
Getting Started and Creating Applications 135

 8

Chapter 8. RTX-51 Real-Time Operating
System

RTX51 is a multitasking real-time operating system for the 8051 family. RTX51
simplifies system and software design of complex and time-critical projects.
RTX51 is a powerful tool to manage several jobs (tasks) on a single CPU. There
are two distinct versions of RTX51:

RTX51 Full which performs both round-robin and preemptive task switching
with 4 task priorities and can be operated with interrupt functions in parallel.
RTX51 supports signal passing; message passing with a mailbox system and
semaphores. The os_wait function of RTX51 can wait for the following events:
interrupt; timeout; signal from task or interrupt; message from task or interrupt;
semaphore.

RTX51 Tiny which is a subset of RTX51 Full. RTX51 Tiny easily runs on
single-chip systems without off-chip memory. However, program using RTX51
Tiny can access off-chip memory. RTX51 Tiny allows round-robin task
switching, supports signal passing and can be operated with interrupt functions
in parallel. The os_wait function of RTX51 Tiny can wait for the following
events: timeout; interval; signal from task or interrupt.

The rest of this section uses RTX-51 to refer to RTX-51 Full and RTX-51 Tiny.
Differences between the two are stated where applicable.

Introduction
Many microcontroller applications require simultaneous execution of multiple
jobs or tasks. For such applications, a real-time operating system (RTOS) allows
flexible scheduling of system resources (CPU, memory, etc.) to several tasks.
RTX-51 implements a powerful RTOS that is easy to use. RTX-51 works with
all 8051 derivatives.

You write and compile RTX-51 programs using standard C constructs and
compiling them with C51. Only a few deviations from standard C are required
in order to specify the task ID and priority. RTX-51 programs also require that
you include the RTX51.H or RTX51TNY.H header file. When you select in the
µVision2 dialog Options for Target - Target the operating system, the linker adds
the appropriate RTX-51 library file.

136 Chapter 8. RTX-51 Real-Time Operating System

8

Single Task Program
A standard C program starts execution with the main function. In an embedded
application, main is usually coded as an endless loop and can be thought of as a
single task that is executed continuously. For example:

int counter;

void main (void) {
counter = 0;

while (1) { /* repeat forever */
counter++; /* increment counter */

}
}

Round-Robin Task Switching
RTX51 Tiny allows a quasi-parallel, simultaneous execution of several tasks.
Each task is executed for a predefined timeout period. A timeout suspends the
execution of a task and causes another task to be started. The following example
uses this round-robin task switching technique.

Simple C Program using RTX51
#include <rtx51tny.h> /* Definitions for RTX51 Tiny */
int counter0;
int counter1;

job0 () _task_ 0 {

os_create_task (1); /* Mark task 1 as "ready" */

while (1) { /* Endless loop */
counter0++; /* Increment counter 0 */

}
}

job1 () _task_ 1 {
while (1) { /* Endless loop */
counter1++; /* Increment counter 1 */

}
}

RTX51 starts the program with task 0 (assigned to job0). The function
os_create_task marks task 1 (assigned to job1) as ready for execution. These
two functions are simple count loops. After the timeout period has been
completed, RTX51 interrupts job0 and begins execution of job1. This function
even reaches the timeout and the system continues with job0.

Getting Started and Creating Applications 137

 8

The os_wait Function
The os_wait function provides a more efficient way to allocate the available
processor time to several tasks. os_wait interrupts the execution of the current
task and waits for the specified event. During the time in which a task waits for
an event, other tasks can be executed.

Wait for Timeout
RTX51 uses an 166/167 timer in order to generate cyclic interrupts (timer ticks).
The simplest event argument for os_wait is a timeout, where the currently
executing task is interrupted for the specified number of timer ticks. The
following uses timeouts for the time delay.

Program with os_wait Function
#include <rtx166t.h> /* Definitions for RTX166 Tiny */

int counter0;
int counter1;

job0 () _task_ 0 {

os_create_task (1);

while (1) {
counter0++; /* Increment counter 0 */
os_wait (K_TMO, 3, 0); /* Wait 3 timer ticks */

}
}

job1 () _task_ 1 {
while (1) {
counter1++; /* Increment counter 1 */
os_wait (K_TMO, 5, 0); /* Wait 5 timer ticks */

}
}

This program is similar to the previous example with the exception that job0 is
interrupted with os_wait after counter0 has been incremented. RTX166 waits
three timer ticks until job0 is ready for execution again. During this time, job1 is
executed. This function also calls os_wait with a timeout of 5 ticks. The result:
counter0 is incremented every three ticks and counter1 is incremented every five
timer ticks.

138 Chapter 8. RTX-51 Real-Time Operating System

8

Wait for Signal
Another event for os_wait is a signal. Signals are used for task coordination: if
a task waits with os_wait until another task issues a signal. If a signal was
previously sent, the task is immediately continued.

Program with Wait for Signal.
#include <rtx166t.h> /* Definitions for RTX166 Tiny */

int counter0;
int counter1;

job0 () _task_ 0 {

os_create_task (1);

while (1) {
if (++counter0 == 0) { /* On counter 0 overflow */
os_send_signal (1); /* Send signal to task 1 */

}
}

}

job1 () _task_ 1 {
while (1) {
os_wait (K_SIG, 0, 0); /* Wait for signal; no timeout */
counter1++; /* Increment counter 1 */

}
}

In this example, task 1 waits for a signal from task 0 and therefore processes the
overflow from counter0.

Preemptive Task Switching
The full version of RTX166 provides preemptive task switching. This feature is
not included in RTX166 Tiny. It is explained here to provide a complete
overview of multitasking concepts.

In the previous example, task 1 is not immediately started after a signal has
arrived, but only after a timeout occurs for task 0. If task 1 is defined with a
higher priority than task 0, by means of preemptive task switching, task 1 is
started immediately after the signal has arrived. The priority is specified in the
task definition (priority 0 is the default value).

Getting Started and Creating Applications 139

 8

RTX51 Technical Data
Description RTX-51 Full RTX-51 Tiny

Number of tasks 256; max. 19 tasks active 16
RAM requirements 40 .. 46 bytes DATA

20 .. 200 bytes IDATA (user stack)
min. 650 bytes XDATA

7 bytes DATA
3 * <task count> IDATA

Code requirements 6KB .. 8KB 900 bytes
Hardware requirements timer 0 or timer 1 timer 0
System clock 1000 .. 40000 cycles 1000 .. 65535 cycles
Interrupt latency < 50 cycles < 20 cycles
Context switch time 70 .. 100 cycles (fast task)

180 .. 700 cycles (standard task)
depends on stack load

100 .. 700 cycles
depends on stack load

Mailbox system 8 mailboxes with 8 integer entries
each

not available

Memory pool system up to 16 memory pools not available
Semaphores 8 * 1 bit not available

Overview of RTX51 Routines
The following table lists some of the RTX-51 functions along with a brief
description and execution timing (for RTX-51 Full).

Function Description CPU Cycles

isr_recv_message † Receive a message (call from interrupt). 71 (with message)

isr_send_message † Send a message (call from interrupt). 53

isr_send_signal Send a signal to a task (call from interrupt). 46

os_attach_interrupt † Assign task to interrupt source. 119

os_clear_signal Delete a previously sent signal. 57

os_create_task Move a task to execution queue. 302

os_create_pool † Define a memory pool. 644 (size 20 * 10 bytes)

os_delete_task Remove a task from execution queue. 172

os_detach_interrupt † Remove interrupt assignment. 96

os_disable_isr † Disable 8051 hardware interrupts. 81

os_enable_isr † Enable 8051 hardware interrupts. 80

os_free_block † Return a block to a memory pool. 160

os_get_block † Get a block from a memory pool. 148

os_send_message † Send a message (call from task). 443 with task switch

os_send_signal Send a signal to a task (call from tasks). 408 with task switch
316 with fast task switch
71 without task switch

140 Chapter 8. RTX-51 Real-Time Operating System

8

Function Description CPU Cycles

os_send_token † Set a semaphore (call from task). 343 with fast task switch
94 without task switch

os_set_slice † Set the RTX-51 system clock time slice. 67

os_wait Wait for an event. 68 for pending signal
160 for pending message

† These functions are available only in RTX-51 Full.

Additional debug and support functions in RTX-51 Full include the following:

Function Description

oi_reset_int_mask Disables interrupt sources external to RTX-51.

oi_set_int_mask Enables interrupt sources external to RTX-51.

os_check_mailbox Returns information about the state of a specific mailbox.

os_check_mailboxes Returns information about the state of all mailboxes in the system.

os_check_pool Returns information about the blocks in a memory pool.

os_check_semaphore Returns information about the state of a specific semaphore.

os_check_semaphores Returns information about the state of all semaphores in the system.

os_check_task Returns information about a specific task.

os_check_tasks Returns information about all tasks in the system.

Getting Started and Creating Applications 141

 8

CAN Functions
The CAN functions are available only with RTX-51 Full. CAN controllers
supported include the Philips 82C200 and 80C592 and the Intel 82526. More
CAN controllers are in preparation.

CAN Function Description

can_bind_obj Bind an object to a task; task is started when object is received.

can_def_obj Define communication objects.

can_get_status Get CAN controller status.

can_hw_init Initialize CAN controller hardware.

can_read Directly read an object’s data.

can_receive Receive all unbound objects.

can_request Send a remote frame for the specified object.

can_send Send an object over the CAN bus.

can_start Start CAN communications.

can_stop Stop CAN communications.

can_task_create Create the CAN communication task.

can_unbind_obj Disconnect the binding between a task and an object.

can_wait Wait for reception of a bound object.

can_write Write new data to an object without sending it.

TRAFFIC: RTX-51 Tiny Example Program
The TRAFFIC example is a pedestrian traffic light controller that shows the
usage of multitasking RTX-51 Tiny Real-time operating system. During a user-
defined time interval, the traffic light is operating. Outside this time interval, the
yellow light flashes. If a pedestrian pushes the request button, the traffic light
goes immediately into walk state. Otherwise, the traffic light works
continuously.

Traffic Light Controller Commands
The serial commands that TRAFFIC supports are listed in the following table.
These commands are composed of ASCII text characters. All commands must
be terminated with a carriage return.

Command Serial Text Description
Display D Display clock, start, and ending times.
Time T hh:mm:ss Set the current time in 24-hour format.

142 Chapter 8. RTX-51 Real-Time Operating System

8

Start S hh:mm:ss Set the starting time in 24-hour format. The traffic light controller
operates normally between the start and end times. Outside these
times, the yellow light flashes.

End E hh:mm:ss Set the ending time in 24-hour format.

Software
The TRAFFIC application is composed of three files that can be found in the
\KEIL\C51\EXAMPLES\TRAFFIC folder.

TRAFFIC.C contains the traffic light controller program that is divided into the
following tasks:

•= Task 0 init: initializes the serial interface and starts all other tasks. Task 0
deletes itself since initialization is needed only once.

•= Task 1 command: is the command processor for the traffic light controller.
This task controls and processes serial commands received.

•= Task 2 clock: controls the time clock.

•= Task 3 blinking: flashes the yellow light when the clock time is outside the
active time range.

•= Task 4 lights: controls the traffic light phases while the clock time is in the
active time range (between the start and end times).

•= Task 5 keyread: reads the pedestrian push button and sends a signal to the
task lights.

•= Task 6 get_escape: If an ESC character is encountered in the serial stream
the command task gets a signal to terminate the display command.

SERIAL.C implements an interrupt driven serial interface. This file contains the
functions putchar and getkey. The high-level I/O functions printf and getline
call these basic I/O routines. The traffic light application will also operate
without using interrupt driven serial I/O. but will not perform as well.

GETLINE.C is the command line editor for characters received from the serial
port. This source file is also used by the MEASURE application.

Getting Started and Creating Applications 143

 8

TRAFFIC Project
 Open the TRAFFIC.UV2 project file that is

located in \KEIL\C51\EXAMPLES\TRAFFIC folder
with µVision2. The source files for the
TRAFFIC project will be shown in the
Project Window – Files page.

 The RTX-51 Tiny Real-Time OS is selected under Options for Target.

 Build the TRAFFIC program with Project - Build or the toolbar button.

 Run the TRAFFIC Program

You can test TRAFFIC with the
µVision2 simulator.

The watch variables shown on the right
allow you to view port status that drives
the lights.

The push_key
signal function
simulates the
pedestrian
push key that
switches the
light system to
walk state.
This function
is called with
the Push for
Walk toolbar
button

Use Debug – Function Editor to open TRAFFIC.INC. This file is specified

under Options for Target – Debug – Initialization File and defines the
signal function push_key, the port initialization and the toolbar button.

144 Chapter 8. RTX-51 Real-Time Operating System

8

button.
Note: the VTREG symbol Clock is literalized with a back quote (`),

 since there is a C function named clock in the TRAFFIC.C module.
Refer to “Literal Symbols” on page 109 for more information.

 Now run the TRAFFIC application. Enable View – Periodic Window
Update to view the lights in the watch window during program execution.

 The Serial Window #1 displays the printf output and allows you to enter
the traffic light controller commands described in the table above.

Set the clock
time outside of
the start/end
time interval
to flash the
yellow light.

RTX Kernel Aware Debugging
A RTX application can be tested with the same methods and commands as
standard 8051 applications. When you select an Operating System under
Options for Target – Target, µVision2 enables additional debugging features:
a dialog lists the operating system status and with the _TaskRunning_ debug
function you may stop program execution when a specific task is active.

The following section exemplifies RTX debugging with the TRAFFIC example.

 Stop program execution, reset the CPU and kill all breakpoints.

Getting Started and Creating Applications 145

 8

An RTX-51 application can be tested in the same way as standard
applications. You may open source files, set break points and single step
through the code. The TRAFFIC application starts with task 0 init.

µVision2 is completely kernel aware. You may display the task status
with the menu command Peripherals – RTX Tiny Tasklist.

The dialog RTX51 Tiny Tasklist gives you the following information:

Heading Description

TID task_id used in the definition of the task function.

Task Name name of the task function.

State task state of the function; explained in detail in the next table.

Wait for
Event

event the task is waiting for; the following events are possible (also in combination):
Timeout: the task Timer is set to the duration is specified with the os_wait function
call. After the Timer decrements to zero, the task goes into Ready state.
Interval: the time interval specified with os_wait is added to the task Timer value.
After the Timer decrements to zero, the task goes into Ready state.
Signal: the os_wait function was called with K_SIG and the task waits for Sig = 1.

Sig status of the Signal bit that is assigned to this task.
Timer value of the Timer that is assigned to this task. The Timer value decrements with

every RTX system timer tick. If the Timer becomes zero and the task is waiting for
Timeout or Interval the task goes into Ready state.

Stack value of the stack pointer (SP) that is used when this task is Running.

146 Chapter 8. RTX-51 Real-Time Operating System

8

RTX-51 Tiny contains an efficient stack management that is explained in the "RTX51 Tiny" User’s
Guide, Chapter 5: RTX51 Tiny, Stack Management.

This manual provides detailed information about the Stack value.

State Task State of a RTX166 Task Function

Deleted Tasks that are not started are in the Deleted state.
Ready Tasks that are waiting for execution are in the Ready state. After the currently

Running task has finished processing, RTX starts the next task that is in the Ready
state.

Running The task currently being executed is in the Running state. Only one task is in the
Running state at a time.

Timeout Tasks that were interrupted by a round-robin timeout are in the Timeout state. This
state is equivalent to Ready; however, a round-robin task switch is marked due to
internal operating procedures.

Waiting Tasks that are waiting for an event are in the Waiting state. If the event occurs which
the task is waiting for, this task then enters the Ready state.

The Debug – Breakpoints… dialog allows you to define breakpoints that stop
the program execution only when the task specified in the _TaskRunning_
debug function argument is Running. Refer to “Predefined Functions” on page
122 for a detailed description of the _TaskRunning_ debug function.

The breakpoint at the function signalon stops execution only

 if lights is the current Running task.

