.

TIP: An alternative to setting a breakpoint on the Hard Fault vector is described here: www.keil.com/support/docs/3782.htm
4. InThread_LED.c, set another breakpoint on the call to LED_Off(led_num); near line 29.

The CPU and also the trace collection will stop. The trace buffer
will be visible and is useful to find the cause of the crash.

1. Open the Blinky example and enter Debug mode. Open
the Trace Data window.

5. Clickon RUN . The program will run to the breakpoint in the LED_Off function call.

. e . . - .
Click on Step Into 3 once to enter the function LED_Off. Verify this in the Call Stack and Locals window.
In the Registers window, set R14(LR) to 0x0. This will guarantee a Hard Fault on the next return.

Clear the Trace Data window to make it easier to see what is happening. This is an optional step.

© ®© N

Click on RUN and immediately the program will stop on the Hard Fault exception branch instruction.
10. Examine the Trace Data window and you find a POP plus everything else that was previously executed.
11. Double click on the POP instruction and this will be displayed in the Disassembly window.

TIP: The addresses you get might be different than these ones depending on compiler settings.

Trace Data X
Display: All - & = 5 = g svall - in Al -

Time Address /Port | Instruction / Data Src Code / Trigger Addr Function |
¥ :0x08001E9E | MOVS 11, #0x30 LED_Off ;I
¥ 0x0B001EAD | LDR 10,[pc#28] ; @0x0800. .. LED_Off

22,713 887 110 5| ¥ : Dx08001EAZ | BLW HAL_GPIO_WritePin ... LED_Off

22713887930 s Exception Entry - HardFault
¥ :0x08000830 |*CBZ 12,0x08000886 if[PinState = GPIO_PIN_RESET) HAL_GPIO_WritePin
¥ : 0x0B000832 | STR 1, [0, #0x18] GPIOx->BSRR = GFIO_Pin; HAL_GPIO_WritePin
X : 0x05000354 B 005000384 HAL_GPIO_WritePin
¥ :0x0800083A | BX Ir i HAL_GPIO_WritePin
X : 0x08001EAG B 0x08001EBG break; LED_Off
¥ :0x08001EBE6 | NOP break; LED_Off
¥ : 0xD8001EBS MOVS 0, #0:00 return 0; LED_Off

[¥ :0x08001EBA | POP ir4,pc} 1 — LED_Off
22713 887 970 s | X : 0080004 2E] Hard?ault_Handler[ﬂxﬂ... B . HardFault_Handler b

12. The Branch at the Hard Fault does not show in the trace window because a hardware breakpoint does not execute the

instruction it is set to. It is therefore not recorded in the trace buffer. Click Step Into £ and it will be executed as
and displayed as shown above. The Hard Fault will also be displayed in the Call Stack window.

13. The frames above the POP are a record of all previous instructions executed and tells you the complete program flow
from when you clicked RUN to when the event that caused the Hard Fault occurred. Your problem is in there.

Instruction Trace is very useful for locating difficult bugs. This is a simple contrived example but it is clear to see the
usefulness of ETM. See the page 40 for a list of uses ETM and SWV can be. This is the end of the exercises.

39 Copyright © 2016 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F7 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

http://www.keil.com/support/docs/3782.htm

32) Serial Wire Viewer and ETM Trace Summary:

Serial Wire Viewer can see:

Global variables.

Static variables.

Structures.

Peripheral registers and physical memory — just read or write to them.
Can’t see local variables. (just make them global or static).

Can’t see DMA transfers — DMA bypasses CPU and SWV by definition.

Serial Wire Viewer displays in various ways:

PC Samples.

Data reads and writes.
Exception and interrupt events.
CPU counters.

Timestamps.

ITM for printf.

ETM Trace is good for:

Trace adds significant power to debugging efforts. Tells where the program has been.

A recorded history of the program execution in the order it happened as opposed to the way the program was written.
Trace can often find nasty problems very quickly. Weeks or months can be replaced by minutes.

Especially where the bug occurs a long time before the consequences are seen.

Or where the state of the system disappears with a change in scope(s).

These are the types of problems that can be found with a quality ETM trace:

Pointer problems. lllegal instructions and data aborts (such as misaligned writes).

Code overwrites — writes to Flash, unexpected writes to peripheral registers (SFRs), a corrupted stack.
How did | get here ?

Out of bounds data. Uninitialized variables and arrays.
Stack overflows. What causes the stack to grow bigger than it should ?

Runaway programs: your program has gone off into the weeds and you need to know what instruction caused this. Is
very tough to find these problems without a trace. ETM trace is best for this.

Communication protocol and timing issues. System timing problems.
ETM facilitates Code Coverage, Performance Analysis and program flow debugging and analysis.

For information on Instruction Trace (ETM) please visit www.keil.com/st for other labs discussing ETM.

40 Copyright © 2016 ARM Limited or its affiliates. All rights reserved

STMicroelectronics Discovery STM32F7 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

http://www.keil.com/st

Serial Wire Viewer (SWV) Configuration window: (for reference)

The essential place to configure the trace is in the Trace tab as shown below. You cannot set SWV globally for pVision. You
must configure SWV for every project and additionally for every target settings within a project you want to use SWV. This
configuration information will be saved in the project. There are two ways to access this menu:

A.

1

2)

3)
4)

5

6)

7)

In Edit mode: Select Target Options &N or ALT-F7 and select the Debug tab. Select Settings: on the right side of
this window and then the Trace tab. Edit mode is selected by default when you start pVision.

In Debug mode: Select Debug/Debug Settings and then select the Trace tab. Debug mode is selected with @- .

Core Clock: The CPU clock speed for x|
SWV. The CPU speed can be found in Debug Trace | Flash Download |

your startup code or in Abstract.txt. Itis
usually called SystemCoreClock and can 1 oo tiock[54000000 btz 2 ¥ Trace e 7
be viewed in a Watch window. This 3 Trace Por Timestamp Trace Events
must be set COI’I’ecﬂy for a” adapters ISariaI “wire Output - UART AMRZ j V¥ Enable Prescaler: |1 'l [CPI: Cycles per Instruction
[~ EXC: Excepti head
except U Ll N Kpro_ S0 Clack Prescaler: I 55 FC Samplng————————————— r SLEEP?;T:EI:E;C\;:S e
) v Autodetect A Frescaler IM . :

Trace Enable: Enables SWV and ITM. ieEn I L5L: Load Stors Linit Cycles
It can only be changed in Edit mode WD Cleckc | 118363 WHe | DI Peiodic Perod: [Disableds | €1~ FOLD: Folded Instuctions
ThIS doeSynot affectgthe WatCh and ' [onData RAW Sample [EXCTRC: Exception Tracing

; ; I TM Stimulus Part a b
Memory WIndOW dlsplay Updates. 6 e T il Port 24 23 Port 16 15 Fort 8 7 Port 1]

. PP R Enable: | 0FFFFFFFF |7 7 7 7 7 v v vl v v 7 7 2 v 7 a7 7 7 v 7 7 vl v 7 v v 7 7 v
Trace Port: This is preset for ST-Link. Privilege:leDDDDDDDS Port 31,24 Port 23.16 [Port15.8 [~ Port 7.0 [~
Timestamps: Enables timestamps and
selects the Prescaler. 1 is the default.
PC Sampling: Samples the program Lok [Comcel |

counter:

a. Prescaler 1024*16 (the default) means every 16,384™ PC is displayed. The rest are not collected.
b. Periodic: Enables PC Sampling.

On Data R/W Sample: Displays the address of the instruction that caused a data read or write of a variable
listed in the Logic Analyzer. This is not connected with PC Sampling but rather with data tracing.

ITM Stimulus Ports: Enables the thirty-two 32 bit registers used to output data in a printf type statement to
MVision. Port 31 (a) is used for the Keil RTX Viewer which is a real-time kernel awareness window. Port 0 (b) is
used for the Debug (printf) Viewer. The rest are currently unused in pVision.

e Enable: Displays a 32 bit hex number indicating which ports are enabled.
e Privilege: Privilege is used by an RTOS to specify which ITM ports can be used by a user program.

Trace Events: Enables various CPU counters. All except EXCTRC are 8 bit counters. Each counter is cumulative
and an event is created when this counter overflows every 256 cycles. These values are displayed in the Counter
window. The event created when a counter wraps around is displayed in the Instruction Trace window.

a. CPI: Cycles per Instruction: The cumulative number of extra cycles used by each instruction beyond the
first, one including any instruction fetch stalls.

b. Fold: Cumulative number of folded instructions. These results from a predicted branch instruction where
unused instructions are removed (flushed) from the pipeline giving a zero cycle execution time.

c. Sleep: Cumulative number of cycles the CPU is in sleep mode. Uses FCLK for timing.

EXC: Cumulative cycles CPU spent in exception overhead not including total time spent processing the
exception code. Includes stack operations and returns.

e. LSU: Cumulative number of cycles spent in load/store operations beyond the first cycle.

f. EXCTRC: Exception Trace. This is different than the other items in this section. This enables the display
of exceptions in the Instruction Trace and Exception windows. It is not a counter. This is a very useful
feature to display exception events and is often used in debugging.

TIP: Counters will increment while single stepping. This can provide some very useful information. You can read these
counters with your program as they are memory mapped.

41 Copyright © 2016 ARM Limited or its affiliates. All rights reserved

STMicroelectronics Discovery STM32F7 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

33) Document Resources: www.keil.com/st

Books:
1. NEW! Getting Started Guide MDK 5: Obtain this free book here: www.keil.com/gsg/.
2. There is a good selection of books available on ARM: www.arm.com/support/resources/arm-books/index.php
3. MVision contains a window titled Books. Many documents including data sheets are located there.
4. Alist of resources is located at: www.arm.com/products/processors/cortex-m/index.php

Click on the Resources tab. Or select the Cortex-M processor you want in the Processor panel on the left.
Or search for the Cortex-M processor you want on www.arm.com.

The Definitive Guide to the ARM Cortex-M0/MO+ by Joseph Yiu. Search the web for retailers.

The Definitive Guide to the ARM Cortex-M3/M4 by Joseph Yiu. Search the web for retailers.
Embedded Systems: Introduction to ARM Cortex-M Microcontrollers (3 volumes) by Jonathan Valvano.

® N o o

Application Notes:

9. Using Cortex-M3 and Cortex-M4 Fault Exceptions www.keil.com/appnotes/files/apnt209.pdf

10. Segger emWin GUIBuilder with pVision™ www.keil.com/appnotes/files/apnt_234.pdf

11. Porting mbed Project to Keil MDK™ www.keil.com/appnotes/docs/apnt_207.asp

12. MDK-ARM™ Compiler Optimizations www.keil.com/appnotes/docs/apnt_202.asp

13. Using pVision with CodeSourcery GNU www.Kkeil.com/appnotes/docs/apnt_199.asp

14. RTX CMSIS-RTOS in MDK 5 C:\Keil_v5\ARM\Pack\ARM\CMSIS\3.20.4\CMSIS_RTXDownload
15. RTX CMSIS-RTX www.keil.com/demo/eval/rtx.htm and www.arm.com/cmsis
16. Barrier Instructions http://infocenter.arm.com/help/topic/com.arm.doc.dai0321a/index.html
17. Lazy Stacking on the Cortex-M4: www.arm.com and search for DAI0298A

18. Cortex Debug Connectors: www.arm.com and search for cortex_debug_connectors.pdf
19. Sending ITM printf to external Windows applications: www.keil.com/appnotes/docs/apnt_240.asp

20. NEW! Migrating Cortex-M3/M4 to Cortex-M7 processors: www.keil.com/appnotes/docs/apnt_270.asp

Keil Tutorials for STMicroelectronics Boards: see www.keil.com/st

Keil Online CMSIS Documentation: www.keil.com/pack/doc/CMSIS/General/html
Community Forums: www.keil.com/forum and http://community.arm.com/groups/tools/content

ARM University program: www.arm.com/university. Email: university@arm.com

mbed: http://mbed.org
For comments or corrections on this document please email bob.boys@arm.com.

For more information on the ARM CMSIS standard: www.arm.com/cmsis,

42 Copyright © 2016 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F7 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

http://www.keil.com/gsg/
http://www.arm.com/support/resources/arm-books/index.php
http://www.arm.com/products/processors/cortex-m/index.php
http://www.arm.com/
http://www.keil.com/appnotes/files/apnt209.pdf
http://www.keil.com/appnotes/files/apnt_234.pdf
http://www.keil.com/appnotes/docs/apnt_207.asp
http://www.keil.com/appnotes/docs/apnt_202.asp
http://www.keil.com/appnotes/docs/apnt_199.asp
https://www.keil.com/demo/eval/rtx.htm
http://infocenter.arm.com/help/topic/com.arm.doc.dai0321a/index.html
http://www.arm.com/
http://www.arm.com/
http://www.keil.com/appnotes/docs/apnt_240.asp
http://www.keil.com/appnotes/docs/apnt_270.asp
http://www.keil.com/pack/doc/CMSIS/General/html
http://www.keil.com/forum
http://community.arm.com/groups/tools/content
http://www.arm.com/
mailto:university@arm.com
http://mbed.org/
mailto:bob.boys@arm.com
http://www.arm.com/cmsis

34) Keil Products and Contact Information:

Keil Microcontroller Development Kit (MDK-ARM™)
= MDK-Lite™ (Evaluation version) $0
= MDK- for STM32L0 and STM32F0: www.keil.com/st $0 DK Tor STH ML
= MDK-ARM-CM™ (for Cortex-M series processors only — unlimited code limit)

= MDK-Standard™ (unlimited compile and debug code and data size)
= MDK-Professional™ (Includes Flash File, TCP/IP, CAN and USB driver libraries)
For special promotional pricing and offers, please contact Keil Sales for details.

USB-JTAG adapters www.keil.com/ulink
= ULINK2 - (ULINK2 and ME - SWV only — no ETM)
= ULINK-ME - sold only with a board by Keil or OEM.
= ULINKpro - Cortex-Mx SWV & ETM trace. Very fast Flash programming.
= ULINKpro D - same as ULINKpro but without ETM trace.
= MDK also supports ST-Link, CMSIS-DAP and Segger J-Link Debug adapters.

{
All versions, including MDK-Lite, includes Keil RTX RTOS with source code ! and a BSD i

license. www.keil.com/rtx or C:\Keil_v5\ARM\Pack\ARM\CMSIS DIKEIL
Keil provides free DSP libraries with source code for Cortex-M processors. | DZ!KE"' Developmentitocls
Call Keil Sales for details on current pricing, specials and quantity discounts. \ - A}}egﬂﬂ%?ﬁ“_”“‘? o

Sales can also provide advice about the various tools options available to you. s

They will help you find various labs and appnotes that are useful.
All products include Technical Support for 1 year. This is easily renewed.

Call Keil Sales for special university pricing. Go to www.arm.com/university to
view various programs and resources.

MDK supports all STM32 Cortex-M0, M3, M4 and M7 processors. Keil

supports many other ST processors including 8051, ARM7, ARM9™ and ST10
processors. See the Keil Device Database® on www.keil.com/dd for the complete
list of STMicroelectronics support. This information is also included in MDK.

Contact Keil Sales for USA/Canada prices sales.us@keil.com. Contact sales.intl@keil.com for pricing in other countries.
For the entire Keil catalog see www.keil.com or contact Keil or your local distributor.
For Linux, Android, other OSs and no OS support on ST Cortex-A processors such as SPEAr, see DS-5 www.arm.com/ds5.

For more information:

Keil Sales In USA: sales.us@keil.com or 800-348-8051. Outside the US: sales.intl@keil.com

Keil Technical Support in USA: support.us@keil.com or 800-348-8051. Outside the US: support.intl@keil.com.
For comments or corrections please email bob.boys@arm.com.

For the latest version of this document and for more STMicroelectronics specific information, go to www.keil.com/st
CMSIS Version 4: See www.arm.com/cmsis and http://community.arm.com/groups/tools/content for more information.

Also see www.keil.com/st and www.keil.com/forum

| | |
HE E_E N EE
lv’cMSIS Cortex’ ARMKEIL
Microcontroller Tools

Software Interface Standard Intelligent Processors by ARM®

43 Copyright © 2016 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F7 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

http://www.keil.com/st
http://www.keil.com/ulink
http://www.keil.com/rtx
http://www.arm.com/university
http://www.keil.com/dd
mailto:sales.us@keil.com
mailto:sales.intl@keil.com
http://www.keil.com/
http://www.arm.com/ds5
mailto:sales.us@keil.com
mailto:sales.intl@keil.com
mailto:support.us@keil.com
mailto:support.intl@keil.com
mailto:bob.boys@arm.com
http://www.keil.com/st
http://www.arm.com/cmsis
http://community.arm.com/groups/tools/content
http://www.keil.com/st
http://www.keil.com/forum

