
User’s Manual

BOSCH - 1/45 -

Revision 1.2C_CAN

 06.06.00

m
an

ua
l_

co
ve

r.
fm

C_CAN

User’s Manual

Revision 1.2

06.06.00

Robert Bosch GmbH
Automotive Equipment Division 8

Development of Integrated Circuits (MOS)

manual_cover.fm

User’s Manual

BOSCH - 2/45 -

Revision 1.2C_CAN

 06.06.00

m
an

ua
l_

co
ve

r.
fm

Copyright Notice and Proprietary Information
Copyright © 1998, 1999 Robert Bosch GmbH. All rights reserved. This software and manual are owned
by Robert Bosch GmbH, and may be used only as authorized in the license agreement controlling such
use. No part of this publication may be reproduced, transmitted, or translated, in any form or by any
means, electronic, mechanical, manual, optical, or otherwise, without prior written permission of Robert
Bosch GmbH, or as expressly provided by the license agreement.

Disclaimer
ROBERT BOSCH GMBH, MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

ROBERT BOSCH GMBH, RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER
NOTICE TO THE PRODUCTS DESCRIBED HEREIN. ROBERT BOSCH GMBH DOES NOT
ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT
OR CIRCUIT DESCRIBED HEREIN.

User’s Manual Revision 1.2C_CAN
m

an
ua

lT
O

C
.fm

 . . 16

 .19
. . 20

. . 21
 .21
. . 21
. . 21
C_CAN . 1

1. About this Document . 5
1.1. Change Control .5

1.1.1. Current Status .5
1.1.2. Change History .5

1.2. Conventions .5

1.3. Scope .5

1.4. References .5

1.5. Terms and Abbreviations .6

2. Functional Description . 7
2.1. Functional Overview .7

2.2. Block Diagram .8

2.3. Operating Modes .9
2.3.1. Software Initialisation .9
2.3.2. CAN Message Transfer .9
2.3.3. Disabled Automatic Retransmission .10
2.3.4. Test Mode .10
2.3.5. Silent Mode .10
2.3.6. Loop Back Mode .11
2.3.7. Loop Back combined with Silent Mode .11
2.3.8. Basic Mode .12
2.3.9. Software control of Pin CAN_TX .12

3. Programmer’s Model . 13
3.1. Hardware Reset Description .14

3.2. CAN Protocol Related Registers .14
3.2.1. CAN Control Register (addresses 0x01 & 0x00) .14
3.2.2. Status Register (addresses 0x03 & 0x02) .15

3.2.2.1. Status Interrupts .
3.2.3. Error Counter (addresses 0x05 & 0x04) .16
3.2.4. Bit Timing Register (addresses 0x07 & 0x06) .16
3.2.5. Test Register (addresses 0x0B & 0x0A) .17
3.2.6. BRP Extension Register (addresses 0x0D & 0x0C)18

3.3. Message Interface Register Sets .18
3.3.1. IFx Command Request Registers .19
3.3.2. IFx Command Mask Registers .19

3.3.2.1. Direction = Write .
3.3.2.2. Direction = Read .

3.3.3. IFx Message Buffer Registers .21
3.3.3.1. IFx Mask Registers .
3.3.3.2. IFx Arbitration Registers .
3.3.3.3. IFx Message Control Registers .
3.3.3.4. IFx Data A and Data B Registers .

3.3.4. Message Object in the Message Memory .22
BOSCH - 3/45 - 06.06.00

User’s Manual Revision 1.2C_CAN
m

an
ua

lT
O

C
.fm

. . 29
 . . 29

.42
.42
3.4. Message Handler Registers .24
3.4.1. Interrupt Register (addresses 0x09 & 0x08) .24
3.4.2. Transmission Request Registers .25
3.4.3. New Data Registers .25
3.4.4. Interrupt Pending Registers .26
3.4.5. Message Valid 1 Register .26

4. CAN Application . 27
4.1. Management of Message Objects .27

4.2. Message Handler State Machine .27
4.2.1. Data Transfer from / to Message RAM .27
4.2.2. Transmission of Messages .28
4.2.3. Acceptance Filtering of Received Messages .29

4.2.3.1. Reception of Data Frame .
4.2.3.2. Reception of Remote Frame .

4.2.4. Receive / Transmit Priority .30

4.3. Configuration of a Transmit Object .30

4.4. Updating a Transmit Object .30

4.5. Configuration of a Receive Object .31

4.6. Handling of Received Messages .31

4.7. Configuration of a FIFO Buffer .32

4.8. Reception of Messages with FIFO Buffers .32
4.8.1. Reading from a FIFO Buffer .32

4.9. Handling of Interrupts .34

4.10. Configuration of the Bit Timing .34
4.10.1. Bit Time and Bit Rate .35
4.10.2. Propagation Time Segment .36
4.10.3. Phase Buffer Segments and Synchronisation .37
4.10.4. Oscillator Tolerance Range .39
4.10.5. Configuration of the CAN Protocol Controller .40
4.10.6. Calculation of the Bit Timing Parameters .41

4.10.6.1.Example for Bit Timing at high Baudrate .
4.10.6.2.Example for Bit Timing at low Baudrate .

5. CPU Interface . 43
5.1. Customer Interface .43

5.2. Timing of the WAIT output signal .44

5.3. Interrupt Timing .44

6. Appendix . 45
6.1. List of Figures .45
BOSCH - 4/45 - 06.06.00

User’s Manual Revision 1.2C_CAN
m

an
ua

l_
ab

ou
t.f

m

1. About this Document

1.1 Change Control

 1.1.1 Current Status

Revision 1.2

 1.1.2 Change History

Issue Date By Change

Draft 17.12.98 C. Horst First Draft

Draft 07.04.99 C. Horst DAR Mode added

Draft 20.04.99 C. Horst Signal names modified

Revision 1.0 28.09.99 C. Horst Revised version

Revision 1.1 10.12.99 C. Horst BRP Extension Register added

Revision 1.2 06.06.00 F. Hartwich Document restructured

1.2 Conventions

The following conventions are used within this User’s Manual.

Helvetica bold Names of bits and signals

Helvetica italic States of bits and signals

1.3 Scope

This document describes the C_CAN module and its features from the application
programmer’s point of view.

All information necessary to integrate the C_CAN module into an user-defined ASIC is located
in the ‘Module Integration Guide’.

1.4 References

This document refers to the following documents.

Ref Author(s) Title

1 FV/SLN1 CAN Specification Revision 2.0

2 K8/EIS1 Module Integration Guide

3 K8/EIS1 VHDL Reference CAN User’s Manual

4 ISO ISO 11898-1 “Controller Area Network (CAN) - Part 1:
Data link layer and physical signalling”
BOSCH - 5/45 - 06.06.00
manual_about.fm

User’s Manual Revision 1.2C_CAN
m

an
ua

l_
ab

ou
t.f

m

1.5 Terms and Abbreviations

This document uses the following terms and abbreviations.

Term Meaning

CAN Controller Area Network

BSP Bit Stream Processor

BTL Bit Timing Logic

CRC Cyclic Redundancy Check Register

DLC Data Length Code

EML Error Management Logic

FSM Finite State Machine

TTCAN Time Triggered CAN
BOSCH - 6/45 - 06.06.00

User’s Manual Revision 1.2C_CAN
m

an
ua

l_
fu

nc
t_

de
sc

r.
fm
2. Functional Description

2.1 Functional Overview

The C_CAN is a CAN module that can be integrated as stand-alone device or as part of an
ASIC. It is described in VHDL on RTL level, prepared for synthesis. It consists of the
components (see figure 1) CAN Core, Message RAM, Message Handler, Control Registers,
and Module Interface.

The CAN_Core performs communication according to the CAN protocol version 2.0 part A
and B. The bit rate can be programmed to values up to 1MBit/s depending on the used
technology. For the connection to the physical layer additional transceiver hardware is
required.

For communication on a CAN network, individual Message Objects are configured. The
Message Objects and Identifier Masks for acceptance filtering of received messages are
stored in the Message RAM.

All functions concerning the handling of messages are implemented in the Message Handler.
Those functions are the acceptance filtering, the transfer of messages between the CAN Core
and the Message RAM, and the handling of transmission requests as well as the generation of
the module interrupt.

The register set of the C_CAN can be accessed directly by an external CPU via the module
interface. These registers are used to control/configure the CAN Core and the Message
Handler and to access the Message RAM.

The Module Interfaces delivered with the C_CAN module can easily be replaced by a
customized module interface adapted to the needs of the user.

The C_CAN implements the following features:

• Supports CAN protocol version 2.0 part A and B

• Bit rates up to 1 MBit/s

• 32 Message Objects

• Each Message Object has its own identifier mask

• Programmable FIFO mode (concatenation of Message Objects)

• Maskable interrupt

• Disabled Automatic Retransmission mode for Time Triggered CAN applications

• Programmable loop-back mode for self-test operation

• 8-bit non-multiplex Motorola HC08 compatible module interface

• two 16-bit module interfaces to the AMBA APB bus from ARM
BOSCH - 7/45 - 06.06.00
manual_funct_descr.fm

User’s Manual Revision 1.2C_CAN
m

an
ua

l_
fu

nc
t_

de
sc

r.
fm
2.2 Block Diagram

The design consists of the following functional blocks (see figure 1):

CAN Core

CAN Protocol Controller and Rx/Tx Shift Register for serial/parallel conversion of messages.

Message RAM

Stores Message Objects and Identifier Masks.

Registers

All registers used to control and to configure the C_CAN module.

Message Handler

State Machine that controls the data transfer between the Rx/Tx Shift Register of the CAN
Core and the Message RAM as well as the generation of interrupts as programmed in the
Control and Configuration Registers.

Module Interface

Up to now the C_CAN module is delivered with three different interfaces. An 8-bit interface for
the Motorola HC08 controller and two 16-bit interfaces to the AMBA APB bus from ARM. They
can easily be replaced by a user-defined module interface.

 Figure 1: Block Diagram of the C_CAN

C_CAN

CAN Core

Registers

Module Interface

M
es

sa
ge

 H
an

dl
er

CAN_TX CAN_RX

Message RAM

D
at

aI
N

In
te

rr
up

t

C
lo

ck

R
es

et

A
dd

re
ss

(7
:0

)

C
on

tro
l

C
A

N
_W

A
IT

_B

D
at

aO
U

T

BOSCH - 8/45 - 06.06.00

User’s Manual Revision 1.2C_CAN
m

an
ua

l_
fu

nc
t_

de
sc

r.
fm
2.3 Operating Modes

 2.3.1 Software Initialisation

The software initialization is started by setting the bit Init in the CAN Control Register, either
by software or by a hardware reset, or by going Bus_Off.

While Init is set, all message transfer from and to the CAN bus is stopped, the status of the
CAN bus output CAN_TX is recessive (HIGH). The counters of the EML are unchanged.
Setting Init does not change any configuration register.

To initialize the CAN Controller, the CPU has to set up the Bit Timing Register and each
Message Object. If a Message Object is not needed, it is sufficient to set it’s MsgVal bit to not
valid. Otherwise, the whole Message Object has to be initialized.

Access to the Bit Timing Register and to the BRP Extension Register for the configuration of
the bit timing is enabled when both bits Init and CCE in the CAN Control Register are set.

Resetting Init (by CPU only) finishes the software initialisation. Afterwards the Bit Stream
Processor BSP (see section 4.10 on page 34) synchronizes itself to the data transfer on the
CAN bus by waiting for the occurrence of a sequence of 11 consecutive recessive bits (≡ Bus
Idle) before it can take part in bus activities and starts the message transfer.

The initialization of the Message Objects is independent of Init and can be done on the fly, but
the Message Objects should all be configured to particular identifiers or set to not valid before
the BSP starts the message transfer.

To change the configuration of a Message Object during normal operation, the CPU has to
start by setting MsgVal to not valid. When the configuration is completed, MsgVal is set to
valid again.

 2.3.2 CAN Message Transfer

Once the C_CAN is initialized and Init is reset to zero, the C_CAN’s CAN Core synchronizes
itself to the CAN bus and starts the message transfer.

Received messages are stored into their appropriate Message Objects if they pass the
Message Handler’s acceptance filtering. The whole message including all arbitration bits, DLC
and eight data bytes is stored into the Message Object. If the Identifier Mask is used, the
arbitration bits which are masked to “don’t care” may be overwritten in the Message Object.

The CPU may read or write each message any time via the Interface Registers, the Message
Handler guarantees data consistency in case of concurrent accesses.

Messages to be transmitted are updated by the CPU. If a permanent Message Object
(arbitration and control bits set up during configuration) exists for the message, only the data
bytes are updated and then TxRqst bit with NewDat bit are set to start the transmission. If
several transmit messages are assigned to the same Message Object (when the number of
Message Objects is not sufficient), the whole Message Object has to be configured before the
transmission of this message is requested.

The transmission of any number of Message Objects may be requested at the same time, they
are transmitted subsequently according to their internal priority. Messages may be updated or
set to not valid any time, even when their requested transmission is still pending. The old data
will be discarded when a message is updated before its pending transmission has started.

Depending on the configuration of the Message Object, the transmission of a message may
be requested autonomously by the reception of a remote frame with a matching identifier.
BOSCH - 9/45 - 06.06.00

User’s Manual Revision 1.2C_CAN
m

an
ua

l_
fu

nc
t_

de
sc

r.
fm
 2.3.3 Disabled Automatic Retransmission

According to the CAN Specification (see ISO11898, 6.3.3 Recovery Management), the
C_CAN provides means for automatic retransmission of frames that have lost arbitration or
that have been disturbed by errors during transmission. The frame transmission service will
not be confirmed to the user before the transmission is successfully completed. By default,
this means for automatic retransmission is enabled. It can be disabled to enable the C_CAN to
work within a Time Triggered CAN (TTCAN, see ISO11898-1) environment.

The Disabled Automatic Retransmission mode is enabled by programming bit DAR in the CAN
Control Register to one. In this operation mode the programmer has to consider the different
behaviour of bits TxRqst and NewDat in the Control Registers of the Message Buffers:

• When a transmission starts bit TxRqst of the respective Message Buffer is reset, while bit
NewDat remains set.

• When the transmission completed successfully bit NewDat is reset.

When a transmission failed (lost arbitration or error) bit NewDat remains set. To restart the
transmission the CPU has to set TxRqst back to one.

 2.3.4 Test Mode

The Test Mode is entered by setting bit Test in the CAN Control Register to one. In Test Mode
the bits Tx1, Tx0, LBack , Silent and Basic in the Test Register are writable. Bit Rx monitors
the state of pin CAN_RX and therefore is only readable. All Test Register functions are
disabled when bit Test is reset to zero.

 2.3.5 Silent Mode

The CAN Core can be set in Silent Mode by programming the Test Register bit Silent to one.

In Silent Mode, the C_CAN is able to receive valid data frames and valid remote frames, but it
sends only recessive bits on the CAN bus and it cannot start a transmission. If the CAN Core
is required to send a dominant bit (ACK bit, overload flag, active error flag), the bit is rerouted
internally so that the CAN Core monitors this dominant bit, although the CAN bus may remain
in recessive state. The Silent Mode can be used to analyse the traffic on a CAN bus without
affecting it by the transmission of dominant bits (Acknowledge Bits, Error Frames). Figure 2
shows the connection of signals CAN_TX and CAN_RX to the CAN Core in Silent Mode.

 Figure 2: CAN Core in Silent Mode

In ISO 11898-1, the Silent Mode is called the Bus Monitoring Mode.

CAN_TX CAN_RX

Tx Rx

CAN Core

C_CAN

••

=1
BOSCH - 10/45 - 06.06.00

User’s Manual Revision 1.2C_CAN
m

an
ua

l_
fu

nc
t_

de
sc

r.
fm
 2.3.6 Loop Back Mode

The CAN Core can be set in Loop Back Mode by programming the Test Register bit LBack to
one. In Loop Back Mode, the CAN Core treats its own transmitted messages as received
messages and stores them (if they pass acceptance filtering) into a Receive Buffer. Figure 3
shows the connection of signals CAN_TX and CAN_RX to the CAN Core in Loop Back Mode.

 Figure 3: CAN Core in Loop Back Mode

This mode is provided for self-test functions. To be independent from external stimulation, the
CAN Core ignores acknowledge errors (recessive bit sampled in the acknowledge slot of a data/
remote frame) in Loop Back Mode. In this mode the CAN Core performs an internal feedback
from its Tx output to its Rx input. The actual value of the CAN_RX input pin is disregarded by
the CAN Core. The transmitted messages can be monitored at the CAN_TX pin.

 2.3.7 Loop Back combined with Silent Mode

It is also possible to combine Loop Back Mode and Silent Mode by programming bits LBack
and Silent to one at the same time. This mode can be used for a “Hot Selftest”, meaning the
C_CAN can be tested without affecting a running CAN system connected to the pins CAN_TX
and CAN_RX. In this mode the CAN_RX pin is disconnected from the CAN Core and the
CAN_TX pin is held recessive. Figure 4 shows the connection of signals CAN_TX and
CAN_RX to the CAN Core in case of the combination of Loop Back Mode with Silent Mode.

 Figure 4: CAN Core in Loop Back combined with Silent Mode

CAN_TX CAN_RX

Tx Rx

CAN Core

C_CAN

••

CAN_TX CAN_RX

Tx Rx

CAN Core

C_CAN

••

=1
BOSCH - 11/45 - 06.06.00

User’s Manual Revision 1.2C_CAN
m

an
ua

l_
fu

nc
t_

de
sc

r.
fm
 2.3.8 Basic Mode

The CAN Core can be set in Basic Mode by programming the Test Register bit Basic to one.
In this mode the C_CAN module runs without the Message RAM.

The IF1 Registers are used as Transmit Buffer. The transmission of the contents of the IF1
Registers is requested by writing the Busy bit of the IF1 Command Request Register to ‘1’.
The IF1 Registers are locked while the Busy bit is set. The Busy bit indicates that the
transmission is pending.

As soon the CAN bus is idle, the IF1 Registers are loaded into the shift register of the CAN
Core and the transmission is started. When the transmission has completed, the Busy bit is
reset and the locked IF1 Registers are released.

A pending transmission can be aborted at any time by resetting the Busy bit in the IF1
Command Request Register while the IF1 Registers are locked. If the CPU has reset the Busy
bit, a possible retransmission in case of lost arbitration or in case of an error is disabled.

The IF2 Registers are used as Receive Buffer. After the reception of a message the contents
of the shift register is stored into the IF2 Registers, without any acceptance filtering.

Additionally, the actual contents of the shift register can be monitored during the message
transfer. Each time a read Message Object is initiated by writing the Busy bit of the IF2
Command Request Register to ‘1’, the contents of the shift register is stored into the IF2
Registers.

In Basic Mode the evaluation of all Message Object related control and status bits and of the
control bits of the IFx Command Mask Registers is turned off. The message number of the
Command request registers is not evaluated. The NewDat and MsgLst bits of the IF2
Message Control Register retain their function, DLC3-0 will show the received DLC, the other
control bits will be read as ‘0’.

In Basic Mode the ready output CAN_WAIT_B is disabled (always ‘1’).

 2.3.9 Software control of Pin CAN_TX

Four output functions are available for the CAN transmit pin CAN_TX. Additionally to its
default function – the serial data output – it can drive the CAN Sample Point signal to monitor
CAN_Core’s bit timing and it can drive constant dominant or recessive values. The last two
functions, combined with the readable CAN receive pin CAN_RX, can be used to check the
CAN bus’ physical layer.

The output mode of pin CAN_TX is selected by programming the Test Register bits Tx1 and
Tx0 as described in section 3.2.5 on page 17.

The three test functions for pin CAN_TX interfere with all CAN protocol functions. CAN_TX
must be left in its default function when CAN message transfer or any of the test modes Loop
Back Mode, Silent Mode, or Basic Mode are selected.
BOSCH - 12/45 - 06.06.00

User’s Manual Revision 1.2C_CAN
m

an
ua

l_
pr

og
_m

od
el

.fm
3. Programmer’s Model

The C_CAN module allocates an address space of 256 bytes. The registers are organized as
16-bit registers, with the high byte at the odd address and the low byte at the even address.

The two sets of interface registers (IF1 and IF2) control the CPU access to the Message RAM.
They buffer the data to be transferred to and from the RAM, avoiding conflicts between CPU
accesses and message reception/transmission.

 Figure 5: C_CAN Register Summary

Address Name Reset Value Note
CAN Base + 0x00 CAN Control Register 0x0001

CAN Base + 0x02 Status Register 0x0000

CAN Base + 0x04 Error Counter 0x0000 read only

CAN Base + 0x06 Bit Timing Register 0x2301 write enabled by CCE

CAN Base + 0x08 Interrupt Register 0x0000 read only

CAN Base + 0x0A Test Register 0x00 & 0br0000000 1) write enabled by Test

CAN Base + 0x0C BRP Extension Register 0x0000 write enabled by CCE

CAN Base + 0x0E — reserved — 3)

CAN Base + 0x10 IF1 Command Request 0x0001

CAN Base + 0x12 IF1 Command Mask 0x0000

CAN Base + 0x14 IF1 Mask 1 0xFFFF

CAN Base + 0x16 IF1 Mask 2 0xFFFF

CAN Base + 0x18 IF1 Arbitration 1 0x0000

CAN Base + 0x1A IF1 Arbitration2 0x0000

CAN Base + 0x1C IF1 Message Control 0x0000

CAN Base + 0x1E IF1 Data A 1 0x0000

CAN Base + 0x20 IF1 Data A 2 0x0000

CAN Base + 0x22 IF1 Data B 1 0x0000

CAN Base + 0x24 IF1 Data B 2 0x0000

CAN Base + 0x28 - 0x3E — reserved — 3)

CAN Base + 0x40 - 0x54 IF2 Registers see note 2) same as IF1 Registers

CAN Base + 0x56 - 0x7E — reserved — 3)

CAN Base + 0x80 Transmission Request 1 0x0000 read only

CAN Base + 0x82 Transmission Request 2 0x0000 read only

CAN Base + 0x84 - 0x8E — reserved — 3)

CAN Base + 0x90 New Data 1 0x0000 read only

CAN Base + 0x92 New Data 2 0x0000 read only

CAN Base + 0x94 - 0x9E — reserved — 3)

CAN Base + 0xA0 Interrupt Pending 1 0x0000 read only

CAN Base + 0xA2 Interrupt Pending 2 0x0000 read only

CAN Base + 0xA4 - 0xAE — reserved — 3)

CAN Base + 0xB0 Message Valid 1 0x0000 read only

CAN Base + 0xB2 Message Valid 2 0x0000 read only

CAN Base + 0xB4 - 0xBE — reserved — 3)

1) r signifies the actual value of the CAN_RX pin.
2) The two sets of Message Interface Registers - IF1 and IF2 - have identical functions.
3) Reserved bits are read as ’0’ except for IFx Mask 2 Register where they are read as ’1’
BOSCH - 13/45 - 06.06.00

User’s Manual Revision 1.2C_CAN
m

an
ua

l_
pr

og
_m

od
el

.fm
3.1 Hardware Reset Description

After hardware reset, the registers of the C_CAN hold the values described in figure 5.

Additionally the busoff state is reset and the output CAN_TX is set to recessive (HIGH). The
value 0x0001 (Init = ‘1’) in the CAN Control Register enables the software initialisation. The
C_CAN does not influence the CAN bus until the CPU resets Init to ‘0’.

The data stored in the Message RAM is not affected by a hardware reset. After power-on, the
contents of the Message RAM is undefined.

3.2 CAN Protocol Related Registers

These registers are related to the CAN protocol controller in the CAN Core. They control the
operating modes and the configuration of the CAN bit timing and provide status information.

 3.2.1 CAN Control Register (addresses 0x01 & 0x00)

Test Test Mode Enable
one Test Mode.
zero Normal Operation.

CCE Configuration Change Enable
one The CPU has write access to the Bit Timing Register (while Init = one).
zero The CPU has no write access to the Bit Timing Register.

DAR Disable Automatic Retransmission
one Automatic Retransmission disabled.
zero Automatic Retransmission of disturbed messages enabled.

EIE Error Interrupt Enable
one Enabled - A change in the bits BOff or EWarn in the Status Register will

generate an interrupt.
zero Disabled - No Error Status Interrupt will be generated.

SIE Status Change Interrupt Enable
one Enabled - An interrupt will be generated when a message transfer is suc-

cessfully completed or a CAN bus error is detected.
zero Disabled - No Status Change Interrupt will be generated.

IE Module Interrupt Enable
one Enabled - Interrupts will set IRQ_B to LOW. IRQ_B remains LOW until all

pending interrupts are processed.
zero Disabled - Module Interrupt IRQ_B is always HIGH.

Init Initialization
one Initialization is started.
zero Normal Operation.

Note : The busoff recovery sequence (see CAN Specification Rev. 2.0) cannot be shortened
by setting or resetting Init . If the device goes busoff, it will set Init of its own accord, stopping
all bus activities. Once Init has been cleared by the CPU, the device will then wait for 129

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

res res res res res res res res Test CCE DAR res EIE SIE IE Init

r r r r r r r r rw rw rw r rw rw rw rw
BOSCH - 14/45 - 06.06.00

User’s Manual Revision 1.2C_CAN
m

an
ua

l_
pr

og
_m

od
el

.fm
occurrences of Bus Idle (129 * 11 consecutive recessive bits) before resuming normal
operations. At the end of the busoff recovery sequence, the Error Management Counters will
be reset.

During the waiting time after the resetting of Init , each time a sequence of 11 recessive bits
has been monitored, a Bit0Error code is written to the Status Register, enabling the CPU to
readily check up whether the CAN bus is stuck at dominant or continuously disturbed and to
monitor the proceeding of the busoff recovery sequence.

 3.2.2 Status Register (addresses 0x03 & 0x02)

BOff Busoff Status
one The CAN module is in busoff state.
zero The CAN module is not busoff.

EWarn Warning Status
one At least one of the error counters in the EML has reached the error warn-

ing limit of 96.
zero Both error counters are below the error warning limit of 96.

EPass Error Passive
one The CAN Core is in the error passive state as defined in the CAN Specifi-

cation.
zero The CAN Core is error active.

RxOk Received a Message Successfully
one Since this bit was last reset (to zero) by the CPU, a message has been

successfully received (independent of the result of acceptance filtering).
zero Since this bit was last reset by the CPU, no message has been success-

fully received. This bit is never reset by the CAN Core.

TxOk Transmitted a Message Successfully
one Since this bit was last reset by the CPU, a message has been success-

fully (error free and acknowledged by at least one other node) transmitted.
zero Since this bit was reset by the CPU, no message has been successfully

transmitted. This bit is never reset by the CAN Core.

LEC Last Error Code (Type of the last error to occur on the CAN bus)
0 No Error
1 Stuff Error : More than 5 equal bits in a sequence have occurred in a part

of a received message where this is not allowed.
2 Form Error : A fixed format part of a received frame has the wrong for-

mat.
3 AckError : The message this CAN Core transmitted was not acknowl-

edged by another node.
4 Bit1Error : During the transmission of a message (with the exception of

the arbitration field), the device wanted to send a recessive level (bit of
logical value ‘1’), but the monitored bus value was dominant.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

res res res res res res res res BOffEWarn EPass RxOk TxOk LEC

r r r r r r r r r r r rw rw rw
BOSCH - 15/45 - 06.06.00

User’s Manual Revision 1.2C_CAN
m

an
ua

l_
pr

og
_m

od
el

.fm
5 Bit0Error : During the transmission of a message (or acknowledge bit, or
active error flag, or overload flag), the device wanted to send a dominant
level (data or identifier bit logical value ‘0’), but the monitored Bus value
was recessive. During busoff recovery this status is set each time a
sequence of 11 recessive bits has been monitored. This enables the CPU
to monitor the proceeding of the busoff recovery sequence (indicating the
bus is not stuck at dominant or continuously disturbed).

6 CRCError : The CRC check sum was incorrect in the message received,
the CRC received for an incoming message does not match with the cal-
culated CRC for the received data.

7 unused : When the LEC shows the value ‘7’, no CAN bus event was
detected since the CPU wrote this value to the LEC.

The LEC field holds a code which indicates the type of the last error to occur on the CAN bus.
This field will be cleared to ‘0’ when a message has been transferred (reception or transmis-
sion) without error. The unused code ‘7’ may be written by the CPU to check for updates.

 3.2.2.1 Status Interrupts

A Status Interrupt is generated by bits BOff and EWarn (Error Interrupt) or by RxOk , TxOk ,
and LEC (Status Change Interrupt) assumed that the corresponding enable bits in the CAN
Control Register are set. A change of bit EPass or a write to RxOk , TxOk , or LEC will never
generate a Status Interrupt.

Reading the Status Register will clear the Status Interrupt value (8000h) in the Interrupt
Register, if it is pending.

 3.2.3 Error Counter (addresses 0x05 & 0x04)

RP Receive Error Passive
one The Receive Error Counter has reached the error passive level as defined

in the CAN Specification.
zero The Receive Error Counter is below the error passive level.

REC6-0 Receive Error Counter
Actual state of the Receive Error Counter. Values between 0 and 127.

TEC7-0 Transmit Error Counter
Actual state of the Transmit Error Counter. Values between 0 and 255.

 3.2.4 Bit Timing Register (addresses 0x07 & 0x06)

TSeg1 The time segment before the sample point
0x01-0x0F valid values for TSeg1 are [1 … 15]. The actual interpretation

by the hardware of this value is such that one more than the
value programmed here is used.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RP REC6-0 TEC7-0

r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

res TSeg2 TSeg1 SJW BRP

r rw rw rw rw
BOSCH - 16/45 - 06.06.00

User’s Manual Revision 1.2C_CAN
m

an
ua

l_
pr

og
_m

od
el

.fm
TSeg2 The time segment after the sample point
0x0-0x7 valid values for TSeg2 are [0 … 7]. The actual interpretation by

the hardware of this value is such that one more than the value
programmed here is used.

SJW (Re)Synchronisation Jump Width
0x0-0x3 Valid programmed values are 0-3. The actual interpretation by

the hardware of this value is such that one more than the value
programmed here is used.

BRP Baud Rate Prescaler
0x01-0x3F The value by which the oscillator frequency is divided for gener-

ating the bit time quanta. The bit time is built up from a multiple
of this quanta. Valid values for the Baud Rate Prescaler are
[0 … 63]. The actual interpretation by the hardware of this
value is such that one more than the value programmed here is
used.

Note: With a module clock CAN_CLK of 8 MHz, the reset value of 0x2301 configures the
C_CAN for a bit rate of 500 kBit/s. The registers are only writable if bits CCE and Init in the
CAN Control Register are set.

 3.2.5 Test Register (addresses 0x0B & 0x0A)

Rx Monitors the actual value of the CAN_RX Pin
one The CAN bus is recessive (CAN_RX = ‘1’).
zero The CAN bus is dominant (CAN_RX = ‘0’).

Tx1-0 Control of CAN_TX pin
00 Reset value, CAN_TX is controlled by the CAN Core.
01 Sample Point can be monitored at CAN_TX pin.
10 CAN_TX pin drives a dominant (‘0’) value.
11 CAN_TX pin drives a recessive (‘1’) value.

LBack Loop Back Mode
one Loop Back Mode is enabled.
zero Loop Back Mode is disabled.

Silent Silent Mode
one The module is in Silent Mode
zero Normal operation.

Basic Basic Mode
one IF1 Registers used as Tx Buffer, IF2 Registers used as Rx Buffer.
zero Basic Mode disabled.

Write access to the Test Register is enabled by setting bit Test in the CAN Control Register.
The different test functions may be combined, but Tx1-0 ≠ “00” disturbs message transfer.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

res res res res res res res res Rx Tx1 Tx0 LBack Silent Basic res res

r r r r r r r r r rw rw rw rw rw r r
BOSCH - 17/45 - 06.06.00

User’s Manual Revision 1.2C_CAN
m

an
ua

l_
pr

og
_m

od
el

.fm
 3.2.6 BRP Extension Register (addresses 0x0D & 0x0C)

BRPE Baud Rate Prescaler Extension
0x00-0x0F By programming BRPE the Baud Rate Prescaler can be

extended to values up to 1023. The actual interpretation by the
hardware is that one more than the value programmed by BRPE
(MSBs) and BRP (LSBs) is used.

3.3 Message Interface Register Sets

There are two sets of Interface Registers which are used to control the CPU access to the
Message RAM. The Interface Registers avoid conflicts between CPU access to the Message
RAM and CAN message reception and transmission by buffering the data to be transferred. A
complete Message Object (see chapter 3.3.4) or parts of the Message Object may be
transferred between the Message RAM and the IFx Message Buffer registers (see chapter
3.3.3) in one single transfer.

The function of the two interface register sets is identical (except for test mode Basic). They
can be used the way that one set of registers is used for data transfer to the Message RAM
while the other set of registers is used for the data transfer from the Message RAM, allowing
both processes to be interrupted by each other. Figure 6 gives an overview of the two Interface
Register sets.

Each set of Interface Registers consists of Message Buffer Registers controlled by their own
Command Registers. The Command Mask Register specifies the direction of the data transfer
and which parts of a Message Object will be transferred. The Command Request Register is
used to select a Message Object in the Message RAM as target or source for the transfer and
to start the action specified in the Command Mask Register.

 Figure 6: IF1 and IF2 Message Interface Register Sets

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

res res res res res res res res res res res res BRPE

r r r r r r r r r r r r rw

Address IF1 Register Set Address IF1 Register Set
CAN Base + 0x10 IF1 Command Request CAN Base + 0x40 IF2 Command Request

CAN Base + 0x12 IF1 Command Mask CAN Base + 0x42 IF2 Command Mask

CAN Base + 0x14 IF1 Mask 1 CAN Base + 0x44 IF2 Mask 1

CAN Base + 0x16 IF1 Mask 2 CAN Base + 0x46 IF2 Mask 2

CAN Base + 0x18 IF1 Arbitration 1 CAN Base + 0x48 IF2 Arbitration 1

CAN Base + 0x1A IF1 Arbitration 2 CAN Base + 0x4A IF2 Arbitration 2

CAN Base + 0x1C IF1 Message Control CAN Base + 0x4C IF2 Message Control

CAN Base + 0x1E IF1 Data A 1 CAN Base + 0x4E IF2 Data A 1

CAN Base + 0x20 IF1 Data A 2 CAN Base + 0x50 IF2 Data A 2

CAN Base + 0x22 IF1 Data B 1 CAN Base + 0x52 IF2 Data B 1

CAN Base + 0x24 IF1 Data B 2 CAN Base + 0x54 IF2 Data B 2
BOSCH - 18/45 - 06.06.00

User’s Manual Revision 1.2C_CAN
m

an
ua

l_
pr

og
_m

od
el

.fm
 3.3.1 IFx Command Request Registers

A message transfer is started as soon as the CPU has written the message number to the
Command Request Register. With this write operation the Busy bit is automatically set to ‘1’
and signal CAN_WAIT_B is pulled LOW to notify the CPU that a transfer is in progress. After a
wait time of 3 to 6 CAN_CLK periods, the transfer between the Interface Register and the
Message RAM has completed. The Busy bit is set back to zero and CAN_WAIT_B is set back
to HIGH (see figure 5.2 on page 44).

Busy Busy Flag
one set to one when writing to the IFx Command Request Register
zero reset to zero when read/write action has finished.

Message Number
0x01-0x20 Valid Message Number , the Message Object in the Message

RAM is selected for data transfer.
0x00 Not a valid Message Number, interpreted as 0x20.
0x21-0x3F Not a valid Message Number, interpreted as 0x01-0x1F.

Note: When a Message Number that is not valid is written into the Command Request
Register, the Message Number will be transformed into a valid value and that Message
Object will be transferred.

 3.3.2 IFx Command Mask Registers

The control bits of the IFx Command Mask Register specify the transfer direction and select
which of the IFx Message Buffer Registers are source or target of the data transfer.

.WR/RD Write / Read
one Write : Transfer data from the selected Message Buffer Registers to the

Message Object addressed by the Command Request Register.
zero Read: Transfer data from the Message Object addressed by the Com-

mand Request Register into the selected Message Buffer Registers.
The other bits of IFx Command Mask Register have different functions depending on the
transfer direction :

 3.3.2.1 Direction = Write

Mask Access Mask Bits
one transfer Identifier Mask + MDir + MXtd to Message Object.
zero Mask bits unchanged.

IF1 Command Request Register
(addresses 0x11 & 0x10)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Busy res res res res res res res res res Message Number

IF2 Command Request Register
(addresses 0x41 & 0x40)

Busy res res res res res res res res res Message Number

r r r r r r r r r r rw

IF2 Command Mask Register
(addresses 0x13 & 0x12)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

res WR/RD Mask Arb Control ClrIntPnd TxRqst/
NewDat Data A Data B

IF2 Command Mask Register
(addresses 0x43 & 0x42)

res WR/RD Mask Arb Control ClrIntPnd TxRqst/
NewDat Data A Data B

r r r r r r r r rw rw rw rw rw rw rw rw
BOSCH - 19/45 - 06.06.00

User’s Manual Revision 1.2C_CAN
m

an
ua

l_
pr

og
_m

od
el

.fm
Arb Access Arbitration Bits
one transfer Identifier + Dir + Xtd + MsgVal to Message Object.
zero Arbitration bits unchanged.

Control Access Control Bits
one transfer Control Bits to Message Object.
zero Control Bits unchanged.

ClrIntPnd Clear Interrupt Pending Bit
Note : When writing to a Message Object, this bit is ignored.

TxRqst/NewDat Access Transmission Request Bit
one set TxRqst bit
zero TxRqst bit unchanged

Note : If a transmission is requested by programming bit TxRqst/NewDat in the IFx
Command Mask Register, bit TxRqst in the IFx Message Control Register will be ignored.

Data A Access Data Bytes 0-3
one transfer Data Bytes 0-3 to Message Object.
zero Data Bytes 0-3 unchanged.

Data B Access Data Bytes 4-7
one transfer Data Bytes 4-7 to Message Object.
zero Data Bytes 4-7 unchanged.

 3.3.2.2 Direction = Read

Mask Access Mask Bits
one transfer Identifier Mask + MDir + MXtd to IFx Message Buffer Register.
zero Mask bits unchanged.

Arb Access Arbitration Bits
one transfer Identifier + Dir + Xtd + MsgVal to IFx Message Buffer Register.
zero Arbitration bits unchanged.

Control Access Control Bits
one transfer Control Bits to IFx Message Buffer Register.
zero Control Bits unchanged.

ClrIntPnd Clear Interrupt Pending Bit
one clear IntPnd bit in the Message Object.
zero IntPnd bit remains unchanged.

TxRqst/NewDat Access New Data Bit
one clear NewDat bit in the Message Object.
zero NewDat bit remains unchanged.

Note : A read access to a Message Object can be combined with the reset of the control bits
IntPnd and NewDat . The values of these bits transferred to the IFx Message Control Register
always reflect the status before resetting these bits.

Data A Access Data Bytes 0-3
one transfer Data Bytes 0-3 to IFx Message Buffer Register.
zero Data Bytes 0-3 unchanged.

Data B Access Data Bytes 4-7
one transfer Data Bytes 4-7 to IFx Message Buffer Register.
zero Data Bytes 4-7 unchanged.
BOSCH - 20/45 - 06.06.00

User’s Manual Revision 1.2C_CAN
m

an
ua

l_
pr

og
_m

od
el

.fm
 3.3.3 IFx Message Buffer Registers

The bits of the Message Buffer registers mirror the Message Objects in the Message RAM.
The function of the Message Objects bits is described in chapter 3.3.3.

 3.3.3.1 IFx Mask Registers

 3.3.3.2 IFx Arbitration Registers

 3.3.3.3 IFx Message Control Registers

 3.3.3.4 IFx Data A and Data B Registers

The data bytes of CAN messages are stored in the IFx Message Buffer Registers in the
following order:

In a CAN Data Frame, Data(0) is the first, Data(7) is the last byte to be transmitted or received.
In CAN’s serial bit stream, the MSB of each byte will be transmitted first.

IF1 Mask 1 Register
(addresses 0x15 & 0x14)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Msk15-0

IF1 Mask 2 Register
(addresses 0x17 & 0x16)

MXtd MDir res Msk28-16

IF2 Mask 1 Register
(addresses 0x45 & 0x44)

Msk15-0

IF2 Mask 2 Register
(addresses 0x47 & 0x46)

MXtd MDir res Msk28-16

rw rw r rw rw rw rw rw rw rw rw rw rw rw rw rw

IF1 Arbitration 1 Register
(addresses 0x19 & 0x18)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID5-0

IF1 Arbitration 2 Register
(addresses 0x1B & 0x1A)

MsgVal Xtd Dir ID28-16

IF2 Arbitration 1 Register
(addresses 0x49 & 0x48)

ID15-0

IF2 Arbitration 2 Register
(addresses 0x4B & 0x4A)

MsgVal Xtd Dir ID28-16

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

IF1 Message Control Register
(addresses 0x1D & 0x1C)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NewDat MsgLst IntPnd UMask TxIE RxIE RmtEn TxRqst EoB res res res DLC3-0

IF2 Message Control Register
(addresses 0x4D & 0x4C)

NewDat MsgLst IntPnd UMask TxIE RxIE RmtEn TxRqst EoB res res res DLC3-0

rw rw rw rw rw rw rw rw rw r r r rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IF1 Message Data A1 (addresses 0x1F & 0x1E) Data(1) Data(0)

IF1 Message Data A2 (addresses 0x21 & 0x20) Data(3) Data(2)

IF1 Message Data B1 (addresses 0x23 & 0x22) Data(5) Data(4)

IF1 Message Data B2 (addresses 0x25 & 0x24) Data(7) Data(6)

IF2 Message Data A1 (addresses 0x4F & 0x4E) Data(1) Data(0)

IF2 Message Data A2 (addresses 0x51 & 0x50) Data(3) Data(2)

IF2 Message Data B1 (addresses 0x53 & 0x52) Data(5) Data(4)

IF2 Message Data B2 (addresses 0x55 & 0x54) Data(7) Data(6)

rw rw
BOSCH - 21/45 - 06.06.00

User’s Manual Revision 1.2C_CAN
m

an
ua

l_
pr

og
_m

od
el

.fm
 3.3.4 Message Object in the Message Memory

There are 32 Message Objects in the Message RAM. To avoid conflicts between CPU access
to the Message RAM and CAN message reception and transmission, the CPU cannot directly
access the Message Objects, these accesses are handled via the IFx Interface Registers.

Figure 7 gives an overview of the two structure of a Message Object.

 Figure 7: Structure of a Message Object in the Message Memory

MsgVal Message Valid
one The Message Object is configured and should be considered by the Mes-

sage Handler.
zero The Message Object is ignored by the Message Handler.

Note : The CPU must reset the MsgVal bit of all unused Messages Objects during the
initialization before it resets bit Init in the CAN Control Register. This bit must also be reset
before the identifier Id28-0, the control bits Xtd , Dir, or the Data Length Code DLC3-0 are
modified, or if the Messages Object is no longer required.

UMask Use Acceptance Mask
one Use Mask (Msk28-0, MXtd, and MDir) for acceptance filtering
zero Mask ignored.

Note : If the UMask bit is set to one, the Message Object’s mask bits have to be programmed
during initialization of the Message Object before MsgVal is set to one.

ID28-0 Message Identifier
ID28 - ID0 29-bit Identifier (“Extended Frame”).
ID28 - ID18 11-bit Identifier (“Standard Frame”).

Msk28-0 Identifier Mask
one The corresponding identifier bit is used for acceptance filtering.
zero The corresponding bit in the identifier of the message object cannot inhibit

the match in the acceptance filtering.

Xtd Extended Identifier
one The 29-bit (“extended”) Identifier will be used for this Message Object.
zero The 11-bit (“standard”) Identifier will be used for this Message Object.

MXtd Mask Extended Identifier
one The extended identifier bit (IDE) is used for acceptance filtering.
zero The extended identifier bit (IDE) has no effect on the acceptance filtering

Note : When 11-bit (“standard”) Identifiers are used for a Message Object, the identifiers of
received Data Frames are written into bits ID28 to ID18. For acceptance filtering, only these
bits together with mask bits Msk28 to Msk18 are considered.

Message Object

UMask Msk28-0 MXtd MDir EoB NewDat MsgLst RxIE TxIE IntPnd RmtEn TxRqst

MsgVal ID28-0 Xtd Dir DLC3-0 Data 0 Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7
BOSCH - 22/45 - 06.06.00

User’s Manual Revision 1.2C_CAN
m

an
ua

l_
pr

og
_m

od
el

.fm
Dir Message Direction
one Direction = transmit: On TxRqst , the respective Message Object is trans-

mitted as a Data Frame. On reception of a Remote Frame with matching
identifier, the TxRqst bit of this Message Object is set (if RmtEn = one).

zero Direction = receive: On TxRqst , a Remote Frame with the identifier of this
Message Object is transmitted. On reception of a Data Frame with match-
ing identifier, that message is stored in this Message Object.

MDir Mask Message Direction
one The message direction bit (Dir) is used for acceptance filtering.
zero The message direction bit (Dir) has no effect on the acceptance filtering.

The Arbitration Registers ID28-0, Xtd , and Dir are used to define the identifier and type of
outgoing messages and are used (together with the mask registers Msk28-0 , MXtd , and
MDir) for acceptance filtering of incoming messages. A received message is stored into the
valid Message Object with matching identifier and Direction=receive (Data Frame) or
Direction=transmit (Remote Frame). Extended frames can be stored only in Message Objects
with Xtd = one, standard frames in Message Objects with Xtd = zero. If a received message
(Data Frame or Remote Frame) matches with more than one valid Message Object, it is stored
into that with the lowest message number. For details see chapter 4.2.3 Acceptance Filtering
of Received Messages.

EoB End of Buffer
one Single Message Object or last Message Object of a FIFO Buffer.
zero Message Object belongs to a FIFO Buffer and is not the last Message

Object of that FIFO Buffer.
Note : This bit is used to concatenate two ore more Message Objects (up to 32) to build a
FIFO Buffer. For single Message Objects (not belonging to a FIFO Buffer) this bit must
always be set to one . For details on the concatenation of Message Objects see chapter 4.7.

NewDat New Data
one The Message Handler or the CPU has written new data into the data por-

tion of this Message Object.
zero No new data has been written into the data portion of this Message Object

by the Message Handler since last time this flag was cleared by the CPU.

MsgLst Message Lost (only valid for Message Objects with direction = receive)
one The Message Handler stored a new message into this object when New-

Dat was still set, the CPU has lost a message.
zero No message lost since last time this bit was reset by the CPU.

RxIE Receive Interrupt Enable
one IntPnd will be set after a successful reception of a frame.
zero IntPnd will be left unchanged after a successful reception of a frame.

TxIE Transmit Interrupt Enable
one IntPnd will be set after a successful transmission of a frame.
zero IntPnd will be left unchanged after the successful transmission of a frame.

IntPnd Interrupt Pending
one This message object is the source of an interrupt. The Interrupt Identifier

in the Interrupt Register will point to this message object if there is no
other interrupt source with higher priority.

zero This message object is not the source of an interrupt.
BOSCH - 23/45 - 06.06.00

User’s Manual Revision 1.2C_CAN
m

an
ua

l_
pr

og
_m

od
el

.fm
RmtEn Remote Enable
one At the reception of a Remote Frame, TxRqst is set.
zero At the reception of a Remote Frame, TxRqst is left unchanged.

TxRqst Transmit Request
one The transmission of this Message Object is requested and is not yet done.
zero This Message Object is not waiting for transmission.

DLC3-0 Data Length Code
0-8 Data Frame has 0-8 data bytes.
9-15 Data Frame has 8 data bytes

Note : The Data Length Code of a Message Object must be defined the same as in all the
corresponding objects with the same identifier at other nodes. When the Message Handler
stores a data frame, it will write the DLC to the value given by the received message.

Data 0 1st data byte of a CAN Data Frame

Data 1 2nd data byte of a CAN Data Frame

Data 2 3rd data byte of a CAN Data Frame

Data 3 4th data byte of a CAN Data Frame

Data 4 5th data byte of a CAN Data Frame

Data 5 6th data byte of a CAN Data Frame

Data 6 7th data byte of a CAN Data Frame

Data 7 8th data byte of a CAN Data Frame
Note : Byte Data 0 is the first data byte shifted into the shift register of the CAN Core during a
reception, byte Data 7 is the last. When the Message Handler stores a Data Frame, it will write
all the eight data bytes into a Message Object. If the Data Length Code is less than 8, the
remaining bytes of the Message Object will be overwritten by non specified values .

3.4 Message Handler Registers

All Message Handler registers are read-only. Their contents (TxRqst , NewDat , IntPnd , and
MsgVal bits of each Message Object and the Interrupt Identifier) is status information provided
by the Message Handler FSM.

 3.4.1 Interrupt Register (addresses 0x09 & 0x08)

IntId15-0 Interrupt Identifier (the number here indicates the source of the interrupt)
0x0000 No interrupt is pending.
0x0001-0x0020 Number of Message Object which caused the interrupt.
0x0021-0x7FFF unused.
0x8000 Status Interrupt.
0x8001-0xFFFF unused

If several interrupts are pending, the CAN Interrupt Register will point to the pending interrupt
with the highest priority, disregarding their chronological order. An interrupt remains pending
until the CPU has cleared it. If IntId is different from 0x0000 and IE is set, the interrupt line to

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IntId15-8 IntId7-0

r r
BOSCH - 24/45 - 06.06.00

User’s Manual Revision 1.2C_CAN
m

an
ua

l_
pr

og
_m

od
el

.fm
the CPU, IRQ_B, is active. The interrupt line remains active until IntId is back to value 0x0000
(the cause of the interrupt is reset) or until IE is reset.

The Status Interrupt has the highest priority. Among the message interrupts, the Message
Object’ s interrupt priority decreases with increasing message number.

A message interrupt is cleared by clearing the Message Object’s IntPnd bit. The Status
Interrupt is cleared by reading the Status Register.

 3.4.2 Transmission Request Registers

TxRqst32-1 Transmission Request Bits (of all Message Objects)
one The transmission of this Message Object is requested and is not yet done.
zero This Message Object is not waiting for transmission.

These registers hold the TxRqst bits of the 32 Message Objects. By reading out the TxRqst
bits, the CPU can check for which Message Object a Transmission Request is pending. The
TxRqst bit of a specific Message Object can be set/reset by the CPU via the IFx Message
Interface Registers or by the Message Handler after reception of a Remote Frame or after a
successful transmission.

 3.4.3 New Data Registers

NewDat32-1New Data Bits (of all Message Objects)
one The Message Handler or the CPU has written new data into the data por-

tion of this Message Object.
zero No new data has been written into the data portion of this Message Object

by the Message Handler since last time this flag was cleared by the CPU.

MsgLst These registers hold the NewDat bits of the 32 Message Objects. By reading out the
NewDat bits, the CPU can check for which Message Object the data portion was updated.
The NewDat bit of a specific Message Object can be set/reset by the CPU via the IFx
Message Interface Registers or by the Message Handler after reception of a Data Frame or
after a successful transmission.

Transmission Request 1 Register
(addresses 0x81 & 0x80)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TxRqst16-9 TxRqst8-1

Transmission Request 2 Register
(addresses 0x83 & 0x82)

TxRqst32-25 TxRqst24-17

r r

New Data 1 Register
(addresses 0x91 & 0x90)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NewDat16-9 NewDat8-1

New Data 2 Register
(addresses 0x93 & 0x92)

NewDat32-25 NewDat24-17

r r
BOSCH - 25/45 - 06.06.00

User’s Manual Revision 1.2C_CAN
m

an
ua

l_
pr

og
_m

od
el

.fm
 3.4.4 Interrupt Pending Registers

IntPnd32-1 Interrupt Pending Bits (of all Message Objects)
one This message object is the source of an interrupt.
zero This message object is not the source of an interrupt.

These registers hold the IntPnd bits of the 32 Message Objects. By reading out the IntPnd
bits, the CPU can check for which Message Object an interrupt is pending. The IntPnd bit of a
specific Message Object can be set/reset by the CPU via the IFx Message Interface Registers
or by the Message Handler after reception or after a successful transmission of a frame. This
will also affect the value of IntId in the Interrupt Register.

 3.4.5 Message Valid 1 Register

MsgVal32-1 Message Valid Bits (of all Message Objects)
one This Message Object is configured and should be considered by the Mes-

sage Handler.
zero This Message Object is ignored by the Message Handler.

These registers hold the MsgVal bits of the 32 Message Objects. By reading out the MsgVal
bits, the CPU can check which Message Object is valid. The MsgVal bit of a specific Message
Object can be set/reset by the CPU via the IFx Message Interface Registers.

Interrupt Pending 1 Register
(addresses 0xA1 & 0xA0)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IntPnd16-9 IntPnd8-1

Interrupt Pending 2 Register
(addresses 0xA3 & 0xA2)

IntPnd32-25 IntPnd24-17

r r

Message Valid 1 Register
(addresses 0xB1 & 0xB0)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MsgVal16-9 MsgVal8-1

Message Valid 2 Register
(addresses 0xB3 & 0xB2)

MsgVal32-25 MsgVal24-17

r r
BOSCH - 26/45 - 06.06.00

User’s Manual Revision 1.2C_CAN
m

an
ua

l_
ca

n_
ap

pl
ic

at
io

n.
fm
4. CAN Application

4.1 Management of Message Objects

The configuration of the Message Objects in the Message RAM will (with the exception of the
bits MsgVal , NewDat , IntPnd , and TxRqst) not be affected by resetting the chip. All the
Message Objects must be initialized by the CPU or they must be not valid (MsgVal = ‘0’) and
the bit timing must be configured before the CPU clears the Init bit in the CAN Control
Register.

The configuration of a Message Object is done by programming Mask, Arbitration, Control and
Data field of one of the two interface register sets to the desired values. By writing to the
corresponding IFx Command Request Register, the IFx Message Buffer Registers are loaded
into the addressed Message Object in the Message RAM.

When the Init bit in the CAN Control Register is cleared, the CAN Protocol Controller state
machine of the CAN_Core and the Message Handler State Machine control the C_CAN’s
internal data flow. Received messages that pass the acceptance filtering are stored into the
Message RAM, messages with pending transmission request are loaded into the CAN_Core’s
Shift Register and are transmitted via the CAN bus.

The CPU reads received messages and updates messages to be transmitted via the IFx
Interface Registers. Depending on the configuration, the CPU is interrupted on certain CAN
message and CAN error events.

4.2 Message Handler State Machine

The Message Handler controls the data transfer between the Rx/Tx Shift Register of the CAN
Core, the Message RAM and the IFx Registers.

The Message Handler FSM controls the following functions:

• Data Transfer from IFx Registers to the Message RAM

• Data Transfer from Message RAM to the IFx Registers

• Data Transfer from Shift Register to the Message RAM

• Data Transfer from Message RAM to Shift Register

• Data Transfer from Shift Register to the Acceptance Filtering unit

• Scanning of Message RAM for a matching Message Object

• Handling of TxRqst flags.

• Handling of interrupts.

 4.2.1 Data Transfer from / to Message RAM

When the CPU initiates a data transfer between the IFx Registers and Message RAM, the
Message Handler sets the Busy bit in the respective Command Register to ‘1’. After the
transfer has completed, the Busy bit is set back to ‘0’ (see figure 8).

The respective Command Mask Register specifies whether a complete Message Object or
only parts of it will be transferred. Due to the structure of the Message RAM it is not possible to
write single bits/bytes of one Message Object, it is always necessary to write a complete
Message Object into the Message RAM. Therefore the data transfer from the IFx Registers to
the Message RAM requires of a read-modify-write cycle. First that parts of the Message
BOSCH - 27/45 - 06.06.00
manual_can_application.fm

User’s Manual Revision 1.2C_CAN
m

an
ua

l_
ca

n_
ap

pl
ic

at
io

n.
fm
Object that are not to be changes are read from the Message RAM and then the complete
contents of the Message Buffer Registers are into the Message Object.

 Figure 8: Data Transfer between IFx Registers and Message RAM

After the partial write of a Message Object, that Message Buffer Registers that are not
selected in the Command Mask Register will set to the actual contents of the selected
Message Object.

After the partial read of a Message Object, that Message Buffer Registers that are not
selected in the Command Mask Register will be left unchanged.

 4.2.2 Transmission of Messages

If the shift register of the CAN Core cell is ready for loading and if there is no data transfer
between the IFx Registers and Message RAM, the MsgVal bits in the Message Valid Register
TxRqst bits in the Transmission Request Register are evaluated. The valid Message Object
with the highest priority pending transmission request is loaded into the shift register by the
Message Handler and the transmission is started. The Message Object’s NewDat bit is reset.

After a successful transmission and if no new data was written to the Message Object
(NewDat = ‘0’) since the start of the transmission, the TxRqst bit will be reset. If TxIE is set,
IntPnd will be set after a successful transmission. If the C_CAN has lost the arbitration or if an
error occurred during the transmission, the message will be retransmitted as soon as the CAN

START

WR/RD = 1

Busy = 0

Busy = 1

Read Message Object to IFx

Write IFx to Message RAM

Read Message Object to IFx

No Yes

CAN_WAIT_B = 0

CAN_WAIT_B = 1

Write Command Request Register
No

Yes
BOSCH - 28/45 - 06.06.00

User’s Manual Revision 1.2C_CAN
m

an
ua

l_
ca

n_
ap

pl
ic

at
io

n.
fm
bus is free again. If meanwhile the transmission of a message with higher priority has been
requested, the messages will be transmitted in the order of their priority.

 4.2.3 Acceptance Filtering of Received Messages

When the arbitration and control field (Identifier + IDE + RTR + DLC) of an incoming message
is completely shifted into the Rx/Tx Shift Register of the CAN Core, the Message Handler
FSM starts the scanning of the Message RAM for a matching valid Message Object.

To scan the Message RAM for a matching Message Object, the Acceptance Filtering unit is
loaded with the arbitration bits from the CAN Core shift register. Then the arbitration and mask
fields (including MsgVal , UMask , NewDat , and EoB) of Message Object 1 are loaded into the
Acceptance Filtering unit and compared with the arbitration field from the shift register. This is
repeated with each following Message Object until a matching Message Object is found or
until the end of the Message RAM is reached.

If a match occurs, the scanning is stopped and the Message Handler FSM proceeds
depending on the type of frame (Data Frame or Remote Frame) received.

 4.2.3.1 Reception of Data Frame

The Message Handler FSM stores the message from the CAN Core shift register into the
respective Message Object in the Message RAM. Not only the data bytes, but all arbitration
bits and the Data Length Code are stored into the corresponding Message Object. This is
implemented to keep the data bytes connected with the identifier even if arbitration mask
registers are used.

The NewDat bit is set to indicate that new data (not yet seen by the CPU) has been received.
The CPU should reset NewDat when it reads the Message Object. If at the time of the
reception the NewDat bit was already set, MsgLst is set to indicate that the previous data
(supposedly not seen by the CPU) is lost. If the RxIE bit is set, the IntPnd bit is set, causing
the Interrupt Register to point to this Message Object.

The TxRqst bit of this Message Object is reset to prevent the transmission of a Remote
Frame, while the requested Data Frame has just been received.

 4.2.3.2 Reception of Remote Frame

When a Remote Frame is received, three different configurations of the matching Message
Object have to be considered:

1) Dir = ‘1’ (direction = transmit), RmtEn = ‘1’, UMask = ‘1’ or ’0’
At the reception of a matching Remote Frame, the TxRqst bit of this Message Object is set.
The rest of the Message Object remains unchanged.

2) Dir = ‘1’ (direction = transmit), RmtEn = ‘0’, UMask = ’0’
At the reception of a matching Remote Frame, the TxRqst bit of this Message Object remains
unchanged; the Remote Frame is ignored.

3) Dir = ‘1’ (direction = transmit), RmtEn = ‘0’, UMask = ’1’
At the reception of a matching Remote Frame, the TxRqst bit of this Message Object is reset.
The arbitration and control field (Identifier + IDE + RTR + DLC) from the shift register is stored
into the Message Object in the Message RAM and the NewDat bit of this Message Object is
set. The data field of the Message Object remains unchanged; the Remote Frame is treated
similar to a received Data Frame.
BOSCH - 29/45 - 06.06.00

User’s Manual Revision 1.2C_CAN
m

an
ua

l_
ca

n_
ap

pl
ic

at
io

n.
fm
 4.2.4 Receive / Transmit Priority

The receive/transmit priority for the Message Objects is attached to the message number.
Message Object 1 has the highest priority, while Message Object 32 has the lowest priority. If
more than one transmission request is pending, they are serviced due to the priority of the
corresponding Message Object.

4.3 Configuration of a Transmit Object

Figure 9 shows how a Transmit Object should be initialised.

 Figure 9: Initialisation of a Transmit Object

The Arbitration Registers (ID28-0 and Xtd bit) are given by the application. They define the
identifier and type of the outgoing message. If an 11-bit Identifier (“Standard Frame”) is used,
it is programmed to ID28 - ID18, ID17 - ID0 can then be disregarded.

If the TxIE bit is set, the IntPnd bit will be set after a successful transmission of the Message
Object.

If the RmtEn bit is set, a matching received Remote Frame will cause the TxRqst bit to be set;
the Remote Frame will autonomously be answered by a Data Frame.

The Data Registers (DLC3-0, Data0-7) are given by the application, TxRqst and RmtEn may
not be set before the data is valid.

The Mask Registers (Msk28-0 , UMask , MXtd , and MDir bits) may be used (UMask=’1’) to
allow groups of Remote Frames with similar identifiers to set the TxRqst bit. For details see
section 4.2.3.2, handle with care. The Dir bit should not be masked.

4.4 Updating a Transmit Object

The CPU may update the data bytes of a Transmit Object any time via the IFx Interface
registers, neither MsgVal nor TxRqst have to be reset before the update.

Even if only a part of the data bytes are to be updated, all four bytes of the corresponding IFx
Data A Register or IFx Data B Register have to be valid before the content of that register is
transferred to the Message Object. Either the CPU has to write all four bytes into the IFx Data
Register or the Message Object is transferred to the IFx Data Register before the CPU writes
the new data bytes.

When only the (eight) data bytes are updated, first 0x0087 is written to the Command Mask
Register and then the number of the Message Object is written to the Command Request
Register, concurrently updating the data bytes and setting TxRqst .

To prevent the reset of TxRqst at the end of a transmission that may already be in progress
while the data is updated, NewDat has to be set together with TxRqst . For details see section
section 4.2.2.

When NewDat is set together with TxRqst , NewDat will be reset as soon as the new
transmission has started.

MsgVal Arb Data Mask EoB Dir NewDat MsgLst RxIE TxIE IntPnd RmtEn TxRqst

1 appl. appl. appl. 1 1 0 0 0 appl. 0 appl. 0
BOSCH - 30/45 - 06.06.00

User’s Manual Revision 1.2C_CAN
m

an
ua

l_
ca

n_
ap

pl
ic

at
io

n.
fm
4.5 Configuration of a Receive Object

Figure 9 shows how a Receive Object should be initialised.

 Figure 10: Initialisation of a Receive Object

The Arbitration Registers (ID28-0 and Xtd bit) are given by the application. They define the
identifier and type of accepted received messages. If an 11-bit Identifier (“Standard Frame”) is
used, it is programmed to ID28 - ID18, ID17 - ID0 can then be disregarded. When a Data
Frame with an 11-bit Identifier is received, ID17 - ID0 will be set to ‘0’.

If the RxIE bit is set, the IntPnd bit will be set when a received Data Frame is accepted and
stored in the Message Object.

The Data Length Code (DLC3-0) is given by the application. When the Message Handler
stores a Data Frame in the Message Object, it will store the received Data Length Code and
eight data bytes. If the Data Length Code is less than 8, the remaining bytes of the Message
Object will be overwritten by non specified values .

The Mask Registers (Msk28-0 , UMask , MXtd , and MDir bits) may be used (UMask=’1’) to
allow groups of Data Frames with similar identifiers to be accepted. For details see section
4.2.3.1. The Dir bit should not be masked in typical applications.

4.6 Handling of Received Messages

The CPU may read a received message any time via the IFx Interface registers, the data
consistency is guaranteed by the Message Handler state machine.

Typically the CPU will write first 0x007F to the Command Mask Register and then the number
of the Message Object to the Command Request Register. That combination will transfer the
whole received message from the Message RAM into the Message Buffer Register.
Additionally, the bits NewDat and IntPnd are cleared in the Message RAM (not in the
Message Buffer).

If the Message Object uses masks for acceptance filtering, the arbitration bits show which of
the matching messages has been received.

The actual value of NewDat shows whether a new message has been received since last time
this Message Object was read. The actual value of MsgLst shows whether more than one
message has been received since last time this Message Object was read. MsgLst will not be
automatically reset.

By means of a Remote Frame, the CPU may request another CAN node to provide new data
for a receive object. Setting the TxRqst bit of a receive object will cause the transmission of a
Remote Frame with the receive object’s identifier. This Remote Frame triggers the other CAN
node to start the transmission of the matching Data Frame. If the matching Data Frame is
received before the Remote Frame could be transmitted, the TxRqst bit is automatically reset.

MsgVal Arb Data Mask EoB Dir NewDat MsgLst RxIE TxIE IntPnd RmtEn TxRqst

1 appl. appl. appl. 1 0 0 0 appl. 0 0 0 0
BOSCH - 31/45 - 06.06.00

User’s Manual Revision 1.2C_CAN
m

an
ua

l_
ca

n_
ap

pl
ic

at
io

n.
fm
4.7 Configuration of a FIFO Buffer

With the exception of the EoB bit, the configuration of Receive Objects belonging to a FIFO
Buffer is the same as the configuration of a (single) Receive Object, see section 4.5.

To concatenate two or more Message Objects into a FIFO Buffer, the identifiers and masks (if
used) of these Message Objects have to be programmed to matching values. Due to the
implicit priority of the Message Objects, the Message Object with the lowest number will be
the first Message Object of the FIFO Buffer. The EoB bit of all Message Objects of a FIFO
Buffer except the last have to be programmed to zero. The EoB bits of the last Message
Object of a FIFO Buffer is set to one, configuring it as the End of the Block.

4.8 Reception of Messages with FIFO Buffers

Received messages with identifiers matching to a FIFO Buffer are stored into a Message
Object of this FIFO Buffer starting with the Message Object with the lowest message number.

When a message is stored into a Message Object of a FIFO Buffer the NewDat bit of this
Message Object is set. By setting NewDat while EoB is zero the Message Object is locked for
further write accesses by the Message Handler until the CPU has written the NewDat bit back
to zero.

Messages are stored into a FIFO Buffer until the last Message Object of this FIFO Buffer is
reached. If none of the preceding Message Objects is released by writing NewDat to zero, all
further messages for this FIFO Buffer will be written into the last Message Object of the FIFO
Buffer and therefore overwrite previous messages.

 4.8.1 Reading from a FIFO Buffer

When the CPU transfers the contents of Message Object to the IFx Message Bugger registers
by writing its number to the IFx Command Request Register, the corresponding Command
Mask Register should be programmed the way that bits NewDat and IntPnd are reset to zero
(TxRqst/NewDat = ‘1’ and ClrIntPnd = ‘1’). The values of these bits in the Message Control
Register always reflect the status before resetting the bits.

To assure the correct function of a FIFO Buffer, the CPU should read out the Message Objects
starting at the FIFO Object with the lowest message number.

Figure 11 shows how a set of Message Objects which are concatenated to a FIFO Buffer can
be handled by the CPU.
BOSCH - 32/45 - 06.06.00

User’s Manual Revision 1.2C_CAN
m

an
ua

l_
ca

n_
ap

pl
ic

at
io

n.
fm
 Figure 11: CPU Handling of a FIFO Buffer

Read Interrupt Pointer

START

case Interrupt Pointer
0x8000h else 0x0000h

Status Change END

MessageNum = Interrupt Pointer

Write MessageNum to IFx Command Request

(Read Message to IFx Registers,
Reset NewDat = 0,
Reset IntPnd = 0)

Read IFx Message Control

NewDat = 1

Read Data from IFx Data A,B

EoB = 1

MessageNum = MessageNum + 1

Yes

No

Yes

No

Message Interrupt

Interrupt Handling
BOSCH - 33/45 - 06.06.00

User’s Manual Revision 1.2C_CAN
m

an
ua

l_
ca

n_
ap

pl
ic

at
io

n.
fm
4.9 Handling of Interrupts

If several interrupts are pending, the CAN Interrupt Register will point to the pending interrupt
with the highest priority, disregarding their chronological order. An interrupt remains pending
until the CPU has cleared it.

The Status Interrupt has the highest priority. Among the message interrupts, the Message
Object’ s interrupt priority decreases with increasing message number.

A message interrupt is cleared by clearing the Message Object’s IntPnd bit. The Status
Interrupt is cleared by reading the Status Register.

The interrupt identifier IntId in the Interrupt Register indicates the cause of the interrupt. When
no interrupt is pending, the register will hold the value zero. If the value of the Interrupt
Register is different from zero, then there is an interrupt pending and, if IE is set, the interrupt
line to the CPU, IRQ_B, is active. The interrupt line remains active until the Interrupt Register
is back to value zero (the cause of the interrupt is reset) or until IE is reset.

The value 0x8000 indicates that an interrupt is pending because the CAN Core has updated
(not necessarily changed) the Status Register (Error Interrupt or Status Interrupt). This
interrupt has the highest priority. The CPU can update (reset) the status bits RxOk , TxOk and
LEC, but a write access of the CPU to the Status Register can never generate or reset an
interrupt.

All other values indicate that the source of the interrupt is one of the Message Objects, IntId
points to the pending message interrupt with the highest interrupt priority.

The CPU controls whether a change of the Status Register may cause an interrupt (bits EIE
and SIE in the CAN Control Register) and whether the interrupt line becomes active when the
Interrupt Register is different from zero (bit IE in the CAN Control Register). The Interrupt
Register will be updated even when IE is reset.

The CPU has two possibilities to follow the source of a message interrupt. First it can follow
the IntId in the Interrupt Register and second it can poll the Interrupt Pending Register (see
section 3.4.4).

An interrupt service routine reading the message that is the source of the interrupt may read
the message and reset the Message Object’s IntPnd at the same time (bit ClrIntPnd in the
Command Mask Register). When IntPnd is cleared, the Interrupt Register will point to the next
Message Object with a pending interrupt.

4.10 Configuration of the Bit Timing

Even if minor errors in the configuration of the CAN bit timing do not result in immediate
failure, the performance of a CAN network can be reduced significantly.

In many cases, the CAN bit synchronisation will amend a faulty configuration of the CAN bit
timing to such a degree that only occasionally an error frame is generated. In the case of
arbitration however, when two or more CAN nodes simultaneously try to transmit a frame, a
misplaced sample point may cause one of the transmitters to become error passive.

The analysis of such sporadic errors requires a detailed knowledge of the CAN bit
synchronisation inside a CAN node and of the CAN nodes’ interaction on the CAN bus.
BOSCH - 34/45 - 06.06.00

User’s Manual Revision 1.2C_CAN
m

an
ua

l_
ca

n_
ap

pl
ic

at
io

n.
fm
 4.10.1 Bit Time and Bit Rate

CAN supports bit rates in the range of lower than 1 kBit/s up to 1000 kBit/s. Each member of
the CAN network has its own clock generator, usually a quartz oscillator. The timing parameter
of the bit time (i.e. the reciprocal of the bit rate) can be configured individually for each CAN
node, creating a common bit rate even though the CAN nodes’ oscillator periods (fosc) may be
different.

The frequencies of these oscillators are not absolutely stable, small variations are caused by
changes in temperature or voltage and by deteriorating components. As long as the variations
remain inside a specific oscillator tolerance range (df), the CAN nodes are able to compensate
for the different bit rates by resynchronising to the bit stream.

According to the CAN specification, the bit time is divided into four segments (see figure 12).
The Synchronisation Segment, the Propagation Time Segment, the Phase Buffer Segment 1,
and the Phase Buffer Segment 2. Each segment consists of a specific, programmable number
of time quanta (see Table 1). The length of the time quantum (tq), which is the basic time unit
of the bit time, is defined by the CAN controller’s system clock fsys and the Baud Rate
Prescaler (BRP) : tq = BRP / fsys. The C_CAN’s system clock fsys is the frequency of its
CAN_CLK input.

The Synchronisation Segment Sync_Seg is that part of the bit time where edges of the CAN
bus level are expected to occur; the distance between an edge that occurs outside of
Sync_Seg and the Sync_Seg is called the phase error of that edge. The Propagation Time
Segment Prop_Seg is intended to compensate for the physical delay times within the CAN
network. The Phase Buffer Segments Phase_Seg1 and Phase_Seg2 surround the Sample
Point. The (Re-)Synchronisation Jump Width (SJW) defines how far a resynchronisation may
move the Sample Point inside the limits defined by the Phase Buffer Segments to compensate
for edge phase errors.

 Figure 12: Bit Timing

Parameter Range Remark

BRP [1 .. 32] defines the length of the time quantum tq
Sync_Seg 1 tq fixed length, synchronisation of bus input to system clock

Prop_Seg [1 .. 8] tq compensates for the physical delay times

Phase_Seg1 [1 .. 8] tq may be lengthened temporarily by synchronisation

Phase_Seg2 [1 .. 8] tq may be shortened temporarily by synchronisation

SJW [1 .. 4] tq may not be longer than either Phase Buffer Segment

This table describes the minimum programmable ranges required by the CAN protocol

Table 1 : Parameters of the CAN Bit Time

1 Time Quantum
(tq)

Sync_ Prop_Seg Phase_Seg1 Phase_Seg2

Sample Point

Nominal CAN Bit Time

Seg
BOSCH - 35/45 - 06.06.00

User’s Manual Revision 1.2C_CAN
m

an
ua

l_
ca

n_
ap

pl
ic

at
io

n.
fm
A given bit rate may be met by different bit time configurations, but for the proper function of
the CAN network the physical delay times and the oscillator’s tolerance range have to be
considered.

 4.10.2 Propagation Time Segment

This part of the bit time is used to compensate physical delay times within the network. These
delay times consist of the signal propagation time on the bus and the internal delay time of the
CAN nodes.

Any CAN node synchronised to the bit stream on the CAN bus will be out of phase with the
transmitter of that bit stream, caused by the signal propagation time between the two nodes.
The CAN protocol’s non-destructive bitwise arbitration and the dominant acknowledge bit
provided by receivers of CAN messages require that a CAN node transmitting a bit stream
must also be able to receive dominant bits transmitted by other CAN nodes that are
synchronised to that bit stream. The example in figure 13 shows the phase shift and
propagation times between two CAN nodes.

 Figure 13: The Propagation Time Segment

In this example, both nodes A and B are transmitters performing an arbitration for the CAN
bus. The node A has sent its Start of Frame bit less than one bit time earlier than node B,
therefore node B has synchronised itself to the received edge from recessive to dominant.
Since node B has received this edge delay(A_to_B) after it has been transmitted, B’s bit timing
segments are shifted with regard to A. Node B sends an identifier with higher priority and so it
will win the arbitration at a specific identifier bit when it transmits a dominant bit while node A
transmits a recessive bit. The dominant bit transmitted by node B will arrive at node A after the
delay(B_to_A).

Due to oscillator tolerances, the actual position of node A’s Sample Point can be anywhere
inside the nominal range of node A’s Phase Buffer Segments, so the bit transmitted by node B
must arrive at node A before the start of Phase_Seg1. This condition defines the length of
Prop_Seg.

If the edge from recessive to dominant transmitted by node B would arrive at node A after the
start of Phase_Seg1, it could happen that node A samples a recessive bit instead of a
dominant bit, resulting in a bit error and the destruction of the current frame by an error flag.

Sync_Seg Prop_Seg Phase_Seg1 Phase_Seg2

Node B

Node A

Delay A_to_B Delay B_to_A

Prop_Seg >= Delay A_to_B + Delay B_to_A

Prop_Seg >= 2 • [max(node output delay+ bus line delay + node input delay)]

Delay A_to_B >= node output delay(A) + bus line delay(A→B) + node input delay(B)
BOSCH - 36/45 - 06.06.00

User’s Manual Revision 1.2C_CAN
m

an
ua

l_
ca

n_
ap

pl
ic

at
io

n.
fm
The error occurs only when two nodes arbitrate for the CAN bus that have oscillators of
opposite ends of the tolerance range and that are separated by a long bus line; this is an
example of a minor error in the bit timing configuration (Prop_Seg to short) that causes
sporadic bus errors.

Some CAN implementations provide an optional 3 Sample Mode The C_CAN does not. In this
mode, the CAN bus input signal passes a digital low-pass filter, using three samples and a
majority logic to determine the valid bit value. This results in an additional input delay of 1 tq,
requiring a longer Prop_Seg.

 4.10.3 Phase Buffer Segments and Synchronisation

The Phase Buffer Segments (Phase_Seg1 and Phase_Seg2) and the Synchronisation Jump
Width (SJW) are used to compensate for the oscillator tolerance. The Phase Buffer Segments
may be lengthened or shortened by synchronisation.

Synchronisations occur on edges from recessive to dominant, their purpose is to control the
distance between edges and Sample Points.

Edges are detected by sampling the actual bus level in each time quantum and comparing it
with the bus level at the previous Sample Point. A synchronisation may be done only if a
recessive bit was sampled at the previous Sample Point and if the actual time quantum’s bus
level is dominant.

An edge is synchronous if it occurs inside of Sync_Seg, otherwise the distance between edge
and the end of Sync_Seg is the edge phase error, measured in time quanta. If the edge occurs
before Sync_Seg, the phase error is negative, else it is positive.

Two types of synchronisation exist : Hard Synchronisation and Resynchronisation. A Hard
Synchronisation is done once at the start of a frame; inside a frame only Resynchronisations
occur.

• Hard Synchronisation

After a hard synchronisation, the bit time is restarted with the end of Sync_Seg, regardless of
the edge phase error. Thus hard synchronisation forces the edge which has caused the hard
synchronisation to lie within the synchronisation segment of the restarted bit time.

• Bit Resynchronisation

Resynchronisation leads to a shortening or lengthening of the bit time such that the position
of the sample point is shifted with regard to the edge.

When the phase error of the edge which causes Resynchronisation is positive, Phase_Seg1
is lengthened. If the magnitude of the phase error is less than SJW, Phase_Seg1 is length-
ened by the magnitude of the phase error, else it is lengthened by SJW.

When the phase error of the edge which causes Resynchronisation is negative, Phase_Seg2
is shortened. If the magnitude of the phase error is less than SJW, Phase_Seg2 is shortened
by the magnitude of the phase error, else it is shortened by SJW.

When the magnitude of the phase error of the edge is less than or equal to the programmed
value of SJW, the results of Hard Synchronisation and Resynchronisation are the same. If the
magnitude of the phase error is larger than SJW, the Resynchronisation cannot compensate
the phase error completely, an error of (phase error - SJW) remains.

Only one synchronisation may be done between two Sample Points. The Synchronisations
maintain a minimum distance between edges and Sample Points, giving the bus level time to
stabilize and filtering out spikes that are shorter than (Prop_Seg + Phase_Seg1).
BOSCH - 37/45 - 06.06.00

User’s Manual Revision 1.2C_CAN
m

an
ua

l_
ca

n_
ap

pl
ic

at
io

n.
fm
Apart from noise spikes, most synchronisations are caused by arbitration. All nodes
synchronise “hard” on the edge transmitted by the “leading” transceiver that started
transmitting first, but due to propagation delay times, they cannot become ideally
synchronised. The “leading” transmitter does not necessarily win the arbitration, therefore the
receivers have to synchronise themselves to different transmitters that subsequently “take the
lead” and that are differently synchronised to the previously “leading” transmitter. The same
happens at the acknowledge field, where the transmitter and some of the receivers will have to
synchronise to that receiver that “takes the lead” in the transmission of the dominant
acknowledge bit.

Synchronisations after the end of the arbitration will be caused by oscillator tolerance, when
the differences in the oscillator’s clock periods of transmitter and receivers sum up during the
time between synchronisations (at most ten bits). These summarized differences may not be
longer than the SJW, limiting the oscillator’s tolerance range.

The examples in figure 14 show how the Phase Buffer Segments are used to compensate for
phase errors. There are three drawings of each two consecutive bit timings. The upper
drawing shows the synchronisation on a “late” edge, the lower drawing shows the
synchronisation on an “early” edge, and the middle drawing is the reference without
synchronisation.

 Figure 14: Synchronisation on “late” and “early” Edges

In the first example an edge from recessive to dominant occurs at the end of Prop_Seg. The
edge is “late” since it occurs after the Sync_Seg. Reacting to the “late” edge, Phase_Seg1 is
lengthened so that the distance from the edge to the Sample Point is the same as it would
have been from the Sync_Seg to the Sample Point if no edge had occurred. The phase error
of this “late” edge is less than SJW, so it is fully compensated and the edge from dominant to
recessive at the end of the bit, which is one nominal bit time long, occurs in the Sync_Seg.

In the second example an edge from recessive to dominant occurs during Phase_Seg2. The
edge is “early” since it occurs before a Sync_Seg. Reacting to the “early” edge, Phase_Seg2 is
shortened and Sync_Seg is omitted, so that the distance from the edge to the Sample Point is
the same as it would have been from an Sync_Seg to the Sample Point if no edge had

recessive
dominant

recessive
dominant

Sync_Seg Prop_Seg Phase_Seg1 Phase_Seg2

“late” Edge

“early” Edge

Rx-Input

Rx-Input

Sample-Point Sample-Point

Sample-PointSample-Point

Sample-Point Sample-Point
BOSCH - 38/45 - 06.06.00

User’s Manual Revision 1.2C_CAN
m

an
ua

l_
ca

n_
ap

pl
ic

at
io

n.
fm
occurred. As in the previous example, the magnitude of this “early” edge’s phase error is less
than SJW, so it is fully compensated.

The Phase Buffer Segments are lengthened or shortened temporarily only; at the next bit time,
the segments return to their nominal programmed values.

In these examples, the bit timing is seen from the point of view of the CAN implementation’s
state machine, where the bit time starts and ends at the Sample Points. The state machine
omits Sync_Seg when synchronising on an “early” edge because it cannot subsequently
redefine that time quantum of Phase_Seg2 where the edge occurs to be the Sync_Seg.

The examples in figure 15 show how short dominant noise spikes are filtered by
synchronisations. In both examples the spike starts at the end of Prop_Seg and has the length
of (Prop_Seg + Phase_Seg1).

In the first example, the Synchronisation Jump Width is greater than or equal to the phase
error of the spike’s edge from recessive to dominant. Therefore the Sample Point is shifted
after the end of the spike; a recessive bus level is sampled.

In the second example, SJW is shorter than the phase error, so the Sample Point cannot be
shifted far enough; the dominant spike is sampled as actual bus level.

 Figure 15: Filtering of Short Dominant Spikes

 4.10.4 Oscillator Tolerance Range

The oscillator tolerance range was increased when the CAN protocol was developed from
version 1.1 to version 1.2 (version 1.0 was never implemented in silicon). The option to
synchronise on edges from dominant to recessive became obsolete, only edges from
recessive to dominant are considered for synchronisation. The only CAN controllers to
implement protocol version 1.1 have been Intel 82526 and Philips 82C200, both are
superseded by successor products. The protocol update to version 2.0 (A and B) had no
influence on the oscillator tolerance.

The tolerance range df for an oscillator’s frequency fosc around the nominal frequency fnom
with depends on the proportions of Phase_Seg1, Phase_Seg2,

recessive
dominant

Sync_Seg Prop_Seg Phase_Seg1 Phase_Seg2

SpikeRx-Input

Sample-Point Sample-Point

Sample-PointSample-Point

recessive
dominantSpikeRx-Input

SJW ≥ Phase Error

SJW < Phase Error

1 df–() fnom• fosc 1 df+() fnom•≤ ≤
BOSCH - 39/45 - 06.06.00

User’s Manual Revision 1.2C_CAN
m

an
ua

l_
ca

n_
ap

pl
ic

at
io

n.
fm
SJW, and the bit time. The maximum tolerance df is the defined by two conditions (both shall
be met) :

It has to be considered that SJW may not be larger than the smaller of the Phase Buffer
Segments and that the Propagation Time Segment limits that part of the bit time that may be
used for the Phase Buffer Segments.

The combination Prop_Seg = 1 and Phase_Seg1 = Phase_Seg2 = SJW = 4 allows the
largest possible oscillator tolerance of 1.58%. This combination with a Propagation Time
Segment of only 10% of the bit time is not suitable for short bit times; it can be used for bit
rates of up to 125 kBit/s (bit time = 8 µs) with a bus length of 40 m.

 4.10.5 Configuration of the CAN Protocol Controller

In most CAN implementations and also in the C_CAN, the bit timing configuration is
programmed in two register bytes. The sum of Prop_Seg and Phase_Seg1 (as TSEG1) is
combined with Phase_Seg2 (as TSEG2) in one byte, SJW and BRP are combined in the other
byte (see figure 16).

In these bit timing registers, the four components TSEG1, TSEG2, SJW, and BRP have to be
programmed to a numerical value that is one less than its functional value; so instead of
values in the range of [1..n], values in the range of [0..n-1] are programmed. That way, e.g.
SJW (functional range of [1..4]) is represented by only two bits.

Therefore the length of the bit time is (programmed values) [TSEG1 + TSEG2 + 3] tq or
(functional values) [Sync_Seg + Prop_Seg + Phase_Seg1 + Phase_Seg2] tq.

 Figure 16: Structure of the CAN Core’s CAN Protocol Controller

The data in the bit timing registers are the configuration input of the CAN protocol controller.
The Baud Rate Prescaler (configured by BRP) defines the length of the time quantum, the

 I: df
min Phase_Seg1 Phase_Seg2,()
2 13 bit_time Phase_Seg2–•()•
---≤

II: df
SJW

20 bit_time•
---------------------------------≤

Sample_Point

Bit_to_send

Sync_Mode

Bus_Off

Scaled_Clock (t q)System Clock

Receive_Data

Transmit_Data

Control

Received_Message

Send_Message

Status

Bit
Timing
Logic

Baudrate_
Prescaler

Sampled_Bit

Configuration (TSEG1, TSEG2, SJW)

Configuration (BRP)

Shift-Register

Received_Data_Bit

Next_Data_Bit

Control

B
it

S
tre

am
 P

ro
ce

ss
or

IP
T

BOSCH - 40/45 - 06.06.00

User’s Manual Revision 1.2C_CAN
m

an
ua

l_
ca

n_
ap

pl
ic

at
io

n.
fm
basic time unit of the bit time; the Bit Timing Logic (configured by TSEG1, TSEG2, and SJW)
defines the number of time quanta in the bit time.

The processing of the bit time, the calculation of the position of the Sample Point, and
occasional synchronisations are controlled by the BTL state machine, which is evaluated once
each time quantum. The rest of the CAN protocol controller, the Bit Stream Processor (BSP)
state machine is evaluated once each bit time, at the Sample Point.

The Shift Register serializes the messages to be sent and parallelizes received messages. Its
loading and shifting is controlled by the BSP.

The BSP translates messages into frames and vice versa. It generates and discards the
enclosing fixed format bits, inserts and extracts stuff bits, calculates and checks the CRC
code, performs the error management, and decides which type of synchronisation is to be
used. It is evaluated at the Sample Point and processes the sampled bus input bit. The time
after the Sample point that is needed to calculate the next bit to be sent (e.g. data bit, CRC bit,
stuff bit, error flag, or idle) is called the Information Processing Time (IPT).

The IPT is application specific but may not be longer than 2 tq; the C_CAN’s IPT is 0 tq. Its
length is the lower limit of the programmed length of Phase_Seg2. In case of a synchronisa-
tion, Phase_Seg2 may be shortened to a value less than IPT, which does not affect bus timing.

 4.10.6 Calculation of the Bit Timing Parameters

Usually, the calculation of the bit timing configuration starts with a desired bit rate or bit time.
The resulting bit time (1/bit rate) must be an integer multiple of the system clock period.

The bit time may consist of 4 to 25 time quanta, the length of the time quantum tq is defined by
the Baud Rate Prescaler with tq = (Baud Rate Prescaler)/fsys. Several combinations may lead
to the desired bit time, allowing iterations of the following steps.

First part of the bit time to be defined is the Prop_Seg. Its length depends on the delay times
measured in the system. A maximum bus length as well as a maximum node delay has to be
defined for expandible CAN bus systems. The resulting time for Prop_Seg is converted into
time quanta (rounded up to the nearest integer multiple of tq).

The Sync_Seg is 1 tq long (fixed), leaving (bit time – Prop_Seg – 1) tq for the two Phase Buffer
Segments. If the number of remaining tq is even, the Phase Buffer Segments have the same
length, Phase_Seg2 = Phase_Seg1, else Phase_Seg2 = Phase_Seg1 + 1.

The minimum nominal length of Phase_Seg2 has to be regarded as well. Phase_Seg2 may
not be shorter than the CAN controller’s Information Processing Time, which is, depending on
the actual implementation, in the range of [0..2] tq.

The length of the Synchronisation Jump Width is set to its maximum value, which is the
minimum of 4 and Phase_Seg1.

The oscillator tolerance range necessary for the resulting configuration is calculated by the
formulas given in section 4.10.4

If more than one configuration is possible, that configuration allowing the highest oscillator
tolerance range should be chosen.

CAN nodes with different system clocks require different configurations to come to the same
bit rate. The calculation of the propagation time in the CAN network, based on the nodes with
the longest delay times, is done once for the whole network.

The CAN system’s oscillator tolerance range is limited by that node with the lowest tolerance
range.
BOSCH - 41/45 - 06.06.00

User’s Manual Revision 1.2C_CAN
m

an
ua

l_
ca

n_
ap

pl
ic

at
io

n.
fm
The calculation may show that bus length or bit rate have to be decreased or that the oscillator
frequencies’ stability has to be increased in order to find a protocol compliant configuration of
the CAN bit timing.

The resulting configuration is written into the Bit Timing Register :

(Phase_Seg2-1)&(Phase_Seg1+Prop_Seg-1)&(SynchronisationJumpWidth-1)&(Prescaler-1)

 4.10.6.1 Example for Bit Timing at high Baudrate

In this example, the frequency of CAN_CLK is 10 MHz, BRP is 0, the bit rate is 1 MBit/s.

tq 100 ns = tCAN_CLK

delay of bus driver 50 ns
delay of receiver circuit 30 ns
delay of bus line (40m) 220 ns
tProp 600 ns = 6 • tq
tSJW 100 ns = 1 • tq
tTSeg1 700 ns = tProp + tSJW

tTSeg2 200 ns = Information Processing Time + 1 • tq
tSync-Seg 100 ns = 1 • tq
bit time 1000 ns = tSync-Seg + tTSeg1 + tTSeg2

tolerance for CAN_CLK 0.39 % =

=

In this example, the concatenated bit time parameters are (2-1)3&(7-1)4&(1-1)2&(1-1)6, the Bit
Timing Register is programmed to= 0x1600.

 4.10.6.2 Example for Bit Timing at low Baudrate

In this example, the frequency of CAN_CLK is 2 MHz, BRP is 1, the bit rate is 100 KBit/s.

tq 1 µs = 2 • tCAN_CLK

delay of bus driver 200 ns
delay of receiver circuit 80 ns
delay of bus line (40m) 220 ns
tProp 1 µs = 1 • tq
tSJW 4 µs = 4 • tq
tTSeg1 5 µs = tProp + tSJW

tTSeg2 4 µs = Information Processing Time + 3 • tq
tSync-Seg 1 µs = 1 • tq
bit time 10 µs = tSync-Seg + tTSeg1 + tTSeg2

tolerance for CAN_CLK 1.58 % =

=

In this example, the concatenated bit time parameters are (4-1)3&(5-1)4&(4-1)2&(2-1)6, the Bit
Timing Register is programmed to= 0x34C1.

min PB1 PB2,()
2 13 bit time PB2–×()×
--

0.1µs
2 13 1µs 0.2µs–×()×

min PB1 PB2,()
2 13 bit time PB2–×()×

4µs
2 13 10µs 4µs–×()×
--
BOSCH - 42/45 - 06.06.00

User’s Manual Revision 1.2C_CAN
m

an
ua

l_
cp

u_
ifc

.fm
5. CPU Interface

The interface of the C_CAN module consist of two parts (see figure 17). The Generic Interface
which is a fix part of the C_CAN module and the Customer Interface which can be adapted to
the customers requirements.

 Figure 17: Structure of the module interface

5.1 Customer Interface

The purpose of the Customer Interface is to adapt the timings of the module-external signals
to the timing requirements of the module and to buffer and drive the external signals. Number
and names of the module pins depend on the Customer Interface used with the actual
implementation.

The Customer Interface also supplies the clock and reset signals for the module.

The minimum clock frequency required to operate the C_CAN module with a bit rate of
1 MBit/s is 8 MHz. The maximum clock frequency is dependent on synthesis constraints and
on the technology which is used for synthesis. The read / write timing of the C_CAN module
depends on the Customer Interface used with the actual implementation.

Up to now three different Customer Interfaces are available for the C_CAN module. An 8-bit
interface for the Motorola HC08 controller and two 16-bit interfaces to the AMBA APB bus from

Customer Generic
Clock

Reset

DataIN

Address(7:0)

CAN_WR_B

CAN_ADDR

CAN_DATA_IN

CAN_DATA_OUT

Interrupt

CAN_WAIT_B

CAN_RESET RD_STATUS_REG_LOW

WR_<regx>_LOW

regx

WR_<regx>_HIGH

Interface Interface

Address
Decode

MUX <regx>_LOW_DIN

regy

<regx>_HIGH_DIN

CAN_SELECT

Buffers

Drivers

Control

Data Bus
Control

CAN_INT

DataOUT

CAN_CLK

DB_W (generic)
BOSCH - 43/45 - 06.06.00manual_cpu_ifc.fm

User’s Manual Revision 1.2C_CAN
m

an
ua

l_
cp

u_
ifc

.fm
ARM. A detailed description of these interfaces can be found in the Module Integration Guide.,
also describing how to build a new Customer Interface for other CPUs.

5.2 Timing of the WAIT output signal

Figure 18 shows the timing at the modules WAIT output pin CAN_WAIT_B with respect to the
modules internal clock CAN_CLK . The number of clock cycles needed for a transfer between
the IFx Registers and the Message RAM can vary between 3 and 6 clock cycles depending on
the state of the Message Handler (idle, scan Message RAM, load/store shift register, ...).

 Figure 18: Timing of WAIT output signal CAN_WAIT_B

5.3 Interrupt Timing

Figure 19 shows the timing at the modules interrupt pin CAN_INT (active low) with respect to
the modules internal clock CAN_CLK .

 Figure 19: Timing of interrupt signal CAN_INT

3 - 6 CAN_CLK Cycles

CAN_CLK

CAN_WAIT_B

Write IFx
Command Request Register

Busy = ‘1’

Requested Data loaded
into IFx Registers

Busy = ‘0’

CAN_CLK

CAN_INT

Enabled Interrupt Flag set
while IE = ‘1’

Reset Interrupt Flag
or write IE = ‘0’
BOSCH - 44/45 - 06.06.00

User’s Manual

BOSCH - 45/45 -

Revision 1.2C_CAN

 06.06.00

m
an

ua
l_

ap
pe

nd
ix

.fm

6. Appendix

6.1 List of Figures

 Figure 1: Block Diagram of the C_CAN . 8

 Figure 2: CAN Core in Silent Mode . 10

 Figure 3: CAN Core in Loop Back Mode . 11

 Figure 4: CAN Core in Loop Back combined with Silent Mode . 11

 Figure 5: C_CAN Register Summary . 13

 Figure 6: IF1 and IF2 Message Interface Register Sets . 18

 Figure 7: Structure of a Message Object in the Message Memory. 22

 Figure 8: Data Transfer between IFx Registers and Message RAM 28

 Figure 9: Initialisation of a Transmit Object . 30

 Figure 10: Initialisation of a Receive Object . 31

 Figure 11: CPU Handling of a FIFO Buffer . 33

 Figure 12: Bit Timing. 35

 Figure 13: The Propagation Time Segment . 36

 Figure 14: Synchronisation on “late” and “early” Edges . 38

 Figure 15: Filtering of Short Dominant Spikes . 39

 Figure 16: Structure of the CAN Core’s CAN Protocol Controller. 40

 Figure 17: Structure of the module interface . 43

 Figure 18: Timing of WAIT output signal CAN_WAIT_B . 44

 Figure 19: Timing of interrupt signal CAN_INT. 44

EOF

manual_appendix.fm

	1. About this Document
	1.1 Change Control
	1.1.1 Current Status
	1.1.2 Change History

	1.2 Conventions
	1.3 Scope
	1.4 References
	1.5 Terms and Abbreviations

	2. Functional Description
	2.1 Functional Overview
	2.2 Block Diagram
	2.3 Operating Modes
	2.3.1 Software Initialisation
	2.3.2 CAN Message Transfer
	2.3.3 Disabled Automatic Retransmission
	2.3.4 Test Mode
	2.3.5 Silent Mode
	2.3.6 Loop Back Mode
	2.3.7 Loop Back combined with Silent Mode
	2.3.8 Basic Mode
	2.3.9 Software control of Pin CAN_TX

	3. Programmer’s Model
	3.1 Hardware Reset Description
	3.2 CAN Protocol Related Registers
	3.2.1 CAN Control Register (addresses 0x01 & 0x00)
	3.2.2 Status Register (addresses 0x03 & 0x02)
	3.2.2.1 Status Interrupts

	3.2.3 Error Counter (addresses 0x05 & 0x04)
	3.2.4 Bit Timing Register (addresses 0x07 & 0x06)
	3.2.5 Test Register (addresses 0x0B & 0x0A)
	3.2.6 BRP Extension Register (addresses 0x0D & 0x0C)

	3.3 Message Interface Register Sets
	3.3.1 IFx Command Request Registers
	3.3.2 IFx Command Mask Registers
	3.3.2.1 Direction = Write
	3.3.2.2 Direction = Read

	3.3.3 IFx Message Buffer Registers
	3.3.3.1 IFx Mask Registers
	3.3.3.2 IFx Arbitration Registers
	3.3.3.3 IFx Message Control Registers
	3.3.3.4 IFx Data A and Data B Registers

	3.3.4 Message Object in the Message Memory

	3.4 Message Handler Registers
	3.4.1 Interrupt Register (addresses 0x09 & 0x08)
	3.4.2 Transmission Request Registers
	3.4.3 New Data Registers
	3.4.4 Interrupt Pending Registers
	3.4.5 Message Valid 1 Register

	4. CAN Application
	4.1 Management of Message Objects
	4.2 Message Handler State Machine
	4.2.1 Data Transfer from / to Message RAM
	4.2.2 Transmission of Messages
	4.2.3 Acceptance Filtering of Received Messages
	4.2.3.1 Reception of Data Frame
	4.2.3.2 Reception of Remote Frame

	4.2.4 Receive / Transmit Priority

	4.3 Configuration of a Transmit Object
	4.4 Updating a Transmit Object
	4.5 Configuration of a Receive Object
	4.6 Handling of Received Messages
	4.7 Configuration of a FIFO Buffer
	4.8 Reception of Messages with FIFO Buffers
	4.8.1 Reading from a FIFO Buffer

	4.9 Handling of Interrupts
	4.10 Configuration of the Bit Timing
	4.10.1 Bit Time and Bit Rate
	4.10.2 Propagation Time Segment
	4.10.3 Phase Buffer Segments and Synchronisation
	4.10.4 Oscillator Tolerance Range
	4.10.5 Configuration of the CAN Protocol Controller
	4.10.6 Calculation of the Bit Timing Parameters
	4.10.6.1 Example for Bit Timing at high Baudrate
	4.10.6.2 Example for Bit Timing at low Baudrate

	5. CPU Interface
	5.1 Customer Interface
	5.2 Timing of the WAIT output signal
	5.3 Interrupt Timing

	6. Appendix
	6.1 List of Figures

